
International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

DOI : 10.5121/ijgca.2010.1201 1

CLUSTERED DISTRIBUTED INDEX FOR

EFFICIENT TEXT RETRIEVAL USING

THREADS

M. Basavaraju
1
 and Dr. R. Prabhakar

2

1
Research Scholar, Dept. of CSE, Coimbatore Institute of Tech., Anna University,

Coimbatore, Tamil Nadu, India,

Professor & Head, Dept. of CSE, Atria Institute of Tech., Bengaluru, Karnataka, India,

Email : basavaraju@atria.edu
2 Professor-Emeritus Dept. of CSE, Coimbatore Institute of Tech.,

Coimbatore, Tamilnadu, INDIA

ABSTRACT

In this research paper, a novel method of improving the clustered distributed indices for efficient text

retrieval using threads is presented. In text retrieval, text search refers to a technique of searching stored

document or database. In a full text search, the search engine examines all the words in every stored

document as it tries to match search words supplied by the user. When dealing with a small number of

documents, the full-text search engine performs a serial scan, where it directly scans the contents of the

documents with each query. When the number of documents to search is potentially large or the quantity

of search queries to perform is substantial, the problem of full text search is often divided into two tasks,

viz., indexing and searching. The indexing stage scans for text of all the documents and builds a list of

search terms, often called an index. In the search stage, when performing a specific query, only the index

is referenced rather than the text of the original documents. Considering all the above mentioned

criterias, this paper aims at improving the search time on the index, by clustering the index. Threads are

used to perform a parallel search on each of these clusters. The algorithm developed in C has been

tested on various sizes of data and queries and compared with the sequential search method. The

depicted results shown in the result section clearly show that this approach improves the search time

significantly & the method proposed shows the efficacy, effectiveness, which can be further implemented

for real time applications.

KEYWORDS

Clustering, Distributed index, Threads, Text retrieval, Posting list, Query processing, Algorithms,

Performance.

1. INTRODUCTION

Recent times have seen an explosive growth in the availability of various kinds of data. It has

resulted in an unprecedented opportunity to develop automated data-driven techniques of

extracting useful knowledge. This has led to the concept of data mining. Data mining is an

important step in this process of knowledge discovery & consists of methods that discover

interesting non-trivial & useful patterns hidden in the data [21]. Vast amounts of unstructured

documents are available in many fields, and when we consider the web, documents can be

retrieved from all over the world. A large amount of text has to be shifted to retrieve the

information useful to the user. Fast and effective clustering is a fundamental tool in

unsupervised learning. Various access methods have been developed to support efficient search

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

2

and retrieval over text document collections. Examples include suffix arrays, inverted files [22]

or inverted indexes [23], Witten et. al. and signature files [24].

A rough but widely agreed upon framework is to classify clustering techniques as Hierarchical

Clustering and partitional clustering, based on the properties of the generated clusters [3]. The

distance metric (Euclidean, Hamming, etc) must be appropriately chosen according to the

underlying shapes of the data, whether it is spherical or ellipsoidal data [2]. Queries can be

either boolean or ranked. A boolean query is made up of terms connected by the logical

operators AND, OR, NAND and NOT-can be used to identify the documents containing a given

combination of terms and is similar to the kind of query used on relational tables [2].

Ranking, on the other hand, is a process of matching an informal query to the documents and

allocating scores to documents according to their degree of similarity to the query [1]. The

major problem is to organize and store huge amounts of data. When search is done on this data

the quality of the search should be very good. The search should also be cost effective and time

effective. It is very important that the result obtained by the search query should be equivalent

to what we are actually searching for [4].

Foti et.al. developed scalable parallel clustering models for data mining on multi-computers in

their research paper in [16]. They designed & implemented on MIMD parallel machines of P-

AutoClass, a parallel version of the AutoClass system based upon the Bayesian method for

determining optimal classes in large datasets. In particular, efficiency and scalability of P-

Autoclass vs. the sequential Autoclass system were also evaluated and compared by them.

Text search and information retrieval in the modern day computing plays a very important role.

This can be done using the highly efficient search engines such as google, yahoo, rediff &

several others. Search engines are tools for finding the documents in a collection that are good

matches to user queries [5]. Typical kinds of document collection include web pages, newspaper

articles, academic publications, company reports, research grant applications, manual pages,

encyclopaedias, parliamentary proceedings, bibliographies, historical records, electronic mail,

and court transcripts. These collections range dramatically in size [19].

The plain text of a complete set of papers written by a researcher over ten years might occupy

10 megabytes, and the same researcher’s (plain text, non-spam) 10-year email archive might

occupy 100 megabytes [6]. A thousand times bigger, the text of all the books held in a small

university library might occupy around 100 gigabytes. In 2005, the complete text of the Web

was probably some several tens of terabytes. Collections also vary in the way they change over

time. A newswire archive or digital library might grow only slowly, perhaps by a few thousand

documents a day; deletions are rare [19].

Web collections, in contrast, can be highly dynamic. Fortunately, many of the same search and

storage techniques are useful for these collections. Text is not the only kind of content that is

stored in document collections [7]. Research papers and newspaper articles include images,

email includes attachments, and web collections include audio and video formats. The sizes

discussed previously are for text only; the indexing of media other than text is beyond the scope

of this tutorial [19].

Several methods have been proposed by various researchers in their paper in order to solve this

problem. One of the methods could be ranking. Ranking is a process of matching a query to the

documents and allocating scores to the documents according to their degree of similarity [2].

The other method is the process of clustering. Clustering is a process of organizing the objects

into groups, whose members are similar in some way.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

3

Search engines are structurally similar to database systems. Documents are stored in a

repository, and an index is maintained. Queries are evaluated by processing the index to identify

matches which are then returned to the user [8]. However, there are also many differences.

Database systems must contend with arbitrarily complex queries, whereas the vast majority of

queries to search engines are lists of terms and phrases. In a database system, a match is a

record that meets a specified logical condition; in a search engine, a match is a document that is

appropriate to the query according to statistical heuristics and may not even contain all of the

query terms [19].

Database systems return all matching records; search engines return a fixed number of matches,

which are ranked by their statistical similarity. Database systems assign a unique access key to

each record and allow searching on that key; for querying on a web collection, there may be

many millions of documents with nonzero similarity to a query [9]. Thus, while search engines

do not have the costs associated with operations such as relational join, there are significant

obstacles to fast response, that is, a query term may occur in a large number of the documents,

and each document typically contains a large number of terms. The challenges presented by

text search have led to the development of a wide range of algorithms and data structures. These

include representations for text indexes, index construction techniques, and algorithms for

evaluation of text queries [19].

The paper is organized in the following sequence. Section 2 presents an overview of the

related work done. Section 3 presents the concept of indexing, followed by the threading

concepts in section 4. The section 5 depicts the process of clustering. The leaders algorithm

developed to obtain the search indices is presented in section 6. Searching process is dealt with

in the section 7. The simulation results along with the detailed discussions are presented in the

section 8. This is followed by the conclusions in the section 9 & the scope for future works.

2. RELATED WORK

Indexes based on these techniques are crucial to the rapid response provided by the major web

search engines. Through the use of compression and careful organization, the space needed for

indexes and the time and disk traffic required during query evaluation are reduced to a small

fraction of previous requirements [10]. Thus, considering all the above mentioned parameters,

we have tried to develop a novel method of improving the clustered distributed indices by

developing a code in C language, which is the highlight of this research paper.

We are using Leader’s algorithm to cluster the huge data that we have obtained [3]. When we

are searching, we will not have to search the entire data, instead we would have to search only

the cluster. This is the greatest advantage of using clustering. By clustering, the search becomes

cost effective and time effective. Hence, we have used clustering in our search techniques. The

input to our search engine is the data which is collected from several books. We have collected

the table of contents of several books in different areas. We first compress the raw data that we

have obtained by using methods such as stemming and stopping [11].

Stopping takes in the various tables of content as input, processes them and gives the output

which are free of stop words. Stop words are those which include repetitive words or functional

words like ‘and’, ‘or’, ‘but’, ‘because’, etc., which are not of much importance at the time of

storage in the database but may just use up memory [12]. Hence, these words are being

eliminated or cleaned up before processing it further for the later stages. Case folding is also

done within this stage where the uniformity of text in lower case is been done.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

4

Ex. : Let us consider an example 1 ….

Input : Hello, Welcome to this Atria College

Output : hello welcome atria college

Now, let us look at the above example. The input statement is fed into the stop module. The

output that we obtain is free from punctuations and the commonly occurring words are removed

[13]. The next phase takes in stop free words list as the input. The job of stemming is to remove

the different forms of the same word and just retain the base word. For ex., ‘writing’, ‘writes’,

‘written’ ….. can all be reduced to ‘write’ and only ‘write’ gets stored in the vocabulary or

database. Hence the base word gets stored and other forms of that word are being cleaned off,

thus saving the memory space & also increasing the efficacy of the search techniques. These

steps of stopping, stemming and case folding are all part of pre-processing stages where the

initial data is being cleaned before actually processing it [14].

For dealing efficiently with high traffic of user queries, we use distributed inverted indices. An

inverted file is composed of a vocabulary table and a set of posting lists. The vocabulary table

contains the set of relevant terms found in the test collection which is arranged in the

alphabetical order. Each of these terms is associated with a posting list which contains the

document identifiers along with additional data used for ranking purpose. To solve a query, it is

necessary to get the set of documents associated with the query terms and then perform a

ranking of these documents in order to select the top ‘K’ documents as query answer [15].

Depending on the hamming distance between the words in the vocabulary, words which are

similar such as ‘write’ are clustered. Several clusters exist depending on the vocabulary size and

the kind of documents. Threads (light weight process) are applied to individual clusters.

Surprisingly our results show that by using the concept of clustering and parallelism, search

becomes more cost effective, time effective and the quality of the search becomes accurate. Our

results show that this strategy is able to cause efficient performance both in large scale and

small scale search engines [16].

3. INDEXING

In order to avoid linear scanning of the text corpus for each query, we index the documents well

in advance. To obtain the speed benefits of indexing, we also need to perform the indexing of

the documents well in advance [1]. For doing this operation, the major steps required are as

follows :

• Collect the documents to be indexed.

• Tokenize the text, breaking documents into tokens.

• Produce a list of indexing terms.

• Create an inverted index consisting of a list and a vocabulary

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

5

Ex. : Let us consider another example 2 ….

DOC1 : apple baby cream

DOC2 : pineapple cream jam

DOC3 : mango pineapple

Term Doc Id

Apple 1

Baby 1

Cream 1, 2

Jam 3

Mango 3

Pineapple 2

Matrix representation: This is the representation of the term versus the various documents. We

could compute the distance between the two words by using some distance metric such as a

Euclidean Distance or a Hamming Distance as computed below [17].

Term DOC1 DOC2 DOC3

Apple 1 0 0

Baby 1 0 0

Cream 1 1 0

Jam 0 0 0

Mango 0 0 1

Pineapple 0 1 1

Term document incidence matrix : An index always maps back from terms to the parts of a

document where they occur. We keep a dictionary of terms which is usually sorted in the

alphabetical order. For each term, we have a list that records which documents the term occurs

in [18]. Each item in the list records that a term appeared in a document is called “Posting”. The

list is called ‘Posting List’.

The dictionary is commonly kept in the memory, while posting lists are normally kept on the

disk. For an in-memory posting list, we have used a singly linked list. The posting list contains

the following fields : The first field indicates the frequency of the occurrences of the term in the

document. The second field indicates the document identity (Doc id) and third field points to the

next list.

4. THREADING PROCESS

A thread is a light weight process (LPW). A thread of execution results from a fork of a

computer program or more concurrently running tasks. The implementation of threads and

processes differs from one operating system to another, but in most cases, a thread is contained

inside a process. Multiple threads can exist within the same process and share resources such as

memory, while different processes do not share these resources [19].

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

6

On a single processor, multi-threading generally occurs by time-division multiplexing (as in

multi-tasking) & the processor switches between different threads. This context switching

generally happens frequently when the user perceives the threads or tasks when running at the

same time. On a multi-processor or multi-core system, the threads or tasks will generally run at

the same time, with each processor or core running a particular thread or task. Generally, the

support for threads in programming languages varies. A number of languages simply do not

support having more than one execution context inside the same program executing at the same

time [20].

Threads differ from traditional multitasking operating system processes in that:

• processes are typically independent, while threads exist as subsets of a process,

• processes carry considerable state information, where multiple threads within a process

share state as well as memory and other resources,

• processes have separate address spaces, where threads share their address space,

• Processes interact only through system-provided inter-process communication

mechanisms.

Context switching between threads in the same process is typically faster than context switching

between processes. In the following paragraph, information about the pthreads is provided.

‘Pthreads’ specifies a thread’s starting point as a procedure name, other thread packages differ

in their specification of even this most elementary of concepts. Pthreads is a standardized model

for dividing a program into sub-tasks whose execution can be interleaved or run in parallel. The

‘P’ in Pthreads comes from ‘POSIX’ (Portable Operating System Interface). Pthreads is a

defined set of C language programming types and calls with a set of implied semantics. Thus,

taking the concept of Pthreads, we have used the ‘C’ technology here while developing the

algorithms & the codes. Multiple threads are spawned and fed with the search query. These run

independently and perform the search. The results are finally joined together [21].

5. CLUSTERING PROCESS

Clustering is the process of organizing objects into groups whose members are similar in some

way. A cluster is a collection of objects which are “similar” to each other and are “dissimilar” to

the objects belonging to other clusters. A rough but widely agreed upon framework is to classify

clustering techniques as Hierarchical clustering and partitional clustering based on the

properties of the generated clusters.

4 different methodologies are used in this technique, viz., searching, clustering, inverted index

& the pre-processing (stopping & stemming) as shown in the Fig. 1. Clustering algorithms

arranges data items into several groups so that similar items fall into the same group. This is

done without any suggestion from an external supervisor, classes and training examples are not

given a priori. Most of the early cluster analysis algorithms come from the area of statistics and

have been originally designed for relatively small data sets [18].

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

7

Semantic search

Clustering

Inverted Index

Preprocessing

Search for the query

Partitioning algorithm

Conversion to
Inverted index

Stopping,
Stemming

Semantic search

Clustering

Inverted Index

Preprocessing

Search for the query

Partitioning algorithm

Conversion to
Inverted index

Stopping,
Stemming

Fig. 1: The different phases of clustering process

In the recent years, clustering algorithms have been extended to efficiently work for knowledge

discovery in large databases and some of them are able to deal with high-dimensional feature

items. When used to classify large data sets, clustering algorithms are very computing

demanding and require high performance machines to get results in reasonable time.

Experiences of clustering algorithms taking from one week to about 20 days of computation

time on sequential machines are not rare. Thus, scalable parallel computers can provide the

appropriate setting where to execute clustering algorithms for extracting knowledge from large

scale data repositories [18].

The different approaches of clustering used in the search process is best explained in the form of

a diagram shown in the Fig. 2.

Clustering

Hierarchial Partitional Large data

Agglomerative

Divisive

Incremental

Divide-Conquer

Compress & Cluster

Fig. 2 : Different approaches of clustering process

6. DEVELOPMENT OF THE LEADER’S ALGORITHM

Leader’s algorithm [4] is a very simple incremental developmental clustering algorithm. It

requires only a single data base scan. It can be used for clustering of numerical data sets and

also sequential data sets.

The time complexity of the leaders algorithm is O(nd),

where

d = Dimensionality of the pattern.

n = Total number of patterns.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

8

The space complexity of the algorithm is = O(Ld),

where

L = Number of Leaders.

d = Dimensionality of the pattern.

Leader 1
(Group 1)

Leader 1
(Group 2)

Fig. 3 : Diagram demonstrating the leader’s algorithm

Consider some points in space. We choose the first point that we encountered as a leader point.

The leader point is compared with all the other points. If the points lie within a specific

threshold value, then the groups of points are clustered to form a group. Every group contains a

group leader. Similarly, viz., group 1 & the group 2. The different clusters are formed as shown

in the Fig. 3.

Leader’s algorithm is as follows:

1. Fix an optimal threshold value.

2. Scan the first point and name it as the ‘leader’.

3. Scan the next point and compute its distance from the leader point using the Hamming

Distance. If the distance is found to be within the threshold value then group these two

points and form a cluster.

4. If the point falls out of region of the threshold value, fix that point as next leader. Scan

the new point & compute its distance with the leaders and accordingly group the point

into respective clusters until next leader.

5. Repeat the entire process until next leader. Leader’s algorithm is chosen because it

requires only a single scan of the database and so scales up well to deal with large scale

problems.

7. SEARCHING PROCESS

Searching is done in 3 different kinds of approaches such as

1. Sequential search

2. Search using threads

3. Search using threads on clustered index

The above mentioned processes are further explained in brief as follows.

1. Sequential search is the basic linear search in which the query is searched for in the

entire vocabulary.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

9

2. Search using threads is the mechanism where the vocabulary is divided into two halves.

Each half is assigned with a thread to search for the query. Parallelism is achieved here

& faster response is delivered to the query.

3. The mechanism used in search using threads on clusters is, after obtaining the clusters

we assign each cluster with a thread and search for the query. The time taken in all the

search techniques are noted and compared in order to obtain time efficiency. Time taken

for searching the query is the least in the case of threads on clusters and highest in

sequential search.

8. SIMULATION RESULTS

Simulation is carried out using the developed coding in C language. For the data sets, in order

to carry out the testing process, the data set taken is the Table of Contents (TOC) of various

books taken from the website http://www.books.com belonging to different fields such as Arts,

Music, Architecture, Medicine, Engineering, Law, Defense, etc. This TOC is given as an input

to the pre-processing module in the developed C algorithm. After running the program, test

results are obtained. The evaluation scheme for the test results is done using three methods,

viz., sequential search, threaded based search & the cluster based search for the same datas.

The quantitative results of the comparison of sequential search, thread based search and cluster

based search with fixed query length is shown in the Table 1. Also, the graph showing data size

vs time taken using the 3 types of search is shown in the Fig. 4. It can be observed from the

simulation results shown in this table & from the figure that the searching of data sets using

clusters takes less amount of time when compared to sequential or the threaded search and thus

improves the results further as the related terms are found together. Also, the clustering with

parallelism search becomes more cost effective, time effective and the quality of the search is

very accurate as we had used the leader’s algorithm. The simulation results also show that the

proposed concept of clustering and parallelism search becomes more cost effective, time

effective and the quality of the search is accurate. The advantage of the used leader algorithm

for the determination of the search indices are, viz., one data base scan, efficient & the access

time is very fast.

The quantitative results of comparison of sequential search, thread based search and cluster

based searches with fixed data size using the proposed algorithm is shown in Table 2 along with

the graph showing query size vs. time taken in Fig. 5. It can be observed from the simulation

results presented in this table & from the figure that the cluster based search approach has

yielded excellent index results (9 to 14) for various word size, thus reducing the search time in

the huge amount of data world. Considering the query size, the cluster based search approach

has also yielded excellent index results (11 to 13) for various query sizes ranging from 50 to 80.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

10

Data

size

Sequential

Search

Thread

based

search

Cluster

based

search

10docs

(VSize = 865

words)

16.4289 18.4221 14.6044

12docs

(VSize = 958

words)

27.4127 18.30435 10.4394

15docs

(VSize =

1386

words)

15.2173 13.70035 9.2173

Table 1 : Comparison of sequential search, thread based search and cluster based search with

fixed query length.

Fig. 4 : Graph showing data size vs time taken

Query

size

Sequential

search

Thread

based

search

Cluster

based

search

50 14.8362 15.5996 13.7597

65 16.6247 15.2558 11.9577

80 16.1377 15.4424 11.8486

Table 2 : Quantitative results of comparison of sequential search, thread based search and

cluster based searches with fixed data size using the proposed algorithm.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

11

Fig. 5 : Graph showing query size vs. time taken

9. CONCLUSIONS

A novel method of obtaining the clustered distributed indices for efficient text retrieval using

threads was presented in this research paper. Simulations in C language were performed to

obtain the same. From the statistics and the graphs obtained, it is quite conclusive that search

using threads on clusters are faster compared to sequential search. Further, it is justified from

the results that searching using clusters takes less amount of time when compared to sequential

or the threaded search. Of course, threads helps in improving the performance of the text

retrieval as it takes less amount of time to search for the query. But, the cluster based search

using threads further improves the results further as related terms are found together.

Our results also show that the proposed concept of clustering and parallelism search becomes

more cost effective, time effective and the quality of the search is accurate. The advantage of

the used leader algorithm for the determination of the search indices are, viz., one data base

scan, efficient & the access time is very fast. For the data size, the cluster based search

approach has yielded excellent index results (9 to 14) for various word size, thus reducing the

search time. Considering the query size, the cluster based search approach has also yielded

excellent index results (11 to 13) for various query sizes ranging from 50 to 80. Sequential

search takes more amount of time in the worst case (if the word is not present in the

vocabulary). For smaller data sets, sequential search may work faster. In practical scenarios,

very large data sets are being used in the world wide web (www). Hence, we could infer that

clustered based thread search takes the least amount of time and is considered to be most

efficient, which is the highlight of the research work undertaken in this paper.

SCOPE FOR FUTURE WORK

We have used leader’s algorithm for the clustering process. Many different clustering

algorithms such as K-Means, BIRCH, etc., could be used for clustering and then searching on

these clustering algorithms can be done. Semantic search is also a good direction to explore.

ACKNOWLEDGMENTS

We would like to acknowledge Shri. A.S. Chinnaswamy Raju, Managing Trustee, Atria Institute

of Tech. for providing the facilities for carrying out the research work in this renowned

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

12

institution, the AIT. We also thank all our colleagues of AIT & CIT directly or indirectly for

helping us while developing this paper. Not but least, we also thank Prof.

M.N.Narasimhamurthy of Indian Institute of Science, Bangalore for helping us during the

various stages of the work.

REFERENCES

[1]. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, “An introduction to information

retrieval”, Cambridge University Press, England, UK, Aug. 30, 2007.

[2]. Alistair Moffat, Justin Zobel, “Self-indexing inverted files for fast text retrieval”, Feb. 1994.

[3]. Narasimha Murty M., Anil K Jain, “Knowledge-based clustering scheme for collection

management and retrieval of library books”, Jr. of Pattern Recognition, 3 Jan. 1995.

[4]. Vijaya P.A., M. Narasimha Murthy, D.K. Subramanian, “Leaders-subleaders : an efficient

hierarchical clustering algorithm for large data sets”, Pattern Recognition Letters, Mar. 2004.

[5]. William B. Frakes, Ricardo Baezar-Yates, “Information Retrieval Data Structures & Algorithms”,

Prentice Hall PTR, New Jersey, USA.

[6]. Jiawei Han, Micheline Kamber, “Data mining Concepts and Techniques”, 2
nd

 Edition, Text Book.

[7]. http://portal.acm.org/citation.cfm?id=979920

[8]. http://tartarus.org/~martin/PorterStemmer/

[9]. http://en.wikipedia.org/wiki/index

[10]. http://portal.acm.org/citation.cfm?id=979920

[11]. http://www.resample.com/xlminer/help/HClst/HClst_intro. html

[12]. http://ecommerce.hostip.info/pages/924/Search-Engine-Strategy.html

[13]. Hisashi Koga, Tetsuo Ishibashi and Toshinori Watanabe, “Fast Hierarchical Clustering Algorithm

using Locality Sensitive Hashing, Graduate Schools of Information Science”, University of Electro-

Communications.

[14]. Narasimha Murty M., Anil K Jain, “Knowledge-based clustering scheme for collection

management and retrieval of library books”, Pattern recognition and Image Processing Laboratory,

Dept. of Computer Science, Michigan State University, East Lansing, MI 48824-1027, U.S.A., 3

Jan. 1995.

[15]. Anna Formica, “Concept Similarity by evaluating information content ad feature vectors: a

combined approach”, Communications of the ACM, Vol. 52, No. 3, Mar. 2009.

[16]. Foti D., D. Lipari, C. Pizzuti and D. Talia, “Scalable Parallel Clustering for Data Mining on Multi -

computers”, Jr. paper.

[17]. Judd D., P. McKinley, A. Jain, “Performance Evaluation on Large-Scale Parallel Clustering in

NOW Environments”, Proceedings of the Eight SIAM Conf. on Parallel Processing for Scientific

Computing, Minneapolis, Mar. 1997.

[18]. Stoffel K and A. Belkoniene. Parallel K-Means Clustering for Large Data Sets”, Proceedings Euro-

Pa’99, LNCS 1685, pp. 1451-1454, 1999.

[19]. Justin Zobel and Alistair Moffatacm, “Inverted Files for Text Search Engines”, Computing

Surveys, Vol. 38, No. 2, Article 6, Jul. 2006.

[20]. Zobel, J., Moffat, A. & Sacks-Davis, R., “An efficient indexing technique for full-text database

systems”, Proc. VLDB Int. Conf. on Very Large Databases, L.-Y. Yuan, Ed. Morgan Kaufmann,

Vancouver, pp. 352–362, 1992.

[21]. Mahesh V Joshi, Eui Hong Sam Han, George Karypis and Vipin Kumar, “Parallel Algorithms in

Data Mining”, Conf. paper.

[22]. Manber, U. and Myers, G., “Suffix arrays: A new method for on-line string searches”, Proc. of the

1st ACM-SIAM Symposium on Discrete Algorithms, ACM Press, New York, NY, 319–327, 1990.

[23]. Salton, G., “Information Retrieval: Data Structures and Algorithms”, Addison-Wesley, Reading,

Massachussetts, 1989.

[24]. Faloutsos, C. and Christodoulakis, S., “Signature files: An access method for documents and its

analytical performance evaluation”, ACM Trans. on Office Information Systems 2, 4 (October),

ACM Press, New York, NY, 267–288, 1984.

International Journal of Grid Computing & Applications (IJGCA) Vol.1, No.2, December 2010

13

Mr. M. Basavaraju completed his Masters in Engineering in Electronics and

Communication from University Visvesvaraya College of Engg. (Bangalore),

Bangalore University in 1990, & B.E. from Siddaganga Institute of Technology

(Tumkur), Bangalore University in the year 1982. He has got a vast teaching

experience of 22 years & an industrial experience of 6 years. Currently, he is

working as Professor and Head of Computer science & Engg. Dept., Atria Institute

of Technology, Bangalore, India. He is also a research scholar in Coimbatore Inst.

of. Tech., Coimbatore, doing his research work & progressing towards his Ph.D. in

the computer science field from Anna University Coimbatore, India, His research interests are Data

Mining, Computer Networks, Parallel computing.

Dr. R. Prabhakar obtained his B. Tech. degree from IIT Madras in 1969, M.S. from

Oklahoma State University, USA and Ph.D. from Purdue University, USA.

Currently he is professor of Computer of Science and Engineering and Secretary of

Coimbatore Institute of Technology, Coimbatore, India. His areas of specialization

include Control Systems, CNC Control, Robotics, Computer Graphics, Data

Structures, Compilers, Optimization. He has published a number of papers in

various national & international journals, conferences of repute & is guiding a

couple of students who are progressing towards the Masters & Doctoral degrees.

