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ABSTRACT 

 

In this paper we assume that strategic payoffs are Normal distribution, and discuss how the parameters of 

Normal distributions affect the NE payoff distribution that is also concerned by players. We find that 

distortions of NE payoff distributions are dominated by the distance between variances of strategic payoffs 

in small means cases and the variances of the dominantly strategic payoffs in large means case. We also 

find that the variances of strategic payoffs lead to the higher means of the NE payoff distributions, which 

contain risk premium and the dominantly strategic payoffs, whatever the means of strategic payoffs. 

However, compared with the dominant strategy that is NE of static game, our model obtains that the mean 

magnitudes of strategic payoffs lead to establish the different rade-off relationship between means and 

variances of the NE payoff distribution in the decision-making process. 
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1. INTRODUCTION 

  

This paper examines payoff uncertainty in the form of Normal distribution with different 

variances.  The previous literatures in game theory have ignored payoff uncertainty in terms of 

the variance effect and assume a specific distribution when the game faces payoff uncertainty. In 

this paper, I show that changing the values of variance and mean of Normal distribution has 

impacted on the payoff distribution of Nash equilibrium (NE, Nash, 1950, 1951) under the case 

that the players play the DS, labeled DS. 

 

The paper simulates a 2 × 2 game where the DS payoffs are Normal distribution, the most 

interesting and novel results is that for different variances of Normal distribution the NE payoff 

distributions have different shapes and larger means whatever the DS payoffs are. But the large 

DS payoffs’ means with different variancesleads to less changes in shape of NE payoff 

distributions. This result illustrates that it is important to consider the role of risk in the decision-

making process of NE. 

 

The early researches followed the game model with uncertainty use the approaches of von 

Neumann and Morgenstern (1944) and Savage (1972) (see Osborne and Rubinstein, 1994, p.5). 

Then uncertainty in game model is shown in the papers, such as that Friedman & Mezzetti (2001) 
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and Hofbauer & Sandholm (2007) discuss how random process works in game models. Cotter 

(1994) follows Harsanyi (1973) and Aumann (1987) and finds that players use observations, the 

players’ type, and a nature effect on payoffs to obtain a strategy correlated equilibrium that is 

better than Bayesian-Nash equilibrium because a strategy correlated equilibrium is more robust 

than Bayesian-Nash equilibrium that is affected by player’s type only. Battigalli & Siniscalchi 

(2007) also follow the approach of Bayesian game with partially unknown payoff that is denoted 

as uncommon knowledge in the game where it has different types of players. They build an 

interactive-epistemology structure with complete information and slight payoff uncertainty then 

find that large parameter space induces in the correspondence between initial common certainty 

of nature and rationality then obtains weakly rationalizable strategies with complete information. 

Wiseman (2005) tries to use unknown payoff distribution to solve multi-armed bandit problem in 

a different state corresponding to a different payoff matrix in stage game. The above literatures 

focus on the equilibrium of strategy by the view of expected payoff and by the use of payoff 

distributions as probability effect without considering complete distribution effect including 

variances and higher-order moments. Unfortunately, the above papers did not take the complete 

distribution effect to present how uncertainty works in game models. It is necessary to pay 

attention on distribution assumption which is random draw and has more parameters interacting 

to show uncertainty, for example, capital asset pricing model (CAPM) shows the positive relation 

of means and variances (Varian, 2011) and Chamberlain (1983) and Ingersoll (1987) provide 

mean-variance analysis is appropriate when payoff distribution is elliptical. The paper, relative to 

the above papers, simultaneously manages the parameters of distributions of strategic payoffs and 

the decision-making process that is denoted as maximum function. The paper’s advantages that 

we can investigate how NE payoff distributions are affected by parameters of distribution 

assumption and decision-making interaction.  

 

Most specifically, players in competition with the DS and uncertain payoff usually occupy large 

NE payoffs from large variances when the means of strategic payoffs are fixed. Unless one of 

strategies has variance equaling to 1, the variances of strategic payoffs have hugely impact on the 

NE payoff distributions, whereas for the variance of strategic payoff that is larger than 1 causes 

that NE payoff distributions have different changes of each coefficient and graph. One example is 

that in the stock market an investor faces a huge number of common stocks and indexed stocks, 

whereas indexed stocks have low risk than common stocks. Other examples include companies 

deciding investment plans, households facing the choices of insurance portfolios, and different 

investing products choosing. The game model can also be used to understand the settled values of 

parameters have impact on NE payoff distribution. The reason to focus on the NE payoff rather 

than the NE strategy is that players mind which strategy can bring highest payoff, but also they 

want to know how the risk will make additional payoff, that is risk premium. When both 

variances of payoffs are high, the NE payoff has higher mean and lower variance than the payoff 

of the DS. One contribution of the model is that as the fluctuation of strategic payoff become 

more dramatic NE payoff will become less fluctuated and eventually interaction of uncertainly 

strategic payoffs in decision-making process will dominate. 

 

The driving forces behind the NE payoff distributions are the values of means and variances and 

the decision rule. When the variances of strategic payoffs are 1, the DS payoff distribution 

dominates the NE payoff distribution whatever the means of strategic payoffs are large or small. 

In contrast, when at least one of variances of strategic payoffs is larger than 1, the norm between 

variances and the values of variances become important. A NE payoff benefits by getting more 

return and facing lower risk for players who still choose the DS. The NE payoff sare better than 

the DS payoffs in uncertainty, meanwhile, the environments where players only face the payoff 
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distribution of the DS without making decision is more risky than uncertainty with decision-

making. The paper is structured as follows. Section 2 describes the game model and simulation 

procedures. Section 3 explains the simulated results that how means and variances of strategic 

payoffs interactively affect the NE payoff distributions. Section 4 concludes.     

 

2. MODEL 

 

Consider a 2 × 2 game with the DS and the payoff matrix is illustrated in Table 1. Each player has 

the perfect information including the strategic payoff distribution. Player 1 has two strategies, U 

and D, and Player 2 has L and R. Table 1 shows static game with certain payoffs, then U is Player 

1’s DS with high payoff and L is Player 2’s DS such that Nash equilibrium is (U, L). 
 

Table 1. The payoff matrix of normal form game with the DS 
 

  Player 2  

  L R 

Player 1 U 2,2 10,1 

 D 1,10 5,5 
 

Next, denote X2 that is a random variable and i.i.d.N(E(X2), Var(X2)) is represented the payoff 

distribution of ‘U’ when Player 2 chooses ‘L’, and X1is i.i.d. N(E(X1), Var(X2)) and represents 

the payoff distribution of ‘D’. Normal distribution can clearly show the mean as the payoff and 

the variance as the risk bright from buying stock. Without loss of generalization and because of 

symmetric payoff setting, we only discuss the behaviour of Player 1. The decision rule is 

Y=MAX(X1, X2), where Y is the NE payoff distribution. The values of E(X1) and E(X2) can be 

divided two cases, one is small means case denoted by Case 1, E(X1)=1 and E(X2)=2, and the 

other is large means case denoted by Case 2, E(X1)=10 and E(X2)=20, then each case has 9 

subcases with different variances and shows in Table 2. 
 

Table 1.The distributions of 9 subcases 
 

Case number The distribution of X2 The distribution of X1 

Case 1-1 

Case 1-2 

Case 1-3 

N(2, 1) 

N(1, 1) 

N(1, 25) 

N(1, 64) 

Case 1-4 

Case 1-5 

Case 1-6 

N(2, 25) 

N(1, 1) 

N(1, 25) 

N(1, 64) 

Case 1-7 

Case 1-8 

Case 1-9 

N(2, 64) 

N(1, 1) 

N(1, 25) 

N(1, 64) 

Case 2-1 

Case 2-2 

Case 2-3 

N(20, 1) 

N(10, 1) 

N(10, 25) 

N(10, 64) 

Case 2-4 

Case 2-5 

Case 2-6 

N(20, 25) 

N(10, 1) 

N(10, 25) 

N(10, 64) 

Case 2-7 

Case 2-8 

Case 2-9 

N(20, 64) 

N(10, 1) 

N(10, 25) 

N(10, 64) 
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After the game model and parameters of distributions are constructed, the decision rule becomes 

transformation of probability distribution and the transformation function is maximum function 

that is too difficult managed by mathematics to use computer simulation. I simulate on the 

desktop computer with Windows 7 system and run C++ programs, which is the transformation 

simulator of probability distribution, to do 60 million times random draws for generating the 

distributions of X1 and X2 and then transform X1 and X2 by maximum into Y.  

 

The approach of probability distribution is getting a random number (RND) from the cumulative 

probability function of Normal distribution, X~fx(x), Fx(x)=P(X≤x)~U(0, 1) and RND~U(0, 1) 

thus Fx(x)=RND, and then is using the inverse function of cumulative probability distribution to 

obtain the value of random variable, x=Fx-1(RND). The values of the random variable are 

gathered as a data set, {X1, X2, X3,…,Xn}, which can be arranged as a frequency table to form 

probability distribution by the law of large number. In the other words, the data set is generated 

randomly by Normal distribution and will approximate towards Normal distribution by the 

sample frequency table when n is large enough. In the simulation procedure, the simulator defines 

symbols as follows: 

 

X1~N(2, 1), X2~N(2, 25), X3~N(2, 64), X4~N(1, 1), X5~N(1, 25), and X6~N(1, 64) in Case 1, 

while X1~N(20, 1), X2~N(20, 25), X3~N(20, 64), X4~N(10, 1), X5~N(10, 25), and X6~N(10, 

64) in Case 2. 

 

3. SIMULATED RESULTS 

 

We look for the NE payoff distribution when players choose the DS. We simulate the game by 

decision rule. The results of Case 1 are summarized in Table 3 and Table 4. Table 3 shows that 

the simulated results are asthe same as assumptions of Case 1, that include 

E(X1)=E(X2)=E(X3)=2, E(X4)=E(X5)=E(X6)=1,Var(X1)=Var(X4)=1,Var(X2)=Var(X5)=25 

and Var(X3)=Var(X6)=64. The i.i.d. assumption can be also shown by that the two strategic 

payoffs in subcases have no linear relationship. 
 

Table 1.The summarized simulation of X1 to X6 and Y1 to Y9 

 

Case 1-1 Case 1-2 Case 1-3 
X1  min= -3.749250      max=7.567529 

X4  min= -4.567255      max= 6.494130 

E(X1)=  2.0000, Var(X1)=              1.0001 

E(X4)=  1.0000, Var(X4)=              1.0000 

Cov(X1,X4)=             -0.0000, 

X1 and X4 correlation coefficient=-0.0000. 

Y1  min=-2.186981       max=7.814004 

X1  min=-3.488112      max=7.885902 

X5  min=-27.974301max=30.070021 

E(X1)=  2.0000, Var(X1)=              1.0001 

E(X5)= 1.0000, Var(X5)=             25.0031 

Cov(X1,X5)=              0.0001, 

X1 and X5 correlation coefficient=0.0000. 

Y2  min=-3.479289       max=27.898898 

X1  min=-3.861532      max=7.567529 

X6  min=-47.134888     max=43.492128 

E(X1)=  2.0000, Var(X1)=              1.0001 

E(X6)=  1.0000, Var(X6)=             63.9973 

Cov(X1,X6)=             -0.0001, 

X1 and X6 correlation coefficient=-0.0000. 

Y3  min=-3.090869       max=45.596033 

Case 1-4 Case 1-5 Case 1-6 
X2  min=-28.084305      max=29.872521 

X4  min=-4.839419       max=6.701627 

E(X2)=  2.0000, Var(X2)=             24.9991 

E(X4)=  1.0000, Var(X4)=              1.0000 

Cov(X2,X4)=              0.0001, 

X2 and X4 correlation coefficient=0.0000. 

Y4  min=-4.333422       max=29.872521 

X2  min=-28.079255      max=29.470651 

X5  min=-27.746252       max=27.898898 

E(X2)=  2.0000, Var(X2)=             24.9983 

E(X5)=  1.0000, Var(X5)=             25.0030 

Cov(X2,X5)=              0.0006, 

X2 and X5 correlation coefficient=0.0000. 

Y5  min=-17.463845       max=29.557171 

X2  min=-25.047374      max=30.508137 

X6  min=-44.706943     max=45.596033 

E(X2)= 2.0000, Var(X2)=             24.9989 

E(X6)= 0.9999, Var(X6)=             63.9952 

Cov(X2,X6)=              0.0034, 

X2 and X6 correlation coefficient=0.0001. 

Y6  min=-22.618557       max=43.492128 

Case 1-7 Case 1-8 Case 1-9 
X3  min=-43.994003      max=49.087219 

X4  min=-5.016861       max=6.311516 

E(X3)=  1.9999, Var(X3)=             64.0080 

E(X4)=  1.0000, Var(X4)=              1.0000 

Cov(X3,X4)=              0.0001, 

X3 and X4 correlation coefficient=0.0000. 

Y7  min=-5.015851       max=48.512033 

X3  min=-44.358882      max=48.512033 

X5  min=-26.440562       max=30.429512 

E(X3)=  2.0002, Var(X3)=             64.0054 

E(X5)= 0.9999, Var(X5)=             25.0025 

Cov(X3,X5)=             -0.0003, 

X3 and X5 correlation coefficient=-0.0000.. 

Y8  min=-21.376221       max=49.087219 

X3  min=-43.994003      max=49.087219 

X6  min=-47.126807     max=46.613019 

E(X3)=  1.9999, Var(X3)=             64.0082 

E(X6)= 1.0000, Var(X6)=             63.9983 

Cov(X3,X6)=             -0.0009, 

X3 and X6 correlation coefficient=-0.0000. 

Y9  min=-27.839514       max=45.649112 
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Table 4explores the graphs and coefficients of Y in 9 subcases of Case 1 given the same means of 

X1 and X2.If we only observe the means and variances of Y, then the graphs and coefficients 

may be viewed as Normal distribution in the dialog subcases, Case 1-1, 1-5 and 1-9, however, 

skewed coefficients that are not towards 0show that the graphs of Case 1-1, 1-5 and 1-9 are not 

Normal distribution. We also find that when the dialog subcases have |Var(X1) – Var(X2)|=0 the 

means of Y present arithmetic sequence even Var(X2) is from 1, 25 to 64.The reason is that the 

distributed payoffs can present uncertainty in decision rule, and lead to NE payoff distribution 

away from Normal distribution. Thus, players have convex market curve with twice risk 

premiums when they face more than twice risk. Besides, according to Case 1-1, 1-2 and 1-3 with 

different Var(X1) and Case 1-1, 1-4 and 1-7 with different Var(X2), the increase of |Var(X1) – 

Var(X2)| distorts the graphs of Y that cannot be shown by coefficients. 

 
Table 1: The probability function of Nash equilibrium when E(X_1 )=2 and E(X_2 )=1 

 

 

Case 1-1 Case 1-2 Case 1-3 

   
    Mathematical Mean:              2.19965 

    Var iance          :               0 .76063 

    S.D.              :               0 .87214 

    Skewed Coef.      :               0.17400 

    Kur tos i s  Coef .    :               3 .05322 

    Mathematical Mean:              3.57344 

    Var iance          :               7.08733 

    S.D.              :               2 .66220 

    Skewed Coef.      :               1.62102 

    Kur tos i s  Coef .    :               6 .05402 

    Mathematical Mean:              4.74119 

    Variance          :              19.13973 

    S.D.              :               4 .37490 

    Skewed Coef.      :               1.71801 

    Kur tos i s  Coef .    :               6 .00108 

Case 1-4 Case 1-5 Case 1-6 

   
    Mathematical Mean:              3.57347 

    Variance          :              10.81794 

    S.D.              :               3 .28906 

    Skewed Coef.      :               1.21891 

    Kur tos i s  Coef .    :               4 .28416 

    Mathematical Mean:              4.34928 

    Var iance          :              17 .13444 

    S.D.              :               4 .13938 

    Skewed Coef.      :               0.13962 

    Kur tos i s  Coef .    :               3 .06340 

    Mathematical Mean:              5.28495 

    Variance          :              28.77757 

    S.D.              :               5 .36447 

    Skewed Coef.      :               0.39348 

    Kur tos i s  Coef .    :               3 .50644 
Case 1-7 Case 1-8 Case 1-9 
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    Mathematical Mean:              4.74111 

    Variance          :              25.35900 

    S.D.              :               5 .03577 

    Skewed Coef.      :               1.39260 

    Kur tos i s  Coef .    :               4 .66416 

    Mathematical Mean:              5.28503 

    Var iance          :              32 .07070 

    S.D.              :               5 .66310 

    Skewed Coef.      :               0.45029 

    Kur tos i s  Coef .    :               3 .49612 

    Mathematical Mean:              6.03146 

    Variance          :              43.72616 

    S.D.              :               6 .61258 

    Skewed Coef.      :               0.13819 

    Kur tos i s  Coef .    :               3 .06225 
 

Error! Reference source not found. also shows that the values of payoff uncertainty can be the 

real values of firms’ profit or stock prices from data analysis. It is reverent that the parameters of 

distributed strategic payoffs play important role in the decision process. When the means of 

strategic payoffs are small, the extent of distorted Y is induced from |Var(X1) – Var(X2)|. Except 

for the parameters of distributed strategic payoffs, the decision-making process also plays 

important role in Y. With comparing corresponding distributions of strategic payoffs, Y have 

E(Yi) > 2 and Var(Yi) < MAX(Var(X1), Var(X2)), i = 1, 2,…, 9, relative to the parameters of DS 

payoffs. 

 

Case 2 is that the means of strategic payoffs are as large as E(X1)=10 and E(X2)=20,and also has 

9 subcases shown in Error! Reference source not found.. Error! Reference source not 

found.shows that the simulated results are as the same as assumptions of Case 2, that include the 

simulated means of X1, X2 and X3 are 20, of X4, X5 and X6 are 10, corresponding to the 

simulated variances of X1 and X4 are 1, of X2 and X4 are 25, and of X3 and X6 are 64. The i.i.d. 

assumption can be also shown by that the two strategic payoffs in subcases have no linear 

relationship.Error! Reference source not found. also shows that the minimum and maximum of 

strategic payoffs determine the minimum and maximum of Y. The data from Case 2-1 to 2-3 

indicates the minimum of Y is determined by X1, while maximum of Y is determined by 

MAX(X1, Xj), j=4, 5, 6, with random sampling from population distribution. The data from Case 

2-4 to 2-6 and Case 2-7 to 2-9 indicates the minimum and maximum of Y≥ MAX(Xi, Xj), i=2, 3 

and j=4, 5, 6. 
 

Table 2.The summarized simulation of X1 to X6 and Y1 to Y9 in Case 2 
 

Case 2-1 Case 2-2 Case 2-3 
X 1   m i n = 1 4 . 1 3 8 4 6 8     m a x = 2 5 . 5 6 7 5 2 9 

X 4   m i n = 4 . 3 2 0 9 1 6     m a x = 1 5 . 5 1 1 4 3 4 

E(X1)=     20.0000, Var(X1)=        1.0001 

E(X4)=     10.0000, Var(X4)=        0.9999 

Cov(X1,X4)=                         -0.0000 

X1 and X4 correlat ion coefficient=-0.0000. 

Y 1   m i n =  1 4 . 5 1 1 8 8 8   m a x =  2 5 . 8 8 5 9 0 2 

X 1   m i n = 1 4 . 5 1 1 8 8 8    m a x = 2 5 . 8 8 5 9 0 2 

X 5   m i n = - 1 8 . 9 7 4 3 0 1    m a x = 3 9 . 0 7 0 0 2 1 

E(X1)=       20.0000, Var(X1)=       1.0001 

E(X5)=       10.0001, Var(X5)=      25.0022 

Cov(X1,X5)=                          0.0000 

X1 and X5 correlat ion coefficien t=0.0000. 

Y 1   mi n =  1 4 . 5 2 0 7 1 1    m a x =  3 7 . 6 5 7 2 2 1 

X 1   m i n = 1 4 . 1 3 8 4 6 8     m a x = 2 5 . 5 6 7 5 2 9 

X 6   m i n = - 3 8 . 1 3 4 8 8 8    m a x = 5 2 . 4 9 2 1 2 8 

E(X1)=     20.0000, Var(X1)=        1.0001 

E(X6)=    10.0000, Var(X6)=       63.9979 

C o v ( X 1 , X 6 ) =              - 0 . 0 0 0 2 , 

X1 and X6 correlation coefficient=-0.0000. 

Y1  mi n = 14 .1 38 46 8     ma x= 5 2 .4 921 28 

Case 2-4 Case 2-5 Case 2-6 
X 2   m i n =- 8 . 6 3 2 1 0 3      m a x =4 7 . 8 7 2 5 2 1 

X 4   m i n = 4 . 1 6 0 5 8 1   m a x = 1 5 . 7 0 1 6 2 7 

E(X2)=      20.0000, Var(X2)=       24.9985 

E(X4)=     10.0000, Var(X4)=        1.0000 

C o v ( X 2 , X 4 ) =               0 . 0 0 0 1 , 

X2 and X4 cor rela t ion coeff icient=0.0000. 

X 2   m i n = - 1 0 . 0 7 9 2 5 5    m a x = 4 8 . 5 0 8 1 3 7 

X 5   m i n = - 1 8 . 7 4 6 2 5 2    m a x = 3 7 . 6 6 2 8 4 2 

E(X2)=      20.0000, Var(X2)=       24.9989 

E(X5)=     10.0000,Var(X5)=       25.0030 

C o v ( X 2 , X 5 ) =               0 . 0 0 0 6 , 

X2 and X5 correlat ion coefficien t=0.0000. 

X 2   m i n = - 8 . 6 3 2 1 0 3     m a x = 4 7 . 8 7 2 5 2 1 

X 6   m i n = - 3 8 . 1 2 6 8 0 7    m a x = 5 4 . 0 9 1 4 7 3 

E(X2)=      20.0000, Var(X2)=       24.9985 

E(X6)=      9.9998, Var(X6)=       63.9955 

C o v ( X 2 , X 6 ) =               0 . 0 0 4 3 , 

X2 and X6 corre lat ion coef ficient=0.0001. 
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Y 1   m i n =  5 . 5 7 0 7 5 3   m a x =  4 7 . 1 8 9 6 6 8 Y 1   m i n = - 2 . 6 2 4 6 7 7    m a x =  4 7 . 8 7 2 5 2 1 Y 1   mi n =  - 5 .3 9 7 29 6     ma x =  5 5 . 61 3 0 1 9 

Case 2-7 Case 2-8 Case 2-9 
X 3   mi n = - 2 6 . 3 5 8 8 8 2     ma x = 6 6 . 5 1 2 0 3 3 

X 4   m i n = 4 . 3 2 0 9 1 6    m a x = 1 5 . 5 1 1 4 3 4 

E(X3)=     20.0001, Var(X3)=        64.0068 

E(X4)=   10.0000, Var(X4)=         0.9999 

C o v ( X 3 , X 4 ) =               0 . 0 0 0 1 , 

X3 and X4 cor rela t ion coeff icient=0.0000. 

Y 1   m i n = 5 . 2 4 6 4 3 9    m a x =  6 6 . 5 1 2 0 3 3 

X 3   mi n =- 26 .8 92 2 58      ma x =6 4.25 1 55 3 

X 5   mi n = - 1 8 . 9 7 4 3 0 1     ma x =3 9 . 0 7 0 0 2 1 

E(X3)=   20.0000, Var(X3)=        64.0066 

E(X5)=   10.0001, Var(X5)=        25.0023 

C o v ( X 3 , X 5 ) =              - 0 . 0 0 0 6 , 

X3 and X5 correlat ion coefficient=-0.0000. 

Y 1   m i n =  - 9 . 3 1 4 7 4 0    m a x =  6 4 . 5 4 0 2 3 2 

X3  min= -26.358882     max= 66.512033 

X 6  min =  - 38 . 1 34 88 8    max =  5 2 . 49 2 12 8 

E(X3)=   20.0001,Var(X3)=        64.0069 

E(X6)=   10.0001, Var(X6)=        63.9979 

C o v ( X 3 , X 6 ) =              - 0 . 0 0 0 7 , 

X3 and X6 correlation coefficient=-0.0000. 

Y1  min= -18.929956      max= 64.251553 

 

Error! Reference source not found. explores the graphs and coefficients of Y in subcases of 

Case 2. The graph of Case 2-1 is Normal distribution but those of other subcases are not Normal 

distribution according to the skewed and kurtosis coefficients. The dialog subcases of Case 2-1, 

2-5 and 2-9 show that when the variances of strategic payoffs are from 1, 25 to 64 the means of Y 

slightly increase. Thus, players having large E(X1) and E(X2) earn less risk premium that is 

transferred by variance.  
 

Table 3.The probability function in each subcase with E(X1)=10 and E(X2)=20 
 

Case 2-1 Case 2-2 Case 2-3 

 
 

 

    Mathematical Mean:             19.99989 

    Var iance          :               1 .00034 

    S.D.              :               1 .00017 

    Skewed Coef.      :               0.00018 

    Kur tos i s  Coef .    :               3 .00075 

    Mathematical Mean:             20.04793 

    Var iance          :               1.11565 

    S.D.              :               1 .05624 

    Skewed Coef.      :               0.46148 

    Kur tos i s  Coef .    :               5 .44926 

    Mathematical Mean:             20.41641 

    Var iance          :               3 .43398 

    S.D.              :               1 .85310 

    Skewed Coef.      :               3.19896 

    Kurtos i s  Coef.    :              20.35103 

Case 2-4 Case 2-5 Case 2-6 

   
    Mathematical Mean:             20.04798 

    Variance          :              23.91910 

    S.D.              :               4 .89072 

    Skewed Coef.      :               0.13016 

    Kur tos i s  Coef .    :               2 .75554 

    Mathematical Mean:             20.25124 

    Var iance          :              22 .42319 

    S.D.              :               4 .73531 

    Skewed Coef.      :               0.13269 

    Kur tos i s  Coef .    :               2 .95146 

    Mathematical Mean:             20.69980 

    Variance          :              23.14579 

    S.D.              :               4 .81101 

    Skewed Coef.      :               0.08741 

    Kur tos i s  Coef .    :               3 .05525 
Case 2-7 Case 2-8 Case 2-9 
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    Mathematical Mean:             20.41645 

    Variance          :              52.90890 

    S.D.              :               7 .27385 

    Skewed Coef.      :               0.42017 

    Kur tos i s  Coef .    :               2 .67076 

    Mathematical Mean:             20.70049 

    Var iance          :              50 .87011 

    S.D.              :               7 .13233 

    Skewed Coef.      :               0.33238 

    Kur tos i s  Coef .    :               2 .94172 

    Mathematical Mean:             21.17019 

    Variance          :              50.92751 

    S.D.              :               7 .13635 

    Skewed Coef.      :               0.17471 

    Kur tos i s  Coef .    :               3 .03002 
 
 

According to Case 2-1, 2-2 and 2-3 with different Var(X1) and Case 2-1, 2-4 and 2-7 with 

different Var(X2), the increase of |Var(X1) – Var(X2)| also distorts the graphs of Y that cannot be 

shown by coefficients. However, the effect of changed Var(X1) on Y is not the same as the effect 

of changed Var(X2). Larger Var(X1) induces in more centralized and positive skewed shapes of 

Y, but Var(X2) induces in distorted shapes of Y. For example, the means of Y are similar 

between Case 2-3 and Case 2-7 but the variance of X2 dominates the variances of Y in Case 2, 

therefore, Var(Y7) >Var(Y3). On the other hand, when the NE payoffs are the same, Var(X2) is 

relatively more important and the players may devote to reduce Var(X2) without consideration of 

Var(X1) which changes the centralization of Y reverently. According to Case 2-4 to 2-6 with 

Var(X2)=25 and Case 2-7 to 2-9 with Var(X2)=64, the basic assumption of Var(X2) increases 

variances of Y which are still less than MAX(Var(X1), Var(X2)). More specifically, the large 

means help the decision-making process press the variances of NE payoffs down, such as Case 2-

3. 

 

Comparing Case 1 with Case 2, we can see that whatever means and variances of strategic 

payoffs are, the means of Y are DS payoffs plus risk premium and the variances of Y are less than 

the maximum of Var(X1) and Var(X2), moreover, in Case 2 Var(X2) dominates on the shapes of 

Y. Another difference is that Y in Case 2 are not easily distorted by the change of variances of 

strategic payoffs. On the other hand, large means of X1 and X2 can reduce the distortion effect on 

Y when the variances of strategic payoffs are changed. Thus, the means and variances of strategic 

payoffs interact and decide Y. One example is that risky and highly pricing stock can brings high 

risk and returns, but also high price stock needs more investing funds to create demand in order to 

push up the price. If the price of stock is low in Case 1, then investors easily push the stock price 

higher and involve the risk from the model setting with initial variances of strategic payoffs. 

Finally, the large means of strategic payoffs can assist decision-making process in more 

efficiently restraining the increasing rate of variance in Case 2 than in Case 1. 

 

4. CONCLUSION 

 

The paper examines the NE payoff distributions of strategic payoffs which are i.i.d. Normal 

distribution with different means and variances. The simulated game model can yield the variance 
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of strategic payoffs has different impact on the NE payoff distribution, depending on the 

magnitude of means of strategic payoffs. We would like to highlight the role of parameters 

setting. It is intuitive that even with variance values of strategic payoffs the means of the NE 

payoff distributions become the DS means plus risk premium, whose relationship is shown in 

CAPM. Nevertheless, when the variances of strategic payoffs are the same, we do not obtain 

Normal distribution of NE payoff, except for strategic payoffs have large enough means than the 

value of variance. In that sense, a testable implication of the model is that the NE payoff 

distributions evolve more distorted shapes as the variances between strategic payoffs varies, 

starting from Case 1-1 when the variances of strategic payoffs are 1, then moving to distorted NE 

payoff distributions when the variances of strategic payoffs become larger. Eventually, for the 

distance between variances of strategic payoffs is 63, the NE payoff distribution is dominated by 

large variance of strategic payoff, nevertheless, starting form Case 2-1, then for the distance 

between variances of strategic payoffs is larger than 0, the NE payoff distribution is dominated by 

the DS variances. 

 

In this paper, we have made the assumption that strategic payoffs with different means and 

variances in the game that can be implied on the choosing stocks, deciding investment plan. If the 

variances of strategic payoffs are large enough, the NE payoff distributions should obtain a mean 

included the DS means and risk premium, as the variances of the NE payoff distributions are 

lower than DS variances. But even if the variances of strategic payoffs are as small as 1, the NE 

payoff distributions may still have positive risk premium and smaller variances. In this case, it 

faces a trade-off between means and variances of the NE payoff distributions due to comparing 

with the DS. It may very well be the case, depending on the variance magnitude of strategic 

payoff sand how large the means of strategic payoffs happen in the decision-making process, that 

one effect dominates the other and NE payoff distributions have more reduced variances and 

higher extra risk premium. However, if means of strategic payoffs happen large, relative to Case 

2-1, then large means of strategic payoffs suppress the distorted NE payoff distributions that 

induce from the variances of strategic payoffs. 
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