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ABSTRACT 

 

This paper proposes a technique to compress any data irrespective of it’s type. Compressing random data 

especially has always proved to be a difficult task. With very less patterns and logic within the data it 

quickly reaches a point where no more data can be represented within a given number of bits. The 

proposed technique will allow us to compress irrespective of it’s pattern or logic within, and represent it. 

Further it will permit the technique to be again applied to the already compressed data without having any 

change in the possible compression ratio. While data can’t be compressed further than a limit the 

technique will rely on representing the data as a position in any computationally easy number series that 

extends to infinity provided it have high enough deviation among it’s digits. Only few markers that are 

linked to the position is saved, rather than representing the original data. The system then use these 

markers to guess the position and derive the data from it. The procedure is however, computationally 

intensive and as of now can raise questions of data corruption but with more computing power, efficient 

algorithm and proper data integrity checks it will be able to provide very high compression ratios in the 

future 

. 
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1. INTRODUCTION 

 

Storage has always been a very scarce resource in computers, pushing more and more data into 

smaller spaces have become a necessary need today. The amount of data being produced today is 

very large and will only grow in the coming years. This makes the need for better compression 

methods vital for us. While many of the existing compression and efficient they soon hit a limit1 

beyond which no more data can be effectively represented within a given amount of bits. This is 

worst in case of random data with very less or no patterns or logic within it. 

 

The existing compression methods work primary by 

 

1. Removal of unwanted / unimportant data. 

2. Reducing redundant data.. 

3. Predicting / generating patterns. 

 

These methods work perfectly as long as there are patterns within or there is expendable data. 

The result is that they are heavily dependent on what kind type of data they can effectively 

compress and different methods have to be applied depending on the type of data. 

 

 There is also a very clear difference in the effective compression ratios depending on the type of 

data, for example text files can be compressed in a lossless mode to much smaller size than 
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multimedia can be. Hence we require a efficient universal compression technique that that will 

work on any form of data and can be used again on the compressed file to further compress it. 

 

2. OBJECTIVES 

 

To design a data representation method and required data compression and decompression 

technique for data so compressed such that it should.Should strictly provide lossless compression. 

 

• Not use dictionaries. 

• Works on any type of data. 

• Is independent of the data density. 

• Is independent of the data randomness. 

• Not need to use demarcating bytes to separate compressed and non-compressed data. 

• Provide high compression ratios. 

• Can be applied repeatedly to a file without affecting the possible compression ratio. 

 

3. APPROACH 

 

The idea is to represent data as the prime number location between 0 and infinity within a 

computable series, the series does not have to be a normal number but have to be non repeating, 

have a large enough deviation between digits and should be computationally easy. Any set of data 

can be represented as a value in between 0 and infinity, for example a set of bytes {213, 110, 180, 

177} can be condensed as 213110180177 and then be represented as the 213110180177th 

position on a number series or a computable number, who’s n
th
 digit can be calculated in a 

computationally easy way, yet have high deviation and, extends to infinity. Few markers are then 

generated to to help us identify this position from the number series which are used later to guess 

the position value. These markers along with few some other information is stored. 

 

This removes the need to actually store the full representation of the data hence allowing us to 

overcome the limit to which the data can be compressed. To make this representation possible 

and efficient we will make sure that the data that needs to be represented on the number series is a 

prime number and make it into one if it is not. This will limit to the number of positions the 

system need to guess contrary to when all values are possible. The decompression process will be 

longer than the compression process. 

 

4. COMPRESSION 

 

Consider a pool of bytes P = {p : 0 ≤ b ≤ 255} such that there is no repetitive or logical pattern 

within it, a number lim = {2 ≤ lim ≤ size(p)}, a large integer number N initially set to 0, a empty 

data set C to hold the compressed data and a function Pat(n) that generates the n
th
 digit of a 

computable number or number series. 

 

Now while n < lim we combine one value of one byte each from P , say Pn , to N by doing N = 

((N × 1000) + Pn ) and increment n, hence if pn is a double or single digit value we will have a 0 

or 00 before the value respectively. N is first initialized 1 or any other single digit number and 

then the value is combined to it as per the formula above if p0 is a single or double digit number, 

this can be called Head Padding. Hence we achieve a large integer number who’s group of every 

3 digits represents a value of the bytes in our pool in their original order. 
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Figure 1. A large integer is obtained by combining values of our bytes that we need to compress 

. 

 

 

 

 

 

 

 

 

 
Figure 2. N has 00 or 0 before the values if the new value to be combined is single or double digit 

respectively. 

 

 

 

 

 

 

 

 

 
Figure 3. N is initialized with 1 as Head Padding here as the first byte does not  3 digits. 

 

Now N should represent a large number, eg: if lim was 10 we should have a 30 digit number 

assuming that the first byte contained a triple digit value (so that noHead padding was used). We 

check if the obtained number N is a prime number if it is not we append it with further 3 digits to 

make it a prime number, this can be called as Tail Padding. 

 

 

 

 

 

 

 

 

 
Figure 3.Tail Padding. Here 003 is added to make N a prime number. 

 

Once a prime number is available we derive two markers M0 and M1 using the Pat(n) function 

where n is N and N + 1 hence making M0 and M1 the N
th
 and (N + 1)

th
 digits of the computable 

number or number series respectively. Now we can represent the data using the tuple V = {n, M0 , 

M1 , H, T } where H is a flag that is true if Head Padding was used T is a flag that is true if Tail 
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Padding was used. n, M0 and M1 being the number of bytes combined into N and the markers 

respectively. 

 

5. DATA REPRESENTATION 

 

To represent the converted information we shall store the markers, the number of bytes 

represented and the padding used if any. The only information that is requires to be stored to 

retrieve the information is the data within the tuple V = {n, M0 , M1 , H, T } 

 

5.1. Two Byte Representation 

 

The structure for 2 bit representation consist of 4 parts. 
 

 

 

 

 

 

 

 

 

 
Figure 4.Two byte data representation 

 

In this structure the first 8 bits are used to represent M0 and M1 which are the markers. The 6 bit 

Wrap can store between 0 and 65 which represent the number of bytes we combined to form N . 

In the standard representation it shall be equal to n in V, this can be expanded to larger numbers 

as discussed later. The last 2 flag bits are used to represent the kind of padding used. The flag is 

set to 00 if neither Head Padding nor Tail Padding was used in N , set to 01 if Head Padding 

alone was used, 10 if Tail Padding alone was used and 11 if both were used. 

 

5.2. Three Byte Representation 
 

The 3 byte representation contains two extra markers M2 and j which will be used to 

improve data integrity and processing efficiency during de-compression. 

 

 

 

 

 

 

 

 

 
Figure 5.Three byte data representation. 

 

The 3 byte representation is to be used when the Wrap represents a very large N. j is the 

first digit from the right in N . 
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5.3. Expansion Method 

 

While the Wrap can effectively represent values between 0 and 65 it may not be always enough 

to effectively represent the values when we generate larger N values which can be more than the 

combination of 65 bytes. In such case the Wrap can represent number of data units, for example a 

base unit of l can be assumed for the entire file we are operating on and then if the Wrap value is r 

then the actual number of bytes combined to form N will be l × r 

 

6. DE-COMPRESSION 

 

The de-compression process is more computationally intensive than the compression process as 

the logic involves guessing the prime number N from a range. The more efficiently the system is 

at deriving prime numbers from within a range the faster will be the de-compression process. The 

markers will be then used to check if the prime number obtained is the actual N that is required. 

 

The Wrap value is used to calculate the length L of N , where L = 3 × r in general case or L = 3 × 

r × l if the expansion method is used. If the flag bits are not 00, L is incremented by 1, 3 or 4 

depending on the flag bits. 1 if flag bits are 01, 3 is flag bits are 10 and 4 if flag bits are 11. 

 

Once the L is calculated the range between which N can occur can be derived as between 10L and 

10L+1 . If the 3 byte representation is used the value of j can be used to further limit this to 

1/10th of the total range. The possible combinations are much lesser than the entire range as the 

number. 

 

For n in set T = {t : t is a prime number and (10L ≤ t < 10L+1 )}, it is checked if P at(t) = M0 . If 

P at(t) is found to be equal to M0 , and if they are equal P at(t + 1) is checked with M1 to confirm. 

In the 3 byte representation P at(t + 2) is also checked with M2. 

 

Once the number t is confirmed to be prime the flag  bits are checked to identify the padding 

used. If Tail Padding is used the rightmost 3 digits of t are ignored and if Head Padding was used 

the leftmost digit will  be ignored. Three digits at a time from the left side  is taken from t and 

then stored into a byte as integer  values from 0 to 255  

 

The possible numbers that have to be checked can further be reduced using the property that, 

Ignoring the padding digits the 1st , 4th , 7th and every 3rd digit from then can only have 0, 1 or 2 

as possible digits as the bytes values that were combined can only have values between 0 and 

 255. Call them the Front-Digits. Further if the Front-Digit is 2 the very next digit after a Front-

Digit can only be among 0, 1, 2, 3, 4 or 5. 

 

7. CONCLUSION 
 

As we are producing more and more data each day we have a need to pack more of into smaller 

spaces for multiple reasons. The existing compression methods are extremely dependent on the 

type of data they are handling causing them to be very limited in their scope of use. The method 

suggested in this paper will allow data to be compressed irrespective of their type and can be 

repeatedly compressed if required. 

 

While todays availability of computing power may not allow practical use of this technique as we 

develop faster and more precise computation it may be possible to apply this at a large scale even 

for everyday use. Combined with more computing power, better error detection technique 

designed specifically for this tech nique, a specially designed computable series and im-
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provements in the data representation methods introduced here we may be able to effectively 

compress largeamounts of data effectively and repetitively to within a reasonable time in the 

future. 
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