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  ABSTRACT 
 

The introduced path unites uncertainty of random process and observer information process directed to 

certainly. Bayesian integral functional measure of entropy-uncertainty on trajectories of Markov multi-

dimensional process is cutting by interactive impulses. Information path functional integrates multiple 

hidden information contributions of the cutting process correlations in information units, cooperating in 

doublets-triplets, bound by free information, and enfolding the sequence of enclosing triplet structures in 

the information network (IN) that successively decreases the entropy and maximizes information.  

 

The IN bound triplets release free information rising information forces attracting, ordering, structuring 

information units, encoding doublet-triplet logic, composing quantum, classical computation, integrating 

memory and cognition in intelligent observer. 
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1.INTRODUCTION 
 

The study focuses on integration of multiple random interactions into distinctive information 

processes on observer, considered independently of its origin and various physical phenomena, whose 

specifics are still mostly unknown. It allows us to concentrate on information process itself whose 

self-arising creates the information observer headed to certainty and intelligence. 

 

Physical approach to the observer, developed in Copenhagen interpretation of quantum mechanics [1-

3], requires an act of observation, as a physical carrier of the observer knowledge, but this role is not 

described in the formalism of quantum mechanics.  

 

A. Weller has included the observer in wave function [4], while according to standard paradigm: 

Quantum Mechanics is Natural [5-6]. The concept of publications [7,8] states that in Quantum 

Bayesianism, which combines quantum theory with probability theory, ‘the wave function does not 

exists in the world-rather it merely reflects an individual’s mental state.’  

 

We have shown (in [10-16]) and in this paper that quantum information processes (rather than 

Quantum Particles), resulting from Bayesian form of entropy integral measure, arise in observer at 

conversion of the process hidden uncertainty to the equivalent certainty-information path functional 

measure. 
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The paper analytically identifies an integral information path that unites uncertainty of potential 

observable random process and observer’s certain-information processes with quantum information 

dynamics and informational macrodynamics overcoming their gap toward the observer intelligence. 

The path is formed by a sequence of axiomatic probability distributions which transfers a 

priori probabilities to a posteriori probabilities through a stochastic multi-dimensional process whose  

trajectories alternates this probability’s sequence over the process. Arising Bayesian entropy for these 

probabilities defines an uncertainty measure along the process.  

 

The probability’s transitions model an interactive random process, generated by an idealized (virtual) 

measurement of uncertainty, as the observable process of a potential observer. When the various 

virtual measurements, testing uncertainty by interactive impulses of the observable process, reveal its 

certain a posteriori probability, this inferring probability’s test-impulse starts converting uncertainty 

to certainty-information. The uncertain impulse becomes a certain impulse control which extracts the 

maximum of the process information from each of its observed minima and initiates both the 

information and its observer with its internal process during the conversion path.  

Multiple trial actions produce the observed experimental frequency of the measured probability of 

those events which actually occurred.  

 

The minimax is dual complementary principle by which the optimal max-min extraction and mini-

max consumption of information establish mathematical information law whose variation equations  

determine the structure of the observer and functionally unify its regularities. 

 

The impulse controls cut off the maxmin information, convert the observable external process to 

optimal internal information micro- and macrodynamics through integral measuring, multiple trials, 

verification the symmetry of the trial information, memorizing, cooperation and enfoldment in 

information network (IN), its logical hierarchical information structure, which provides measuring 

quality of information in the IN hierarchical locations and a feedback path to observations.  

The IN high-level logic originates the observer's information intelligence, requesting new quality 

information.  

 

These functional regularities create united self-operating information mechanism whose integral logic 

transforms multiple interacting uncertainties to the observer self-forming inner dynamic and 

geometrical structures within a limited boundary which is shaped by the IN information geometry 

during time-space cooperative processes and finally to physical substance, human information and 

cognition, which originates the intelligent observer. The operations with classical information units, 

cooperated from the quantum information units that IN runs, model a classical computation.  

 

The IN different hierarchical levels unite logic of quantum micro- and macro- information processes, 

composing quantum and/or classical computations. The logic holds invariance of the information and 

physical regularities, following from the minimax information law.  

 

The informational nature of multiple interactive processes is applying in human observations, Human-

machine communications, biological, social, economic, and other interactive systems, which the 

information observer collects and integrates interacting with these sources at micro- and macro levels. 

 

1.1. OBSERVING RANDOM UNCERTAIN PROCESS AND ITS INTEGRAL 

MEASURE 
 
Suppose a manifold of various spontaneous occurrences represents a multi-dimensional interactive 

random process, distributing in space-time, for example, earthquakes, instantaneous changes in stock 

market, or atomic explosion. Theoretically, a field of multiple distributed probabilities initiates the 
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random process with alternating a priori –a posteriori probabilities along the process trajectories, 

where each transfer from priori to posteriori probability distribution follows from interaction along the 

multi-dimensional process.  

 

Formal model of a observed random nonstationary interactive process describes  Markov diffusion 

process as solutions of Ito’ the n -dimensional controlled stochastic equation: 

 

t
dx% =a ( t , ˜ x t ,ut )dt +σ ( t , ˜ x t )d ξ t ,  ˜ x s = η , t ∈[s, T]=∆ , s ∈[0,T ]

1
R+⊂                               (1.1) 

 

with the standard limitations [9] on drift function ( , , ) ( , )
u

t t t
a t x u a t x=% % , depending on control tu , 

diffusionσ ( t , ˜ x t ), and Wiener process ( , )t tξ ξ ω= , which are defined on a probability space of the 

elementary random events ω ∈ Ω  with the variables located in 
nR ; ( )tx x t=% %  is a diffusion process, 

as a solution of (1.1) under control ut ; ( , )s tΨ  is a σ -algebra created by the events { ( )x Bτ ∈% }, 

and ( , , , )P s x t B%  are transition probabilities on ;s tτ≤ ≤ , , ( )s x s xP P A=  are the corresponding 

conditional probability’s distributions on an extended ( , )sΨ ∞ ; , [ ]
s x

E � are the related mathematical 

expectations.Suppose control function ut  provides transformation of an initial process tx% , with 

transition probabilities ( , , , )P s x t B% , to other diffusion process ( , )

t

t

s

x v d
σ

ν νσ ζ ζ= ∫%  as solution of 

(1.1) at a ( t , ˜ x t ,ut )=0 (that models an uncontrollable noise with [ ]
a

t
E x = Ο% ), with transitional 

probability’s functions   

 

,

( )

( , , , ) exp{ ( )} ( )t

t s s x

x t B

P s x t B P dσ ϕ ω ω
∈

= −∫
%

% % ,                                                                        (1.1a) 

 

where ( )
t t

s s
ϕ ϕ ω=  is an additive functional of process ( )tx x t=% %  [9], measured regarding ( , )s tΨ

 
at 

any s tτ≤ ≤  with probability 1, and 
t t

s s

τ
τϕ ϕ ϕ= + , 

, [ ( ( ))]t

s x s
E exp ϕ ω− < ∞ .  

 

This transformation determines extensive distributions 
, , ( )

s x s x
P P A=% %  on ( , )sΨ ∞  with density 

measure  

,

,

( ) exp{ ( )}
s x t

s

s x

P
p

P
ω ϕ ω= = −

%
,                                                                                                   (1.2) 

whose a posteriori probability distribution , ,

p

s x s x
P P→%  and a priory probability distribution 

, ,

a

s x s xP P→  alternates along the process trajectories.  

 

The additive functional determines the solutions of (1.1) in form [9]: 

1 11 / 2 ( , ) (2 ( , )) ( , ) ( ( , ) ( , ) ( ),

T T

T u T u u

s t t t t t

s s

a t x b t x a t x dt t x a t x d tϕ σ ξ− −= +∫ ∫% % % % %                   (1.3) 

2 ( , ) ( , ) ( , ) 0T
b t x t x t xσ σ= >% % %                                                                         (1.3a) 

 

Using definition the entropy for these processes as math expectation of (1.2) taken for each posteriori 

probability along the process’ trajectories:   
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, ,

( )

[ ] [ln ( )] ln[ ( )] ( )p

t s x s x

x t B

S x E p p P dω ω ω
∈

∆ = − = −∫
%

%                                                             (1.4) 

at 1[ ( ( , ) ( , ) ( )] 0

T

u

t t

s

E t x a t x d tσ ξ− =∫ % % , we get entropy functional (EF) on the process trajectories, 

expressed through regular ( , )
u

t
a t x% and stochastic components ( , )

t
b t x% of diffusion process tx% : 

 

1

,[ ] | 1 / 2 { ( , ) (2 ( , )) ( , ) }

T

T u T u

t s s x t t t

s

S x E a t x b t x a t x dt
−∆ = ∫% % % % .                                                        (1.5) 

The EF is an information indicator of distinction between processes tx%  and t
x

σ
%

 
by these processes’ 

measures; it measures quantity of information of process tx%  regarding process t
x

σ
%  brought by all 

hidden randomness through each infinitely small instant as the process’ differential dω .  

 

For the process’ equivalent measures, this quantity is zero, and it is a positive for the process’ 

nonequivalent measures.  

 

Quantity of information (1.4) is equivalent of Kullback–Leibler’s divergence (KL) for continiuos 

random variables: 

 

,

, ,

,

( )
( || ) ln [ln ] [ln ( )],

( )

aa
a p p x s

KL x s x s x xp p

x sX

P ddP
D P P dP E E p

dP P d

ω
ω

ω
= = =∫

                                     (1.6) 

where

a

p

dP

dP
 is Radon –Nikodym derivative of these of probabilities having a nonsymmetrical 

distance’s measure between the associated entropies.  

 

The KL measure is connected to both Shannon’s conditional information and  Bayesian inference of 

testing a priory hypothesis (probability distribution) by a posteriori observation’s probability 

distribution.  

 

The observer EF  implements the Bayesian inference by intervening in the following process location 

as a causal probability.  

 

The process’ multiple state connections, changing a nearest probability transformation, automatically 

integrate the transformation (interaction) of these alternating probabilities along the process trajectory. 

Some spread of these interactions (that might differ in the dimensions) we define as an observable 

(virtual) process of a potential observer. 

 

In a set of  process’  events occurrences, each occurrence has probability 1, which excludes others 

with probability 0. According to Kolmogorov’s 0-1 law [17], these experimental multiple frequencies 

enables predicting axiomatic Kolmogorov probability ,s x
P , if the experiment manifold satisfies 

condition of symmetry of equal probable events [18].  

 

Thus, the observable process’ multiple interactions in a form of impulses hold virtual probing Yes-No 

(1-0) actions, whose multiple frequencies enable generating both a priori and a posteriori probabilities, 



International Journal o n Information Theory (IJIT ),Vol.3, No.4, October 2014 

 

49 
 

their relational probabilities and the uncertainty integral measure (EF) for each observable process 

dimension.  

 

Such interactions could be both a natural Markov process and artificially generated probs during the 

observable process, while the interactive connections hold integral measure of hidden uncertainties 

(entropy) along the process. 

 

2.THE MINIMAX CUTOFF AT EACH OBSERVATION. 

ESTIMATION OF PROBABILITIES AND THE FUNCTIONAL 

MEASURES 
 
The observation of  uncertainty measure requires an infinitesimal small portion of each process, 

holding an impulse form, which concurrently changes the process’ probabilities, starting with 

measuring uncertainty and ending with reaching certainty.  

 

In the observable multi-dimensional Markov process, each probing a priori probability turns to the 

following a posteriori probability, cutting off uncertainty and converting it to certainty, which the 

certain impulses encode as information, and add the information to its integral measure.  

  

Let define the control on space ( , )KC U∆ for piece-wise continuous step functions tu  at t ∈∆ :  

lim ( , )
k

k

def

t o
u u t xτ

τ
−

→ −
= % , lim ( , )

k
k

def

t o
u u t xτ

τ
+

→ +
= % ,                                                                             (2.1) 

 

which are differentiable on the set  

 

 1\{ }o m

k kτ =∆ = ∆ , 1,..., ,k m=                                                                                                 (2.1a) 

 

and applied on diffusion process tx%  from moment k oτ −  to kτ , and then from moment kτ  to k oτ + , 

implementing the process’ transformations ( ) ( ) ( )
t k o t k t k o

x x x
στ τ τ− +→ →% % % .   

 

At a vicinity of moment kτ , between the jump of control u− and the jump of control u+ , we consider 

a control impulse: 

 

( ) ( ) ( )k k o k ou u uδ τ τ τ± − − + += + .                                                                                               (2.2)  

 

The following Proposition evaluates the entropy functional contributions at such transformations.  

 

Entropy functional  (1.4, 1.5) at the switching moments kt τ=  of control (2.2) takes the values 

[ ( ( )] 1 / 2t kS x uδ τ±∆ =% ,                                                                                                          (2.3) 

 

 and at locality of kt τ= : at k o kτ τ− →  and k k oτ τ +→ , produced by each of the impulse control’s 

step functions in (2.2), is estimated accordingly by  

[ ( ( )] 1 / 4t kS x u τ−∆ =% , ( )ku u τ− −= , k o kτ τ− → ,                                                                  (2.3a)  

[ ( ( )] 1 / 4t kS x u τ+∆ =% , ( )ku u τ+ += , k k oτ τ +→ .                                                                  (2.3b) 
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Proof. The jump of the control function  u− in (2.1) from a moment k oτ −  to kτ , acting on the 

diffusion process, might cut off this process after moment k oτ − . The cut off diffusion process has the 

same drift vector and the diffusion matrix as the initial diffusion process.  

 

The additive functional for this cut off has the form:  

0, ;

, .

k ot

s

k

t

t

τ
ϕ

τ
−−

≤
= 

∞ >
                                                                                                                  (2.4a) 

The jump of the control function u+ (2.1) from kτ  to k oτ +  might cut off the diffusion process after 

moment kτ  with the related additive functional  

, ;

0, .

kt

s

k o

t

t

τ
ϕ

τ
+

+

∞ >
= 

≤
.                                                                                                                 (2.4b) 

For the control impulse (2.2), the additive functional at a vicinity of kt τ=  acquires the form of an 

impulse function  
t t

s s s
ϕ ϕ δϕ− ++ = m

,                                                                                                                      (2.5) 

 

which summarizes (2.4a) and (2.4b). 

 

Entropy functional (1.4,1.5), following from (2.4a,b), takes the values 

 
0,

[ ( ( ; ))] [ ]
,

k ot

t k o k s

k

t
S x u t t E

t

τ
τ τ ϕ

τ
−−

− −

≤
∆ ≤ > = = 

∞ >
% ,                                                          (2.6a) 

,
[ ( ( ; ))] [ ]

0,

k ot

t k o k o s

k o

t
S x u t t E

t

τ
τ τ ϕ

τ
−+

+ − +

+

∞ >
∆ > ≤ = = 

≤
% ,                                                       (2.6b) 

changing from 0 to ∞ and back from ∞  to 0 and acquiring an absolute maximum at kt τ> , between 

k oτ − and k oτ + . The multiplicative functionals  [9] related to (2.4 a,b), are:  

 

0,
,

1,

k ot

s

k

t
p

t

τ

τ
−−

≤
= 

>
 

1,

0,

kt

s

k o

t
p

t

τ

τ
+

+

>
= 

≤
.                                                                         (2.7) 

 

Impulse control (2.2) provides an impulse probability density in the form of multiplicative functional  

 
t t

s s s
p p pδ − +=m

 ,                                                                                                                        (2.8)  

 

where s
pδ m

 holds [ ]kδ τ -function, which determines the process’ transitional probabilities with  

, ( ) 0s xP dω =%  at k ot τ −≤ , k ot τ +≤  and , ,( ) ( )s x s xP d P dω ω=%  at kt τ> .  

 

For the cutoff diffusion process, the transitional probability (at k ot τ −≤  and k ot τ +≤ ) turns to zero, 

and states ( ), ( )k kx o x oτ τ− +% %  become independent, while their mutual time correlations are 

dissolved: 
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,

[ ( ), ( )] 0.
o ok k

k k
r E x o x o

τ τ
τ τ

− +
= − + →% %                                                                                     (2.9)     

Entropy increment [ ( ( ))]t kS x uδ τ±∆ %  for additive functional s
δϕm

(2.5), which is produced within, or 

at a border of the control impulse (2.2), is defined by the equality  

 

[ ] [ ] ( ) ( )
k o

k o

t t

s s s s
E E P d

τ

δ

τ

ϕ ϕ δϕ δϕ ω ω
+

−

− ++ = = ∫
m m ,                                                                        (2.10)   

where ( )P dδ ω  is a probability evaluation of the impulse sδϕm
.  

 

Taking integral of symmetric δ -function sδϕm
 between above time intervals, the border gets 

[ ] 1/ 2 ( )
s k

E Pδδϕ τ=m

 
at k k oτ τ −= , or k k oτ τ += .                                                                     (2.11)   

 

The impulse, produced by deterministic controls (2.2) for each random process dimension, is a 

random with probability at kτ -locality 

( ) 1, 1,...,
c k

P k mδ τ = = .                                                                                                             (2.12) 

 

This probability holds a jump-diffusion transition Markovian probability, which is conserved during 

the jump.  

 

From  (2.10)-(2.12) we get estimation of the entropy functional’s increment, when the impulse control 

(2.2) is applied (at kt τ=  for each k ), in the form      

[ ( ( ))] [ ] 1/ 2
t k s

S x u Eδ τ δϕ±∆ = =m
% ,                                                                                          (2.13)   

 

which proves (2.3).  

 

Since that, each of symmetrical information contributions (2.6a,b) at a vicinity of kt τ=  estimate  

[ ( ( ; ))] 1 / 4t k o kS x u t tτ τ− −∆ ≤ > =% , ( )ku u τ− −= , k o kτ τ− → ,                                             (2.13a) 

[ ( ( ; ))] 1 / 4t k o k oS x u t tτ τ+ − +∆ > ≤ =% , ( )ku u τ+ += , k k oτ τ +→ ,                                          (2.13b) 

 

which proves (2.3a,b). •   

 
Entropy functional (EF) (1.5), defined through Radon-Nikodym’s probability density measure (1.2), 

holds all properties of the considered cutoff controllable process, where both ,s x
P and ,s x

P% are defined. 

That includes abilities for measuring δ − cutoff information and extracting a hidden process 

information not measured by known information measures.  

 

Hence, information measures the cutoff interaction which had bound and hidden by the interaction’s 

uncertainty measure. According to the definition of entropy functional (1.4), it is measured in natural 

ln , where each of its Nat equals 2log 1.44e bits≅ .  

 

Thus, measure (1.4,1.5) is not using Shannon entropy measure.  

From (2.6a,b) and (1.4, 1.2) follow Corollaries: 
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a. Step-wise control function ( )ku u τ− −= , implementing transformation ( ) ( )
t k o t k

x x
στ τ− →% % , 

converts the entropy functional from its minimum at k ot τ −≤  to the maximum at k o kτ τ− → ;  

b. Step-wise control function ( )ku u τ+ += , implementing transformation ( ) ( )t k t k ox xσ τ τ +→% % ,
 

converts the entropy functional from its maximum at kt τ>  to the minimum at 
k k oτ τ +→ ; 

 c. Impulse control function 
k

uτδ m
, implementing transformations ( ) ( ) ( )

t k o t k t k o
x x x

στ τ τ− +→ →% % % , 

switches the entropy functional from its minimum to maximum and back from maximum to minimum, 

while the absolute maximum of the entropy functional at a vicinity of kt τ=  allows the impulse 

control to deliver maximal amount of information (2.13) from these transformations, holding principle 

of extracting maxmin- minmax of the EF measure; 

d. Dissolving the correlation between the process’ cutoff points (2.9) leads to losing the functional 

connections at these discrete points, which evaluate the Feller kernel measure of the Markov diffusion 

process [9]. 

e. The relation of that measure to additive functional in form (1.3) allows evaluating the kernel’s 

information by the entropy functional (1.5). 

f. The jump action (2.1) on Markov process, associated with “killing its drift”, selects the Feller 

measure of the kernel, while the functional cutoff provides entropy-information measure of the Feller 

kernel, and it is a source of a kernel information, estimated by (2.13).  

In a multi-dimensional diffusion process, each of the stepwise control, acting on the process’ all 

dimensions, sequentially stops and starts the process, evaluating the multiple functional information. 

The dissolved element of the functional’s correlation matrix at these moments provides independence 

of the cutting off fractions, leading to orthogonality of the correlation matrix for these cutoff fractions.  

g. A multi-dimensional delta-distribution is the minimax optimal to hold the dissolving interacting 

correlations, which best approaches  the Tracy-Widom distribution for complex interactions. •  

 

Let us consider a sum of increments (2.13) under impulse control ( )kuδ τ , cutting process 
tx  at 

moments , 1,2,..., ,k k mτ =  along the process’ trajectory on intervals 

1 1 2 2 1,..., .m m ms t t t t Tτ τ τ−> > > > > > =   

Applying additive principle for the process’ information functional, measured at the moments of 

dissolving the correlation, which provides maximal cut off information, we get sum  
 

1 1 2 2

1

[ ( ( ))] [ ( ( ))] [ ( ( ))] |,..., [ ( ( ))].
m

m k t k t t m t m

k

S S x u S x u S x u S x uδ τ δ τ δ τ δ τ
=

= ∆ = ∆ + ∆ +∆∑ % % % %                        (2.14)  

 

Impulses ( )kuδ τ  implement the transitional transformations (1.2), initiating the Feller kernels along 

the process and extracting total kernel information for n  -dimensional process with m cutoff.  This 

maximal sum measures the interstates information connections held by the process along the 

trajectories during its time interval ( )T s− . It measures information hidden by the process correlating 

states, which is not covered by traditional Shannon entropy measure.  

 

This sum of extracted information approaches theoretical measure (1.4) at 

| [ / ]
T T

m s t t sm
S S x ς

→∞
→ % ,                                                                                                            (2.15)  

if all local time intervals 1 1 2 1 2 1, ,..., m m mt s o t t o t t o−− = − = − = , at mt T=  satisfy condition  

,

( ) lim ( )
t T

m
m

t s m

T s o t
=

→ ∞
=

− = ∑ .                                                                                                         (2.15a)  
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Realization of (2.15) requires applying the impulse controls at each instant ( , ), ( , ( ))x s x s o s+% %  of the 

conditional mathematical expectation (1.4) along the process trajectories.  
 

 

However for any finite number m  (of instant ( , ), ( , ( ))x s x s o s+% % ) the integral process information 

(1.5) cannot be exactly composed from the information, measured for the process’ fractions.  

Indeed, sum |Tmo sS  of additive fractions of (2.4) on the finite time intervals:

1 1 1 2 1 1, ; , ;.., , ;m m m ms t t o t t t o t T− −+ + = : 

1 2

1 1 11 2| [ / ] | [ / ] | ,..., [ / ] | m

m m

tt tT

mo s o t t s o t t t o mo t t t o
S S x S x S xς ς ς

−+ += ∆ +∆ +∆% % %                                       (2.16) 

 

 is less than [ / ]
T

t t s
S x ς% , which is defined through the additive functional (1.5).  

As a result, the additive principle for a process’ information, measured by the EF, is violated:  

| [ / ]
T T

m s t t s
S S x ς< % .                                                                                                                     (2.17)  

 

If each k -cutoff “kills” its process dimension after moment k oτ + , then m n= , and (2.15) requires 

infinite process dimensions. A finite dimensional model approximates finite number of probing 

impulses checking the observing frequencies. For any of these conditions, the EF measure, taken 

along the process trajectories during time interval ( )T s− , limits maximum of total process 

information, extracting its hidden cutoff  information (during the same time), and brings more 

information than Shannon traditional information measure for multiple states of the process. 

Therefore, maximum of the process cutoff information, extracting its total integrated hidden 

information, approaches the EF information measure. Since the maxmin probes automatically 

minimize current entropy measure, its actual measurement is not necessary.  
 

Writing sum (2.14) in matrix form for the multiple process’ independent components considered 

during ( )T s−  , we can represent it as the matrix trace: 

 

| [ [ ( ( ))], 1,..... ,
T

mo s k t k
S Tr S x u k n m nδ τ= ∆ = =% ,                                                                     (2.18)  

 

which relates (2.28) to Von Neumann entropy for quantum ensemble [3]. 

Since entropy (1.4), (2.18) measures information of the process’ hidden variable, while each cutoff 

initiates the quantum dynamic Schrödinger’s bridge, whose information  measures Von Neumann’s  

entropy of  the bridges [13] for all process’ dimensions, both of these measures (2.18) get connected 

by the impulse control’s cutoff.  
 

Relation (2.18) satisfies such impulse control that kills each dimension by stopping its process at the 

cutoff [12]. For n → ∞ , the Von Neumann entropy (2.18) approaches the information measure (2.16), 

which, being equal to entropy functional (EF)(1.5), determines information path functional (IPF) as 

integral certainty measure of EF.  
 

The IPF is defined on a dynamic process as the IPF extremal, which is the dynamic equivalent of 

initial random process. The IPF is dynamic counterpart of EF, which is defined on irreversible random 

process, while the IPF dynamic process is reversible and certain. 
  

3. INFORMATION MECHANISM OF ROTATION AND 

ORDERING  COLLECTED INFORMATION 
 

The mechanism forms triplets and joint them in observer information structure while ordering 

information from the cutoff observations and implementing the minimax principle. 
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Let us have distributed in space interactive n -dimensional random process
* * * *

( , ( ))
t

x x t l t=% % , where 

space parameter 
* *( )l t  is non-random function of time course 

*
t .  

The process is described by solutions of Ito stochastic differential equation with drift function 
* * *( , ( ))u

a t l t and diffusion
* * *( , ( ))t l tσ depending on the space parameter, while each interaction 

depicts delta function 
* * *

u ( , ( ))
xu oi

S t l tδ δ=
%

 at each 
* * *( , ( ))t l t  with delta impulse 

* * *( , ( ))t l tδ

along trajectory of this multi-dimensional random process. 

Such interaction holds hidden uncertainty uoi ,covering the process’ bound interstates connections, 

which measures entropy functional
apS along the random process; uoi  and 

apS  might be converted to 

observer information ia  and information path functional ap
I accordingly.  

Let us consider classical transformation of coordinate system with vector 
*

* * * *( ) ( , , )
x y z

l t l l l=
r

 at 

moment 
*

t , defined in moving coordinate system, with vector ( ) ( , , )x y zl t l l l=
r

 in immobile 

coordinate system at moment 
* * :t t tδ+ =  

*
* * *

( ) ( )[ ( )]l t A t l L t= +
r r r

&
,                                                                                                                (3.1) 

where 
*( )A t  is orthogonal matrix of rotation for mobile coordinate system, 

*( )L t
r

 is a vector of shift 

from the origin of this coordinate system relatively to vector  l
r

.  Assuming observing process 

( , ( ))tx x t l t=
r

% %  locates in immobile coordinate system and observable process 
*

tx%  locates in the 

moving coordinate system, the relative motion the coordinate system in holds the form 
*

1
( ) ( ) [ ]l t A t l L

−= −
r r r

,                                                                                                                    (3.2) 

where l
r

is coordinate vector of the same space point in immobile coordinate system, A  is orthogonal 

matrix of rotation in immobile coordinate system, L
r

 is vector of shift in this coordinate system.  

Then a single-parametrical  family of transformation of parameter 
* *

t t tδ+ = , which takes into 

account time-shift of these coordinate systems, approximates relation [10]: 

1/ ( ) ( ) [ ]l t A t A t l L L−∂ ∂ ≅ − +
r r r r&&

,   
1( ) ( )L A t A t L

•
−= &&&

 .                                                                  

(3.3) 

A skew-symmetrical velocity tensor of rotation ( , ),
io io

W W W
+ −= which has a group representation 

with inverse rotating velocities for each i  impulse ( , )
io i i

W W W+ −= ,  follows from matrix  Eqs: 

 
1( ) ( ) exp( )exp( )A t A t W Wt Wt W

− = − =&
 .                                                                                (3.3a) 

According to Noether's theorem,  conversion of the external process’ uncertainty (EF) functional   to 

the observer’s  process’ certainty-information path functional (IPF) is invariant under this 

transformation, satisfying the variation principle, where for the space shift lδ
r

, which can be observed 

in an immobile system, the invariant conditions must be preserved during a time ot t tδ= + .  

The VP  Lagrange-Hamilton Eqs prognosis the observer process’ conjugated extremal trajectories of 

distributed dynamics process ( , ( ))tx x t l t= by solutions of two differential Eqs:  

3

1

/ 1 / 2 / {[ ( ( ) ( )] ( )} 0,
i i k i k k k

k

x t x l W l t L t L t+
=

∂ ∂ + ∂ ∂ − + =∑
r&                                       (3.4a) 

3

1

/ 1 / 2 / {[ ( ( ) ( )] ( )} 0,i i k i k k k

k

x t x l W l t L t L t−
=

∂ ∂ + ∂ ∂ − + =∑
r&                                         (3.4b) 
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where ,
i i

W W+ − are the opposite velocities components of tensor (3.3a), applied to the cutting k -space 

coordinates of each i -process’ trajectories for all n  dimensions of the process, at different initial 

conditions for ,k i . These Egs. include gradient form, determined in the coordinate systems, 

connected by the transformation (3.1):  
3

1

( )i i
kj

o
kj k

x x
a

l l

∂ ∂

∂ ∂=

=∑ ,
1

( )kja A
−

= ; k, j =1,2,3; gradxi = Agrad
o
x i

 ,                                          (3.4) 

with primary gradient 
o

i
grad x , and the extremal equations of diffusion process: 

 ( , , ), ( ( , ), , 1, ..., ,Tm
m m

x
a t x u a A x v l A A m n

t

∂
τ

∂
= = + = =

r

31 / 2 , ( , ), , : ( ),T n
b b b t x b A R Rσσ = = ∆ × → ∠                                                                       (3.5) 

holding  control function ( , )u Av lτ=
r

 of observer inner control ( , )v lτ .  

A cutting component of observable process’ diffusion operator 
* * *

( , ( )) | |
ii

t l tσ σ=  identifies 

eigenvalue iα  of matrix A  (which also defines space Eqs (3.1-3.5)): 

1 ii
ii i

t

∂σ
σ α

∂
− =                                                                                                 (3.6a) 

The diagonalized model of the equation of extremals and its Lagrangian hold forms: 

 

2
1

2
, 1,...,i ii i

ii

x x
i n

t t t

∂ ∂σ ∂
σ

∂ ∂ ∂
−= = ,

1 2

1

1 / 2 ( ) .
n

i
ii

i

x
L

t

∂
σ

∂
−

=

= ∑                                                       (3.6b)  

Lagrangian and Hamiltonian of variation principle (VP) for the multiple entropy impulses have 

distinct peculiarities at observer points ( , ( ))t l t of time-space distributed random process ( , ( ))x t l t% , 

while the EF extremals on the trajectories define functions drift and diffusion of  Markov diffusion 

process (3.5-3.6).  

 

4. INFORMATION MICROPROCESSES INITIATED BY THE CUTOFF  

 
The opposite rotation of the conjugated entropy fractions superimposes their movement in the 

correlated movement, which minimizing each cutoff entropy by entangling the rotating entropy 

fractions in a microprocess. Thus, reaching the entanglement brings the observer’s cutoff maxim-min 

entropy with the inverse rotating velocities to a second minimize of the maximal entropy, 

corresponding symmetry of the probabilities, whose repeating does not bring more entropy and limits 

the trajectories distinction [16]. 

 

Incursion of probing actions near and into the entanglement, prior to verification of the symmetry, 

does not provide measuring and memorizing entropy, being physically unperformed. 

 

When the various virtual measurements, testing uncertainty by interactive impulses along the 

observable process, reveal its certain a posteriori probability, this inferring probability’s test-impulse 

starts converting uncertainty to certainty-information.  

The initial conditions of the starting dynamic process determine a boundary of the cutoff impulse,  

which absorbs the cutting  random ensemble of observable process’ states *( )
t

x τ% , 
*( )

t
x τ% .  

The cutoff, applied to an observable process, chooses a pair of the random ensemble states 

max *( ) ( )t k o tx xτ τ− =% % ,
min *( ) ( )t k o tx xτ τ+ =% %  having maximal entropy of their distinction, while *( )

t
x τ%  

is transforming to 
*( )

t
x τ%  through the impulse. Until real cutoff, these states does not to belong to 

information observer, Eqs. (3.4a-c) prognosis the observer dynamics under the probing actions, which 
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potentially cutting each random micro-ensemble. At transformation of last uncertain a priori impulse 

to next certain a posteriori impulse, the ensemble of cutting  states 
*( )

t k o
x τ −
% ,

*( )
t k o

x τ +
%  terminate (kill) 

when it’s transferring to initial conditions of the conversion dynamic process.  

two opposite step-functions 
*

max[ ( )]
t

U x τ+
% and 

*

min[ ( )]
t

U x τ−
% , which carrying these states, crosses 

the border, transforming 
max *( )

t
x τ%  to 

min *( )
t

x τ%  with the rate of diffusion operator 
2i τα  (or additive 

functional, Sec.2) of the cutting diffusion process.  

Relation for impulse cut follows from (3.5-3.6): 

 
*

max[ ( )]
t io i

U x vτ α+ +=% , 
*

min[ ( )]
t io i

U x vτ α− −=% , 1 / 2
io iτα α= ,                                                (4.1) 

 

if each of these actions cuts a half of the border.  

In real cutoff, the boundary defines the step-up control function 
* * * *( ( ), ( )) ( ( ), ( )), ( , )p

t k o t k o t k t k k o k o k
u x x u x xτ τ τ τ τ τ τ− + + − + − +→ →% % % %  , which, while transferring a 

priori impulse to a posteriori impulse, transits the border, absorbing 
*( )t k ox τ −

% ,
*( ),t k ox τ +

% whose cut 

provides two simultaneous opposite states (with the probability ~½): 
*

max ( )tx τ%  corresponding to 

*

max2 ( )tx τ% , and  
*

min ( )tx τ%  accordingly to 
*

min2 ( )tx τ% .  

The conversion process transits with real rate of diffusion operator 
iτα  up to the moment 

k
τ  when 

control changes sign of the states, giving start to two dynamic processes with initial conditions:  

 

max( ) 2 ( )
t k t

x x oτ τ+ = − +% , min( ) 2 ( )
t k t

x x oτ τ− = − +% ,                                                 (4.2) 

where  

( ) ( )
t k t k

x xτ τ+ = − (at max min= − ).                                                                   (4.2a) 

 

During time shift 
* *t t tδ+ =  from observable process to observation, the probing actions do not 

provide real rotation; it can be just virtual rotations in a time-space of the observable process with 

related probabilities and uncertain measure.  

 

At the last control action, the rotating a priori impulse with elevated a priori probability, which 

integrate entropy of previous impulses, is transferring to rotating a posteriori certain impulse.  

The step-up start is associated with acting the observer inner controls 

 

max2 ( )
t

x o vτ +− + =% and max2 ( )
t

x o vτ −− + =% ,                                                                           (4.3)  

 

which connect with actual control u  through the border diffusion 
iτα  of the cutting diffusion process. 

Relations (4.2,4.3) follow from synthesis of the optimal controls [11] defining extermals Eqs (3.4a,b). 

Transferring maximal cutting fraction u  
oi

of entropy functional (1.5) through the border interval 1i
δ

(with
iτα ), at 1 u  

i i oiτδ α = , corresponds to transferring time interval 
*

tδ  from observable process to 

observer time interval tδ  at 
*t tδ δ→ . Connection tδ  and lδ  in (3.3) leads to 

* 1 * 1( ) {[( ( ( ) ( )) ( )] ( ) [( ( ( ) ( )) ( )] },i i k i k k k i k i k k kt l W l t L t L t l W l t L t L tτ τ τα δ α δ α δ− −
+ −= − + + − +

r r r rr r r r& &
  

(4.4)  where the projection of eigenvalues (4.1) on increment of space vector ( , , )
x y z

l l l lδ δ=
r r r r

determines i lτα δ
r

 with its orthogonal components, while (4.4) holds scalar product of the vectors 
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sum. Multiple impulse projections maintain manifold of eigenvectors of matrix | |, 1,.. ,iA i nλ= =
rr

, 

when each cutoff with three-dimensional lτδ
r

 determines three dimensional eigenvector  

 

| |, 1,2,3,i i i io ka i lτ τ τλ λ α δ= = =
r r rr

.                                                                                               (4.4a) 

 

Thus, each eigenvector is identified by related component of the diffusion operator from (3.6a).  

During each tδ , the observer eigenvector, according to (4.4), is under rotation with above velocities, 

which holds rotating eigenvector ( , )w w w

i i ia a aτ τ τ
+ −=

r r r
with the conjugated components: 

 

 
* 1 * 1{[ ( ( ) ( )] ( )} , {[ ( ( ) ( )] ( )}w w

i i k k k i i i k k k ia W l t L t L t a a W l t L t L t aτ τ τ τ
− + − −

+ −− + = − + =
r rr r r r& &

         (4.5)                                       

while their initial projections ( , )
w w w

i o i o i o
a a aτ τ τ

+ −r r r
follow from   

w w

i io k i o i ot l a aτ τ τα δ α δ − −→ = +
r r r

.                                                                                                      (4.5a) 

 

Time-shift tδ  depicts the observer processes with initial conditions (4.2,4.3), which through inner 

controls max2 ( )tx o vτ +− + =% , max2 ( )tx o vτ −− + =% start conjugated processes (3.4a,b) with max-

min opposite speeds:  

max max/ 2 ( ) w

io to i ox t x o a ττ +∂ ∂ = − +
r

%  , min min/ 2 ( ) w

io to i ox t x o a ττ −∂ ∂ = − +
r

% ,                                      (4.6) 

 

where the projections of the initial conditions on rotating eigenvector 
w

i
a τ

r
 determines the rotating 

projections of the process’ initial speeds. The opposite speeds of the process (4.6), at the same fixed 

gradient /i kx l∂ ∂  (transforming the cutoff entropy), satisfy opposite rotations ( , )
i i

W W− +  in (3.4a,b) 

for each cutoff. Relation i it uτ τα δ =  sets an elementary entropy iu τ , generated at each cutoff by step-

actions (4.1), which vector 
w

i
a τ

r
 carries and transforms along the extremals (3.4a, b) according to (4.5, 

4.5a). 
 

Each interval tδ  determines the velocities by relations following from (4.5a),(4.6) at the known 

eigenvector ia τ

r
 and the eigenvalues, which are defined via diffusion or through rotating vector 

w

i
a τ

r
 

with entropy iu τ  and the above border eigenvalue. While the ratio of the eigenvector to its eigenvalue 

holds the space vector.  
 

Hence, all parameters of the observer process are defined via the cutoff diffusion operator, and the 

observer covariant dynamics, emerge from the cutting fractions of Markov diffusion. The time-space 

movement illustrates Fig.1, with all analytical details in [10-14]. Conjugated processes (3.4a,b), 

starting within an impulse, head toward their entanglement, which minimizes the initially cut 

uncertainty that is transformed to initial conditions (4.2) of the certain dynamics. The invariant 

transformation  leads to extreme process (at minimal information speed [13]): 
3

1

/ 1 / 2 /i i k

k

x t x l
=

∂ ∂ + ∂ ∂∑ [ ( ) ( )] 0,
io k k

W l t L t− =                                                                      (4.7) 

with joint velocity 
ioW and the entangling dynamics minimizing entropy difference of processes 

(4.4a,b). For orthogonal rotations [ ]iW l L+ −
r r

  and [ ]iW l L− −
r r

 at the entanglement, their modules hold 

relations   
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| | 2 | [ ] |
io i

W W l L±= −
r r

at | [ ] | | [ ] |
i i

W l L W l L+ −− = −
r rr r

.                                                              (4.7a) 

The module of conjugated entangled orthogonal vectors ( , )
w w w

i i i
a a aτ τ τ

+ −=
r r r

 at (4.7a) satisfies 

| | 2 | |
w w

i ia aτ τ
±=

r r
.                                                                                                                          (4.7b)                                                                                    

From (4,7a, b) and (4.6) follow the connection of the modules for entangled speeds and states. 

  

The ensemble’s entropy pair ,i i

a b
s s  holds complimentary of both conjugated pairs of rotating 

functions in (3.4a,b) as an analogy of elementary wave functions that entangle the minimal cutoff 

entropy ui

ab i
s = , which is connected with the impulse initial entropy’s instant uio

 at  

u u / 2i io= .                                                                                                                                (4.7c) 

Additive probabilities of the complementary entropies provide additive complex amplitudes at 

entanglement, which satisfy symmetry condition. Verification of this condition reveals certain a 

posteriori probability at entanglement. The elementary (quantum) dynamic process is prognosis at 

each time shift 
*( )tδ of its random interactive action, generating uncertainty, which may convert the 

entangled entropy to equivalent information at 
*( ) ( ),t tδ δ→ ot t→ . 

 

The covariant dynamics, emerging from the cutting fractions of Markov  diffusion, is a type of curved 

manifold known as a Riemannian symmetric space, where the space of diffusion tensor represents the 

covariance matrix in a Brownian motion. Since both step-functions are parts of the impulse entropy 

instant uio , each of them caries entropy ~(u u ) / 2io i− , and finally all impulse entropy is converting 

to equivalent information 2
io i

≅a a . Real control accumulates information ( )io i−a a  equivalent to 

twice of entropy for each virtual stepwise function, while the rising a posteriori probability increases 

entropy measure up to u ,
io io

→ a  at joining the impulse’ step-wise functions. The max-min eventually 

limits both fractions along the trajectory.  

Integration of these max-min portions of information along each observer’s rotating conjugated 

trajectories, defined in four-dimensional space-time region 
*

4
G  with elementary volume 

( )dv d l t= ×
r

 as the integrant measure along trajectories, determines information path functional:  

*
4

1

,

( )( ) ,ap i io

G m

I dv t Wδ τ + −

→∞

= +∫ a                                                                                                (4.8)  

where moment τ  is a beginning of each real control connecting the process dimensions m .   

Since si

ap io
→ a  at each conversion, the s

i

ap apS→  extremals prognosis both the entropy dynamics of 

a virtual uncertain process within each interacting impulses, carrying uncertainty, and the information 

dynamics of the certain impulse, carrying information.  

Each cutting action 
*

( )a
u τ  and 

*( )p
u τ%  potentially curtails the random process’ fractions *( )tx τ%  and 

*( )
t

x τ% on interval *∆ , killing the cutoff by moment 2kτ  (Fig.1) and converting entropy portion 

*s [ ( )] [ ( )]i o

ap ap t ap ts x s x= ∆ → ∆% % % %  to related information functional portion [ ( )]i o

ap t oi i xδ = ∆  using 

the step-up control’s 
*

( )p
u τ  during the conversion process 1 2( ),t o ox ∆ ∆ = ∆ + ∆ , where the related 

symbols indicate random ∆  and non-random o∆  intervals. The conjugated dynamics proceed on 

interval 1 oδ∆ − , with interval oδ  of control 
*( )p

u τ%  that switches from 1kτ  to 1koτ . The entangled 
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entropy at 1kτ , is transformed during a gap oδ , and then at 1koτ , the joint (inner) control tv  unifies 

the information dynamics on interval 2∆  up to 2kτ -locality of turning it off.  

 

 
 
  Figure1. Illustration of the observer external and internal processes and holding information. 

 

Here: tx%  is external multiple random process, ( )tx ∆% is potential observation on interval ∆ , which 

randomly divides 
tx%  on a priory ( )ax t%  and a posteriori ( )

p
x t%  parts; [ , ]a p

uu u u∆ = ∆  are impulse 

control of parts ( ), ( )
a p

x t x t% % ; [ ( )]
ap t

s x ∆% %  is observer’s  portions of the entropy functional; *( )tx ∆% ,

*∆ , *( )au τ ,
*( )pu τ% and *[ ( )]

ap t
s x ∆% %  are related indications for each cutting process; ( )t ox ∆  is 

observer’s internal process with its portion of information functional [ ( )]
o

ap t oi x ∆ ; 2kτ is ending 

locality of tx%  with its sharp increase txδ % ; ,x x− +
% %  are the cutting maximum information states; 

1 2( , )o o ov v v are observer’s opposite inner controls starting with 1 1( ) , ( )o ox xτ τ− +  complex 

conjugated trajectories tx− , tx+  interfering nearby moment 1kτ ; ( , ), ( , )t t t tv f x x v f x x+ + + − − −= =

are inner control functions; interfering nearby moment 1kτ ; oδ  is interval of the control switch from 

1kτ  to 1koτ , where unified mirror control tv  entangles the dynamics on interval 2∆  up to 2kτ -

locality of turning the constraint off with sudden rise .txδ The shown external and internal intervals 

could have different time scale. 

 

On the way to entanglement, the controls minimizes the entropy speeds by imposing the VP 

constraint, which conserves the entropy carrying by the controls.  

The controls’ turn off frees this entropy as equivalent information ( 2 1)io i i− = −a a a .  

The added (free) information joins the rotating extremal segments.  

 

Control 
*

( )a
u τ  (Fig.1) converts portion *[ ( )]o

ap ts x ∆% %  to 1[ ( )]o

ap ti x ∆  and concurrently starts the 

observer’s process on interval 2∆ , finishing it by the moment of killing 
*

2 2k
τ τ+ ∆ → , where 

* 1 1ko oτ τ∆ ≅ − , 1 1 1 1 1, ,k o o o ko k oτ τ δ δ τ τ∆ = − + ≅ − ∆ → ∆ .  
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Killing Brownian motion can take a sharp increase at locality of hitting a time varying barrier [9],[14], 

(Fig.1), also resulting from the freeing of the control information. 

 

The rotation, applied to each already ordered pairs of eigenvectors, equalizes their eigenvalues and 

binds them first in a double and then in a triple structure, which enfolds a minimal information, 

requested by the minimax.  

Equal frequencies of complementary eigenvalues enable performing their cooperation through 

resonance[21]. 

Physical examples of emerging collective phenomena through active rotation are in [20]. 

 

While the impulse step-up action sets a transition process from the observing uncertainty to 

information, the impulse’s certain step-down control cuts a minimum from each maxima of the 

observed information and initiates internal distributed information dynamics process, starting both the 

information and its observer (Fig.1).  

The entanglement encloses the captured complimentary (conjugated) entropy fractions providing a 

source of an information unit.  

 

The impulse step-up action launches the unit formation, while its certain control step-down action 

finishes the unit formation bringing  memory and energy from the interactive jump decorreling the 

entangled entropy. This finite jump transits from uncertain Yes-logic to certain information No-logic, 

transferring the entangled entropy of observation to the forming information unit of elementary 

(quantum) bit. Uncertain step-up logic does not require energy [19] like the probes of observable-

virtual process, or a Media whose information is not observed yet.  

This potential (uncertain) logic belongs to sequential test-cuts before appearance of a priori certain 

logic, which becomes a part of forming the elementary information unit.  

 

The entanglement might connect two (or three) distinguished units with superimposing ebits, whose 

measurement memorizes their information.  

 

The Yes-No logic holds Bit-Participator in its forming as elementary information observer analogous 

to Wheeler Bit [6] created without any physical pre-law.  

The curved control, binding two units in a doublet and cooperating its opposite directional information 

unit, forms a triplet as a minimal cooperative stable structure.  

Resonance of the equal frequencies of complementary eigenvalues also performs their cooperation in 

doublet and triplet. Triplet structure can shape both naturally and artificially [21-23],when multiple 

interacting particles’ units assemble collective observer with information process and building 

information forces [15].  

 

5. FORMING INFORMATION MACRODYMAMIC PROCESS 

 
The information path functional (IPF) integrates the multiple information units of cooperating 

doublets-triplets, bound by the free information, in gradual information flow of a physical 

macroprocess, which starts from statistical process whose multiple frequencies’ test discloses the 

quantum microdynamics. The EF mathematical expectations average the random entropy impulses, 

and the controls covert them to microdynamics collected by the IPF, while transferring EF to IPF.  

The IPF extremal trajectories describe the information macroprocess of the flows cooperating 

macrounits, which connects the averaged quantum microdynamics on the IPF extremals with classical 

Physical Statistical Physics and Thermodynamics in Observer. 

  

The selective statistics of minimax probes, which minimize probes number, specify and distinct the 

considered observer macroprocess from that is not a selective observed. 
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This leads to three kinds of certain macroprocesses in observer: One that is formed according to 

minimax with sequential decreasing entropy and maximizing information enfolded in the sequence of 

enclosing triplet structures, while minimizing their bound free information. 

This is a physical thermodynamic process generating the information network (IN) (Fig.2) with 

sequential information coupling (in doublets and their coupling in triplets) and rising information 

forces that enfold the ordered sequence and enable attracting new information unit by freeing the 

information.  

The second kind brings an extreme to the path functional but does not support the sequential decrease, 

minimizing information speed by the end of forming the information unit. Such units might not be 

prepared to make optimal triple co-operations and generate the IN structures.  

This is a physical macrodynamic process, which we classified as an objective or such one that is 

closed to a border threshold [15] with observer’s subjective process, enables sequentially cooperate 

more than single triplet does in a process. 

The third kind macroprocess, transforming energy-information with maximum of entropy production, 

which is destructive and does not support the observer stability, evolvement and evolution through the 

information network (IN), while, holding the elementary triplet, it forms the objective information 

observer. 

The information Hamiltonian linear and nonlinear equations describe irreversible thermodynamics of 

all three kinds, which include the information forms of thermodynamics flows , defined via 

the IPF gradients as the process’ information forces
 

 raised from the Markov process 

(Sec.1). The process Hamiltonian regularities arise at imposing dynamic constraint, initiated by the 

cutoff Markov diffusion; it blocks the initial randomness during intervals τ of applying the cutoff 

impulse [10]:  

.                                                                                                     (5.1) 

The IN optimal co-operations hold observer’s optimal macrostructures, but they are not necessary for 

a non-optimal sequence of units that forms a physical macrodynamic process, where each next unit 

randomly transfers energy-information to the following in various physical movements, including 

Markov diffusion.  

 

These natural interactions routinely implement the conversion of pre-existence uncertainty to post 

interactive certainty through pre-interactive (a priori) and post-active (a posteriori) Bayesian 

probabilities.  

Even if such multiple cooperation brings an extreme of the path functional, each following unit may 

not decrease the extremum, while each IN’s triplet minimizes the bound information-energy that they 

enclosed, including triple quantum information. 

Implementation of the variation principle requires compensation entropy production for the 

irreversibility by equivalent negentropy production, synchronized by Maxwell Demon[24].  

 

On a primary quantum information level, it accomplishes the sequence of Yes-No, No-Yes actions 

following from the minimax at the cutoff [15]. A priori step-up Yes-control transfers total cutoff 

entropy  (including the impulse’s entropy) to equivalent information, and the posteriori  step-down 

No-control kills the entropy while compensating it by equal information of the control.  

Such control models an interaction coming from natural physical process like earthquake others, as 

observable process, being uncertain for potential observer. These natural interactions  are a source, 

creating objective observer with the elementary doublets and triplets. The triplet, carrying naturally 

born free information, enables use it for cooperation with other naturally born doublets –triplets. If 

such cooperation brings information, allowing to overcome the threshold with subjective observer, it 

starts the subjective observer’s IN with ability of free information to attract new triplets’ information.  

u
x a=&

1(2 ) u
X b a

−=

( ) ( ) ( ) ( ) 0u X
a X b

x
τ τ τ τ

∂
+ =

∂
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The end of Bayesian a priori interactive action kills the impulse entropy, while its time transition to a 

Bayesian posteriori inferring action delivers this entropy-information cost for converting that entropy 

to information bit, which is estimated by coefficient / ln 2 0.0917554e evk s= ≅ [16].  

Here, the real posteriori part of the impulse brings information equivalent, which covers entropy cost 

evs and brings the real step-up control of a bordered next impulse. If an external step-down control, 

which is not a part of the impulse, spends the same entropy, and kills a cutting part of the impulse 

entropy ui , then / u 0.1272eu ev ik s= ≈ .  

Time interval of the conversion gap  oδ  is u /
o

t oi oi
cδ =  where a speed of killing this entropy is oic . 

Since by the end of oδ  the information unit appears with amount uio oi=a , the real posteriori speed  

oic  produces the finite posteriori control speed.  

Thus, this is speed of generating information, whose maximum estimates constant 
1 15 1ˆ (0.536 10 ) / sec

mi
c h Nat

− − −= ≅ × [13], where ĥ  is an information analog of Plank constant at 

maximal frequency of energy spectrum of information wave in its absolute temperature. This allows 

us to estimate minimal time interval 
15

min
ˆ 0.391143 10 sec

o

t iohδ −≅ ≈ ×a , which determines the 

ending border of generation information unit ioa . This unit contains an information equivalent 

ev evs i=  of energy eve  spent on converting the entropy to information.  

Energy eve delivers the certain step-up control action of converting entropy to information.  

This energy compensates for that conserved in the entangled rotation, specifically by angular moment 

multiplied on angular speed during the time movement [10], which evaluates entropy evos in Nats.  

Above ratio ek , measured by the equivalent cost of energy, is a quantum process’ analogy of 

Boltzmann constant (as a ratio of the unit generating radiation energy, which is transferred to 

temperature of heat that dissipates this energy).  

The ratio determines a part of total information aoi  cost for transforming entropy uoi .This information 

cost is a logical equivalent of Maxwell Demon’s energy spent on this conversion, as the cost of logic, 

which is necessary to overcome oδ , including the transferring of the entangled entropy and generation 

of the unit of information during time interval 
o

t
δ . Since the rotating movement condenses its entropy 

in the volume of entanglement, this logical cost is a primary result of time shift tδ  initiating the 

rotation, while this time course compensates for both logical and energy costs, delivering the certain 

step-wise control. This means, that real time course might be enough for excluding any other costs for 

conversion entropy in equivalent information.  

Information mass [14] of rotating cooperating units, acquiring energy after entanglement, models 

elementary particles mass, as well as their various collective formations at the curving knots  as the IN 

nodes (Fig.2),[25].  

The step-up cut jumps the curvature of the space-time distribution, initiating an attractive wave of 

cooperation. A conjugated quantum process is reversible until it reaches entanglement at superposition  

(interaction) of the process’ complimentary entropy fractions, directed toward the generation of 

information. The potential equalization uncertainty-certainty requires the existence of the extreme 

process, heading for both equalization and creation of the information unit with maximum information 

speed. The extreme condition [10],[11] compensates for entropy production through the VP 

Hamiltonian, measuring integral speed of the cooperating information process, which actually 

performs Maxwell's Demon function at macrolevel. The condition of the minimization of this speed 

(imposed by the VP dynamic constraint (5.1),[13]) limits information-energy for emerging unit by 

cutting it at formation and freeing the conserved information [16].  
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The units of information had extracted from the observed random process through its minimax cutoff 

of hidden information which observer physical thermodynamic process integrates via Eigen 

Functional [26,10], satisfying the VP on a macrolevel in the IPF form. 

The IPF holds the generated primary free information that sequentially connects the pairs of states-

units as doublets and the multiple doublets-triplets co-operations. 

 

6. ARISING OBSERVER LOGICAL STRUCTURE 
 

The triplet generates three symbols from three segments of information dynamics and one impulse-

code from the control. This control joins all three in a single unit and transfers this triple to next triple, 

forming next level of the information network’s (IN) minimal logical code. Each information unit has 

its unique position in the time-spaced information dynamics, which defines the scale of both time-

space and the exact location of each triple code in the IN. Even though the code impulses are similar 

for each triplet, their time-space locations allows the discrimination of each code and its forming 

logics. The observer checks the acceptance of this code in IN (Fig.2).  

 
                                                                       

Figure 2. The IN time-space information structure. 

  

The hierarchy of IN cones’ spiral space-time dynamics with triplet nodes (tr1, tr2, tr3, ..), formed at 

localities of the triple cones vertexes’ intersections with ranged string of the initial information 

speeds-eigenvalues 
t

ioα , cooperating around time locations 
1 2 3, ,t t t  in T-L time-space of the IN. 

 

This includes enclosing the concurrent information in a temporary build IN’s high-level logic that 

requests new information for the running observer’s IN [15, v2].  

If the code sequence satisfies the observer’s IN code, the IN decreases its free information by 

enfolding new code in its structure. The IN information cooperative force, requests this compensating 

information [12]. The decrease is an indication that the requested information, needed for growing and 

extension of the IN logic has been received, which is associated with surprises that observer obtains 

from the requested information it needs.  

 

The IN connections integrate each spatial position of the accepted triple code into the triplets’ 

information of the IN node’s previous position while structuring the IN. Timing of observer’s internal 

spatial dynamics determines the scale of currently observed process and serves for both encoding and 

decoding the IN logic. The IN parameters are identified by observer’s measured frequencies of the 

delivered  information [15]. The spatial coordinate system rotates the following next accumulation and 

ordering of the IN node’s information.  

Thus, the dynamics generate the code’s positions that define the logics, while the observer information 

creates both the dynamics and code. The space-time’s position, following from the IN’s cooperative 

capability, supports self-forming of observer’s information structure (Fig.3), whose self-information 

has the IN distinctive quality measure.  
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Figure 3. Illustration of the observer’s self-forming cellular geometry by the cells of the triplet’s code, with 

a portion of the surface cells (1-2-3). 

 

The observer identifies order and measure of his priorities (like social, economic, others categories) 

using quality of information concentrated within the IN node, assigned to this priority [16].  

The receiving information of this priority node’s quality is directed to other (local) IN, which 

emanates from that node. This particular information is collected and enfolded according to the sub-

priority of competing variation’s quantities of each category by analogy with main IN (Fig.2).  

Each category of priority information builds its local IN emanating for the main IN. When the node 

quality is compensating by external information, the observer achieves this priority as unpredicted 

surprise; if it is not, the observer local IN requests for the new one.  

The observer logic with its timing hierarchy initiates external interaction, following observation, 

entanglement, generation information units, and the IN nodes, forming its multiple finite sizes knots 

(Fig.2). This logic time interval could be minimizes for the sequential interactions approaching speed 

of light. In human observer’s vision, the ability to see and form mental pictures has a speed much 

higher than external interactions [27].  

 

Finally, the irreversible time course generates information with both objective and subjective 

observers, which can overcome the information threshold between them on the path to intelligence.  

Observer computes its encoding information units in the information network (IN) code-logic to 

perform its integrating task through the self-generating program. The observing process, which is 

chosen by the observer’s (0-1) probes and the logic integration, could determine such a program.  

As a result, the information path functional (IPF) collects these information units, while the IN 

performs logical computing operations using the doublet-triplet code. Such operations, performed with 

the entangled memorized information units, model a quantum computation. 

A classical computation models the operations with classical information units, which observer 

cooperates from quantum information units and runs in the IN with these units. An observer that 

unites logic of quantum micro- and macro- information processes enables composing quantum and/or 

classical computation on different IN levels. Observer kills uncertainty to get information. 

 

7. OBSERVER INTELLIGENCE 
 

The observer’s current information cooperative force [15], initiated by its IN free information, 

determines the observer’s selective actions and multiple choices, needed to implement the minimax 

self-directed strategy.  

 

Notion of conscience [28-29,16] we associate with selecting the optimal observer’s choices through 

the cooperative force emanated from the integrated node. The selective actions are implemented via 

applying the considered stepwise controls with a feedback from the currently checked information 

density, requesting such spectrum information speed, which conveys the potential cooperation, needed 

to verify the chosen selection.  
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The cooperative force includes dynamic efforts implementing the observer’s intention  for attracting 

new high-quality information, which is satisfied only if such quality could be delivered by the 

frequency of the related observations through the selective mechanism [15].  

These actions engage acceleration of the observer’s information processing, coordinated with the 

highest density-frequency of observing information, quick memorizing each node information, and 

stepping up the generation of the encoded information with its logic and space-time structure, which 

minimizes the spending information. The time interval [15] of the control action predicts the needed 

selection, which is required to select the information that carries the requested information density.  

These processes, integrating by the IPF, express the observer cognition,  which starts with creation of 

the elementary information unit with the memories at microlevel.  

 

The coordinated selection, involving verification, synchronization, and concentration of the observed 

information, necessary to build its logical structure of growing maximum of accumulated information, 

unites the observer’s organized intelligence action, which the amount of quality of information spent 

on this action, being integrated in the IN node, currently evaluates.  

The functional organization of the intelligent actions, which integrates cognition and conscience of the 

interacting observers, connects their levels of knowledge, evaluated by the hierarchical level’s quality 

information [15] that the observers have accumulated and stored (memorized) in each IN.  

The algorithm of multitasking intellectual network is in [30].  

 

Results [31] confirm that cognition arises at quantum level as “a kind of entanglement in time”…”in 

process of measurement”, where… “cognitive variables are represented in such a way that they don't 

really have values (only potentialities) until you measure them and memorize”, even  “without the 

need to invoke neurophysiologic variables”, while “perfect knowledge of a cognitive variable at one 

point in time requires there to be some uncertainty about it at other times”. 

 

CONCLUSION 
 

The identified Path from uncertainty to certainty integrates information quantum, classical, and 

computation processes in an observer intellect. The introduced integral path functional information 

measure implements the minimax law of optimal extraction and consumption of information for 

complex interactions. The results’ computer-based methodology and software were applied to 

biological, intelligent, collective economic, social, and automatic control systems [10-16]. 
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