
International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

DOI : 10.5121/ijit.2015.4102 11

IMPROVING DATA COMPRESSION RATIO BY THE
USE OF OPTIMALITY OF LZW & ADAPTIVE

HUFFMAN ALGORITHM (OLZWH)

Pooja Jain , Anurag jain and Chetan Agrawal

Computer Science Department, Radharaman Institute of Technology and Science, Bhopal

ABSTRACT

There are several data compression Techniques available which are used for Efficient transmission and

storage of the data With less memory space. In this paper, we have Proposed a two stage data compression

Algorithm that is OLZWH which uses the Optimality of Lempel- Ziv-Welch (OLZW) and Adaptive Huffman

Coding. With this proposed Algorithm, the data Compression ratios are Compared with existing

Compression Algorithm for different data sizes.

KEYWORS

 Optimality of Lempel-Ziv-Welch (OLZW), Adaptive Huffman coding, Compression Ratio.

1. INTRODUCTION

As we see any type of data files of any size Character By character, we notice that there are

Many recurrence pattern exhibits in it. a data Compression [2] [6] technique takes the advantage

Of such repetitive sequence of data in order to Provide a potential cost saving associated with

Transmitting less amount of data, reduces storage

Requirement and reduces the probability of transmission errors. A data compression Techniques

[4] are divided into two main classes. That are (i) Lossless data Compression and (ii) Lossy data

compression In lossless data compression, the compression Process is carried out without loss of

data or Information during compression. Examples of such Lossless compression includes A)

Statistical data compression Techniques (i) Huffman coding (ii) Run Length Coding B)

Dictionary based data compression techniques (i) Lempel- Ziv-Welch (LZW) Huffman coding is

a general compression technique in Which data in term of symbol is based on their statistically

Occurred frequencies also called probabilities. The Symbols that arise more commonly are

assigned a smaller bit whereas the symbol that occur less frequently Are assigned longer bit. in

1977, Abraham Lempel and Jacob Ziv invented a new coding technique for data Compression

(LZ77) which uses dictionary for encoding the data Further revised by Welch in 1978 called

LZW78.The LZW algorithm is an adaptive dictionary-based Approach that builds a dictionary

based on the Document That is being compressed. The LZW begins with An

initial dictionary includes all the symbols in the Alphabet, that builds the Dictionary by adding

new phrases in the dictionary. As it come across new symbols in the text which is being

compressed. The LZW [1][3][6] compression technique has certain limitations which reduces the

compression ratios that are as follows:

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

12

(i) The dictionary is initialises for all the characters symbols in at the beginning of the encoding

process Some of the dictionary may not be used during encoding of the data files but that unused

character symbols occupy some code values that cannot be used for other necessary phrases of

dictionary.

(ii) LZW started with 256 encoding code values for 256 character symbols that are 8bit long. The

character symbol beyond 256 has to be encoded with 9 bits. Thus, overcome above limitations

OLZW [4] [5] compression technique is used.

In OLZW data compression technique, the encoding procedure started with an empty dictionary.

The character symbols to be encoded are assigned codes starting from ‘1’ in the dictionary and

the character symbol to be encoded whose index not present in the dictionary is encoded with 8bit

ASCII code and inserted into dictionary as a new code. An adaptive Huffman [1][6] coding also

called Faller Galler –Knuth algorithm uses the defined word string which determine the Mapping

from source message to code word based on a running estimate of the probabilities to the source

message. The code is adaptive and changes so as to stay on optimal for the current estimates. An

advantage using the Adaptive Huffman coding is that it uses only one pass for compression and

provides better performance than static Huffman coding.

2. OLZWH (Proposed Algorithm)

In the proposed two stage data compression algorithm (OLZWH), dictionaries formed for input

character symbols of OLZW is considered into two segment that are (i) Set of indices, and (ii) Set

of ASCII code Proposed algorithm starts with usual OLZW compression process and whenever

there is occurrence of ASCII code, Adaptive Huffman algorithm is applied to it. The algorithms

for OLZWH and flowchart for compression in Fig.1) & decompression in Fig(2) shown below

The flow for the same is shown as below-

(i) Compression Algorithm:

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

13

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

14

Figure 1 Flow Chart for OLZWH Compression Algorithm

If (Flag=0), then

Store 1 bit flag to output file / stream and

8 bits ASCII code for Ch to TEMP_BUFF;

PHRASE=NULL;

Else

CL=Find_code_length (next_code-1);

Store flag with CL bits code for Ch from dictionary to

TEMP_BUFF;

If (Ch is not in dictionary), then

Flag=0;

Store 1 bit flag to output file / stream and

8 bits ASCII code for Ch to TEMP_BUFF

If (dictionary is full)

Remove all phrase from dictionary;

End if;

Append Ch to dictionary with code value as next_code;

next_code is incremented by one;

Else

PHRASE=Ch;

Flag=1;

End if;

End if;

End while;

If (Flag=1), then

CL= find_code_length (next_code-1);

Store flag with CL bits code for PHRASE from dictionary to output

file / stream;

End if;

Initalize COMP_BUFF as ByteArray;

COMP_BUFF= CALL AdaptiveHuffman (TEMP_BUFF)

If (COMP_BUFF.length < TEMP_BUFF) then

 Store 1bit flag with COMP_BUFF to the starting of output

file / stream;

Else

 Store 1bit flag with TEMP_BUFF to the starting of output

file / stream;

End if;

END

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

15

Figure 1 Flow Chart for OLZWH Compression Algorithm

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

16

(ii) Decompression Algorithm:

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

17

 Figure 2 Flow Chart for OLZWH decompression Algorithm

3. OBSERVATIONS & RESULTS

To implement this algorithm and for comparing it with other compression techniques like LZW-

15, OLZW, we calculated compression ratios in Percentages (%) for different data files of

different sizes are taken. Input data files are shown in table (A) and the chart to show

compression ratio in percentage (%) is shown in (Fig. 3).

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

Figure 3

File Name

e-mail.doc

Brain-fingerprint.doc

Capcha.doc

Imageprocessing.doc

404-1.html

RSSFeeds.html

Clickme.html

LZWcompression-

Rossett.html

Limiteddic.java

ByteArray.java

LZW.java

Compactinputstream.java

About_continue.help.txt

Default.help.txt

About_eventslog.help.txt

Appv.instlog.txt

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

Table – A. Input data files

Figure 3. Compression ratio in percentage (%)

File Size in

Bytes

LZW-15 OLZW OLZWH

58368 51.51 58.83 60.06

81408 17.35 31.02 33.3

219648 1.81 18.96 21.81

411136 9.52 25.11 29.33

1358 26.8 29.23 31.15

10012 56.09 62.22 66.53

41385 27.67 39.1 45.82

385801 56.27 64.18 77.01

274 16.79 18.61 20.44

2354 35.51 45.84 47.62

3706 32.68 40.66 46.41

5242 30.71 39.93 48.42

1185 39.66 40.68 41.86

2223 38.01 45.66 46.87

5637 40.29 48.99 54.55

1013458 49.31 57.97 80.3

18

OLZWH

60.06

33.3

21.81

29.33

31.15

66.53

45.82

77.01

20.44

47.62

46.41

48.42

41.86

46.87

54.55

80.3

International Journal on Information Theory (IJIT),Vol.4, No.1, January 2015

19

4. CONCLUSION

Thus, the proposed algorithm proves to have better compression ratio for different files as well as

different file size than other available data compression techniques. Limitation of OLZW of

providing poor compression ratio for larger size is also eliminated. The proposed OLZW

technique eliminates some of the problems of the LZW coding and enhances the performance of

the same. The proposed technique works very well for particularly small size files most of the

time than two versions of LZW (i.e. LZW12 and LZW15V). And the performances of OLZW are

not so poor for large size files also. It offers better compressions for large size files than LZW12

most of the time. The compression rates of OLZW for large size files are not as well as LZW15V,

but close to it. The proposed technique has a great scope of modifications to make it suitable for

large size files also by populating the dictionary with combination of character of phrase instead

of the phrase itself and removing phrases not used for longest period of time if the dictionary gets

full. It can also be used for image compression.

Dictionary Based Compression Algorithm is found to be more better than LZW in terms of file

size reduction. Dictionary Based Compression is better in large size text file and it is similar to

LZW Compression file when the file size is small. Dictionary Based Compression algorithm is to

search a pattern in the compressed file without getting decompressed to it. Hence reducing the

searching time because of being done it in compressed file. So, it would be proved as an optimal

searching concept for pattern searching in the compressed text files.

REFERENCES

[1] Raja P. And Saraswathi,”An effective two stage Text compression & decompression technique For

data compression ” International journal of Electronics & communication engineering (ISSN 0974-

2166) vol.4 no.29,2011

[2] Ming-Bo lin, jang-feng Lee& gene Eu jan, ”A lossless data compression & decompression

Algorithm and its hardware Architecture”IEEE Transaction on September 2006.

[3] Haroon Altarownesh ,Mohmmad Altarownesh ”A data compression technique on text files, A

comparison study” International journal of Computer application .(0975-8887) vol.26, No.5,july

2011.

[4] Nishad P.M., Monicka chezian , “ Optimization (Lempel Ziv Welch) algorithm to reduce time

Complexity for dictionary creation in encoding & decoding” AJCSIT (ISSN 2249-5126)

[5] Utpal Nandi, Jyotsna Kumari ‘Modified Compression technique based on Optimality of LZW code”

Elsevier 2013

[6] MIT 6.02 Draft lecture notes Chapter 3, Compression Algorithm: Huffman & Lempel Ziv Welch.

