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ABSTRACT 
 

The central theme of this article is that the usual Shannon’s entropy [1] is not sufficient to address the 

unknown Gaussian population average. A remedy is necessary. By peeling away entropy junkies, a refined 

version is introduced and it is named nucleus entropy in this article. Statistical properties and advantages 

of the Gaussian nucleus entropy are derived and utilized to interpret 2005 and 2007 waste disposals (in 

1,000 tons) by fifty-one states (including the District of Columbia) in USA. Each state generates its own, 

imports from a state for a revenue, and exports to another state with a payment waste disposal [2]. Nucleus 

entropy is large when the population average is large and/or when the population variance is lesser. 

Nucleus entropy advocates the significance of the waste policies under four scenarios: (1) keep only 

generated, (2) keep generated with receiving in and shipping out, (3) without receiving in, and (4) without 

shipping out. In the end, a few recommendations are suggested for the waste management policy makers. 
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1. MOTIVATION TO REFINE SHANNON’S ENTROPY 
 

What is an entropy? In essence, an entropy or its equivalent nomenclature information is a 

knowledge basis, which helps to change one’s opinion. Fisher [3] initiated the very thought of 

information in statistical contexts. In 1948, Shannon promoted logarithmic measure of the 

information to quantify signals in communication disciplines. Shannon named his seminal idea to 

measure information as entropy. Why did he do so? Entropy is an elusive but a useful concept.  

 

An entropy should be quantifiable, partially orderable, additive, storable and transmittable. 

Claude Shannon himself mentioned: “My greatest concern was what to call it. I thought of calling 

it information, but the word was overly used, as I decided to call it uncertainty. When I discussed 

it with John von Neumann, he had a better idea. Von told me; you should call it entropy for two 

reasons. In the first place, your uncertainty function has been used in statistical mechanics under 

that name, so it already has a name. In the second place, more important, nobody knows what 

entropy really is, so in a debate you will always have the advantage” (Tribus and McIrvine [4]).  

 

Does entropy refer uncertainty or dis (order)? Shannon interpreted data information as a positive 

entropy. If so, it creates conflicts. The greater information ought to imply smaller entropy. The 

information might be lost in a process of transmission while the entropy might increase. This 

conflicting thought of entropy originated in quantum physics (Jaynes [5]). However, the entropy 

concept is utilized in economics and statistics among other disciplines with a contextual 

interpretation opposite to what Shannon intended (Lippman and McCall [6]). The entropy of a 

continuous random variable (RV) may be negative and of a discrete RV may even be infinite. 

Such controversies lead to give up on entropy as stated in Ben-Naim [7].  
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Shannon’s entropy possesses several useful properties but not the much-needed additive property, 

which is a requirement in data analysis. When an additional observation becomes available, the 

expected entropy ought to increase. The Shannon’s entropy does not do so and hence, it needs a 

modernization. This article modernizes Shannon’s entropy by peeling away unnecessary entropy 

junkies in it and names the new version nucleus entropy. In particular, the properties of the 

Gaussian nucleus entropy are derived and illustrated using the log-transformation of the 

generated, shipped, and received waste disposals (in 1,000 tons) among the fifty-one (including 

the Washington, District of Columbia) states in USA in [2]. 

 

2. NUCLEUS ENTROPY DEFINED WITH PROPERTIES  
 

What is Gaussian population? A brilliant French mathematician with the name Abraham de 

Moivre [8] wrote a self-published seven pages description of a bell shaped curve. Only 71 years 

later, a German astronomer Johann Carl Frederich Gauss [9] utilized de Movire’s idea to model 

the errors between the actual and projected position of the celestial bodies of our universe. As a 

misnomer, the bell shaped curve is recognized as Gaussian not de Movire’s population frequency 

curve once a random sample is drawn from it.  

 

Before discussing further, consider the Gaussian population frequency curve  
2 2 22 ( 2 ) / 2 2 2( , ) / 2 ; ; 0;y yf y e y                      (1) 

where is an unknown natural parameter and
2 is a known shape parameter. The Shannon’s 

entropy (.)H  is then   

2 2 2 21
( , ) ( , ) ln ( , ) ln 2

2
GaussH y f y f y dy e           .    (2)  

 

Notice that its natural parameter  is not even a part of the entropy. Furthermore, the Shannon’s 

entropy echoes a conflict. To see it, suppose that a random sample 1 2, ,.., ny y y  is drawn from a 

Gaussian population 2( , )f y   . It is known (Mood, Graybill, and Boes [10]) that a sum 

1 2 ... ns y y y    of n  independent and identically normally distributed outcomes follows a 

normal probability structure
2( , )f s n n  . In which case, the Shannon entropy of the sum 

1 2 ... ns y y y    ought to be n times
2( , )GaussH y   . But, it did not happen so. The 

Shannon’s entropy of the sum is not additive of the individual entropies. That is, 
2 2( , ) ( , )Gauss GaussH s n n nH y    . For entropy practitioners, this causes confusion, as the 

Shannon’s entropy is not adding up as a new Gaussian observation becomes available. The 

existence of such a deficiency in Shannon’s entropy is a sufficient reason to modernize the 

entropy idea in an alternative way and it is what exactly done in this article.  

 

In other words, this article introduces a new and novel approach based on Gaussian nucleus 

entropy. That is,  

 

Definition 1. A nucleus entropy,
2,

Y

  resides in the Gaussian population frequency curve once it 

is written as 
22 2 2 ,( , ) ( , ) ( , ) Yf y A B y        , with an observation y , a natural parameter 
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  and an entropy accumulator parameter
2 . In other words, the Gaussian nucleus entropy 

is
2 2,

:

y

Gauss Y e



    .  

 

The function 
2( , )A   is insulated from observation y . The function

2( , )B y   does not connect 

to the unknown natural parameter  . In a sense, both the functions (that is, 

2( , )A   and
2( , )B y  ) are entropy junkies. Without losing any generality, the nucleus entropy 

could be expressed in a logarithmic scale just for the sake of a comparison with the Shannon’s 

entropy, which is in a logarithmic scale. Notice that the nucleus entropy involves both the 

unknown natural parameter   and an entropy accumulator parameter
2 . The Gaussian nucleus 

entropy is more appropriate, appealing, and meaningful than the Shannon’s entropy. The expected 

nucleus entropy is
2 2, ,

: :{ln( )}Gauss Y f Gauss YS E     which simplifies to   

 

2 2 2
2

, 2 2 , ,

: 2
[ ( , ) ( , ) ]lny

Gauss Y Y YS A B y
      

  


    ,     (3) 

The sample counterpart of (3) is named observable Gaussian nucleus entropy and it 

is

2
,

2

y n

Gauss

y
O


 . The nucleus entropy happens to be the squared inverse of the coefficient of 

variation (CV).  Mood et al. [10] for the definition of CV. The entropy increases with an increase 

of the average and/or with a decrease of the variance. The sample mean y is the maximum 

likelihood estimator (MLE) of the unknown natural parameter  . The MLE is invariant (Mood et 

al. [10]). That is, the MLE of a function of the parameter is simply the MLE of a function of the 

parameter.  

 

Practitioners would wonder: Is an observed Gaussian nucleus entropy statistically significant? An 

answer depends on the outcome of testing the null hypothesis 
2,

0 ,: 0Gauss YH S     against an 

alternative hypothesis
2,

1 ,: 0Gauss YH S    . For this purpose, we proceed as follows. The statistic 

,y n

GaussO asymptotically follows a normal distribution with an expected 

value
, ,

,( )y n

Gauss Gauss YE O S  and variance
, , 2 2var( ) [ ] /y n y n

Gauss y GaussO O n    where the 

notations y  and
2 denote respectively the derivative with respect to y evaluated at and 

the var( )Y . Note 

2

ˆvar( )y
n


 and 

,

2

2ˆ y n

y Gauss

y
O


  . Hence, the score is 

22
Gauss

y n
Z


 to test 

whether the null hypothesis 
2,

:: 0o Gauss YH S    . Hence, the null hypothesis is rejected in favor of 

the alternative hypothesis
2,

1 ,: 0Gauss YH S     with a p-value.:    

2
2Pr( )

2

y n
p value Z


          (4) 

 where Z is the standardized Gaussian random variable.  

 

The (statistical) power of accepting a given true specific alternate value
22

1 ,,

, ,Gauss Y Gauss YS S
    is  
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/ 2 1Pr( )
z

power Z
y

 
          (5) 

where 0 1  is a chosen significance level.  

 

The above results are illustrated in the next section using logarithm of waste disposals (in 1,000 

tons) generated, shipped out, and received in fifty-one (including Washington, D.C.) states of 

USA in [2]. 

 

2.1. Illustration with Waste Disposals in Fifty-One US States  
 

Archeologists (William and Murphy [11]) prove that even in 6,500 B. C., the North American 

communities generated as much as 5.3 pounds of waste per day. In the current modern age of 21
st
 

century with a high quality life (which requires a large amount of material consumptions), the 

waste disposals are extremely large and become a challenge to environmentalists. The health 

perils persist when the waste disposals are not properly processed. Otherwise, the trashes might 

explode and/or contaminate the land, air, and water sources. The sanitation is ruined and it 

causes known and unknown viruses and later on illnesses. The management of waste disposals 

(including the health hazardous medical wastes) is known to be infectious and causing chronic 

diseases (Reinhardt and Gordon [12]). WHO reports that in 2002 alone, about 25.9% of all 14.7 

million deaths worldwide are due to infection and it could have been averted with a hygienic 

living environment. A lesson is that the wastes must be properly collected, managed and disposed 

to maintain a hygienic living environment. Otherwise, the residents and visitors might undergo a 

health risk. Often, killer methane gas is released from the improperly maintained waste filled land 

sites. Many health hazards like fire due to ignitability, bad smell due to corrosiveness, 

radioactivity in surrounding water sources, toxicity etc. exist in such sites. Remedial actions 

include recycling, neutralizing, incineration, destruction, and conversion to energy. Effective on 

5
th
 May, 1992, the 172 countries worldwide started implementing the Basel Convention’s 

agreement to practice waste management using technologies [13]. In USA, the fifty-one 

(including Washington, D.C.) states practice shipping out and receiving in to their own generated 

waste. This article investigates the policy scenarios (with respect to shipping out and/or receiving 

in waste) using significant changes in the Gaussian nucleus entropies.  

 

  
Figure 1. As it is     Figure 2. No receiving     Figure 3. No shipping      Figure 4.Only generated 

 

To be specific, the generated, gY , shipped out, sY and received in, rY waste disposals by the US 

states as displayed in [2] for the years 2005 and 2007 are considered and analyzed. The amounts 

ln( )g r sY Y Y  , ln( )g sY Y , ln( )g rY Y , and ln( )gY  respectively represent the waste under 

current policy with shipping out and receiving, under a policy of cancelling receiving, under a 

policy of stopping shipping out, and under a policy of just doing without shipping out and 

receiving in, The amounts follow Gaussian frequency curve (because dots are closer to diagonal 

line in P-P plots in Figures 1 through 4) with averages grs , gs , gr  and g and variances 
2

grs , 

2

gs , 
2

gr and
2

g .  
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The observed Gaussian nucleus entropy
, 2y n

GaussO 
 is calculated and displayed in Table 1 for the fifty-

one states along with their p-values, according to (4). When the p-value is smaller (0.05 or less), 

the alternative 
2,

1 ,: 0Gauss YH S    is acceptable meaning that nucleus entropy about the natural 

parameter is significant. We notice the following. The generated waste is negligible only in 

states: District of Columbia, Idaho, and South Dakota, according to the nucleus entropy. The 

nucleus entropy of the current practice of receiving in and shipping out along with the generated 

waste in all the fifty-one states including District of Columbia, Idaho, and South Dakota is 

significant validating the current practice. If receiving in the waste is discontinued, the nucleus 

entropy becomes negligible in states: Alabama, Arkansas, Arizona, California, District of 

Columbia, Hawaii, Idaho, Kentucky, Maine, Maryland, Michigan, Minnesota, Missouri, 

Montana, Nebraska, New Hampshire, New Jersey, North Carolina, Pennsylvania, Utah, Virginia, 

Washington, Wisconsin, and Wyoming meaning that these states could consider cancelling the 

policy of receiving in the waste to their states. When the nucleus entropy remains negligible 

under a cancellation of shipping out waste, then those states may not consider shipping out and 

such states are: Delaware, Hawaii, Maine, and Vermont.  

 

How sound is the methodology based on the nucleus entropy? To answer it, the statistical power 

is calculated using the national average for 1 in
2,

1 ,: 0Gauss YH S    , under each of all four scenarios, 

according to (5). The minimum and maximum of the statistical powers across all four scenarios 

for each state are slated in Table 1. No minimum is lesser than 0.21 and the maximum is mostly 

0.99 implying that the methodology is powerful enough. 

 

3. COMMENTS AND RECOMMENDATIONS 
 

Four scenarios to deal with the waste disposals are evaluated using nucleus entropies. They are: 

(1) keep only the generated waste, (2) receiving in waste in addition to generated waste without 

sending out any, (3) sending out a part of generated waste without receiving in additional waste, 

and (4) the current policy of receiving in and sending out waste in addition to generated waste. A 

large entropy is indicative of significant waste. One scenario does not fit all fifty-one states, 

according to the nucleus entropies. In an overall sense, some states perform similarly as a cluster 

(Figure 5).  
 

 
Figure 5. Clusters of states in the current practice of waste disposals 
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TATBLE 1. Gauss nucleus entropy
, 2y n

GaussO 
under four policies: 

 

 Waste generated Waste with 

generating, 

receiving in, and 

sending out 

Waste without 

receiving in 

Waste without 

sending out 

Power 

Sta

tes 

Nucleus 

entropy 

p-

value 

Nucleus 

entropy 

P 

value 

Nucleus 

entropy 

P 

value 

Nucleus 

entropy 

P 

value 

Mini

mum 

Maxi

mum 

AL 149.33 0.001 784.6822 0.001 1.903 0.14 666.57 0.001 0.76 0.87 

AK 307.27 0.001 27.6477 2E-04 0.241 0.4 27.439 0.001 0.99 0.99 

AZ 36.354 2E-05 676.829 0.001 0.251 0.88 86.178 0.001 0.94 0.99 

AR 6157.2 0.001 4846.406 0.001 876.6 0.001 1937.6 0.001 0.74 0.99 

CA 2017.1 0.001 194.1282 0.001 0.549 0.98 161.1 0.001 0.69 0.99 

CO 119.95 1E-14 6389.492 0.001 3.16 0.08 4227.3 0.001 0.94 0.99 
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CT 287.25 0.001 203.9754 0.001 382.6 0.001 993.5 0.001 0.96 0.99 

DE 163.37 0.001 12.10809 0.014 59.11 0.001 2.774 0.24 0.99 0.99 

DC 1.178 0.4428 219615.9 0.001 0.001 0.62 117.5 0.001 0.69 0.99 

FL 284.56 0.001 573.037 0.001 3.189 0.08 4929.3 0.001 0.75 0.92 

GA 24.516 0.0005 13920.87 0.001 13.24 0.04 34.568 0.001 0.91 0.99 

HI 5.4806 0.0978 37.59688 1E-05 4.626 0.31 3.0336 0.22 0.99 0.99 

ID 5.3376 0.1023 245.1826 0.001 4.017 0.36 1297.8 0.001 0.81 0.99 

IL 76420 0.001 1954.163 0.001 18.64 0.01 59727 0.001 0.66 0.8 

IN 26276 0.001 7308.858 0.001 24919 0.001 4139 0.001 0.67 0.94 

IA 5842.8 0.001 75.07698 9E-10 26769 0.001 218.32 0.001 0.98 0.99 

KA 1031.3 0.001 1358.054 0.001 14.07 0.03 1676.9 0.001 0.75 0.98 

KY 16.168 0.0045 50.84616 5E-07 0.018 0.69 42.437 0.001 0.82 0.97 

LA 146.36 0.001 929.7007 0.001 33.33 0.001 417.7 0.001 0.4 0.68 

ME 76.006 7E-10 0.212375 0.745 0.187 0.42 4.0711 0.15 0.99 0.99 

MD 3182.6 0.001 226.9416 0.001 0.101 0.47 132.61 0.001 0.91 0.99 

MA 396.63 0.001 268.1957 0.001 55.6 0.01 286.69 0.001 0.71 0.89 

MI 20.727 0.0013 83.65424 1E-10 1.882 0.64 76.6 0.001 0.67 0.88 

MN 63.819 2E-08 338.6517 0.001 0.974 0.23 191.25 0.001 0.71 0.93 

MS 1004.6 0.001 1843.475 0.001 133.1 0.01 2620.8 0.001 0.29 0.79 

MO 56.763 1E-07 389.6764 0.001 3.135 0.45 323.07 0.001 0.76 0.97 

MT 7.2453 0.057 335.9534 0.001 2.834 0.49 18.012 0.001 0.74 0.99 

NE 493.58 0.001 34399.47 0.001 0.575 0.3 7299.5 0.001 0.96 0.99 

NV 183.35 0.001 582.0498 0.001 20.26 0.01 797.73 0.001 0.91 0.99 

NH 424.86 0.001 4851403

1 

0.001 0.31 0.37 3676.9 0.001 0.69 0.99 

NJ 339.14 0.001 381.7374 0.001 2E-06 0.62 5532.2 0.001 0.77 0.99 

NM 3E+10 0.001 843.8355 0.001 28360 0.001 381.36 0.001 0.25 0.9 

NY 6960.8 0.001 1231.097 0.001 96.95 0.001 5758.5 0.001 0.67 0.8 

NC 28.76 0.0001 17.34944 0.003 0.005 0.65 18.219 0.001 0.89 0.99 

ND 191564 0.001 885.0282 0.001 1706 0.001 116.55 0.001 0.21 0.99 

OH 1364.2 0.001 105938.4 0.001 35826 0.001 3359.4 0.001 0.65 0.95 

OK 253.79 0.001 6984.599 0.001 8.924 0.01 19407 0.001 0.74 0.92 

OR 83.575 1E-10 856.3681 0.001 9.004 0.01 2180.9 0.001 0.88 0.99 

PA 12606 0.001 19056.32 0.001 7.274 0.16 77976 0.001 0.73 0.99 

RI 60.517 4E-08 9.295961 0.031 22.24 0.001 8.9891 0.03 0.99 0.99 

SC 2028.2 0.001 103306 0.001 583.6 0.001 19951 0.001 0.84 0.99 

SD 0.5591 0.597 1785.35 0.001 70.25 0.001 49.721 0.001 0.99 0.99 

TN 856.17 0.001 478.5049 0.001 68.01 0.001 569.76 0.001 0.45 0.85 

TX 9714 0.001 11243.15 0.001 6749 0.001 4555.9 0.001 0.44 0.66 

UT 11144 0.001 4567.066 0.001 1.789 0.66 29631 0.001 0.84 0.99 

VT 109.93 1E-13 162.5951 0.001 22.96 0.001 0.7019 0.55 0.99 0.99 

VA 368.36 0.001 87.10448 4E-11 0.24 0.4 111.95 0.001 0.93 0.99 

WA 36424 0.001 185.0243 0.001 3.132 0.45 2505.4 0.001 0.91 0.99 

WV 13086 0.001 4901.977 0.001 3450 0.001 2766.3 0.001 0.96 0.99 

WI 49.045 7E-07 267.538 0.001 1.843 0.65 144.88 0.001 0.88 0.99 

WY 43.738 3E-06 5085.835 0.001 0.006 0.58 887.56 0.001 0.7 0.99 
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