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ABSTRACT 

This paper describes the design of an adaptive direct control scheme for a class of nonlinear systems. The 

architecture is based on a fuzzy inference system (FIS) of Takagi Sugeno (TS) type to approximate a 

feedback linearization control law. The parameters of the consequent part of the fuzzy system are adapted 

and changed according to a law derived using Lyapunov stability theory. The asymptotic Lyapunov 

stability will be established with the tracking errors converging to a neighborhood of the origin. Finally, 

the adaptive direct fuzzy controller is applied in simulation to control three nonlinear systems. 
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1. INTRODUCTION 

Conventional PID controllers are still the most widely adopted method in industry for various 

control applications due to their simple structure, ease of design, and low cost in 

implementation. For example, in one part of the work of Maidi et al [1], a design of the control 

(of PID type) of the internal fluid temperature at the outlet of a parallel-flow heat exchanger by 

manipulating the inlet external fluid temperature is proposed. However, PID controllers might 

not perform satisfactorily if the system to be controlled is of highly nonlinear and/or uncertain 

nature, such as aeronautics, robotics. On the other hand, conventional fuzzy control has long 

been known for its ability to handle nonlinearities and uncertainties through use of fuzzy set 

theory. It is thus believed that by combining these two techniques together a better control 

system can be achieved [2]. Fuzzy logic controller (FLC) has proven to be a successful control 

approach to many complex nonlinear systems [3]-[4]. In other words, fuzzy control is useful in 

situations where there is no acceptable mathematical model for the plant and where there are 

experienced human operators who can satisfactorily control the plant and provide qualitative 

control rules in terms of vague and fuzzy sentences. Based on the differences of fuzzy control 

rules and their generation methods, approaches to fuzzy logic control can be roughly classified 

into the following categories [4]: i) Conventional fuzzy control; ii) fuzzy proportional-integral-

derivative (PID) control; iii) neuro-fuzzy control; iv) fuzzy-sliding mode control; v) adaptive 

fuzzy control; and vi) Takagi–Sugeno (T–S) model-based fuzzy control.  However, it should be 

noted that the overlapping among these categories is inevitable. For example, conventional 

fuzzy control can be adaptive, fuzzy PID control can be tuned by neuro-fuzzy systems, or 

neuro-fuzzy control is adaptive in nature in many cases. 
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       An adaptive controller is a controller that can modify its behaviour in response to changes 

in the dynamics of the process. An adaptive controller is formed by combining an on-line 

parameter estimator, which provides estimates of unknown parameters at each instant. In the 

direct adaptive control approach, the plant model is parameterized in terms of the controller 

parameters that are estimated directly without intermediate calculations involving plant 

parameter estimates. Whereas, when the plant parameters are estimated on-line and used to 

calculate the controller parameters, this approach is referred to as indirect adaptive control [5]-

[6]. Adaptive fuzzy controller is a system that combines adaptive control theory and fuzzy 

systems. Based on this, a great number of works on adaptive fuzzy control have been proposed 

[6]-[9] where the general approach is usually based on the feedback linearization technique [10], 

and the used fuzzy inference system is introduced for approximating part or all the components 

of the control law. This last nonlinear control theory or feedback linearization technique is 

based on coordinate transformations by which a class of nonlinear systems can be transformed 

into linear systems through feedback. Hence the word feedback linearization denoting such 

methodology. With the advent of feedback linearization, both adaptive and fuzzy adaptive 

control found their way into nonlinear control. The combination of adaptive control and 

feedback linearization applied to fight control can be found in [11].  

       In most cases however [8]-[9], [12]-[14], a complementary term, called a supervisory 

controller, is added to the output of the fuzzy inference system as a part of the control law in 

order to guarantee the global stability using the Lyapunov theory. When the system is operating 

within the prescribed range, the supervisory controller is turned off. It is activated only if the 

system tends to go beyond the prescribed tolerance.  

      The main theme of the research presented in this work is the development of an alternative 

feedback direct fuzzy adaptive controller for a class of affine in control nonlinear systems. The 

architecture employs a fuzzy system of Takagi-Sugeno (T-S) type tow on line approximate the 

ideal control law which can not be computed, because of the lack of system dynamics 

knowledge as we will see later.  To compare our work with related works, the authors is [8] 

used a fuzzy system of Mamdani type to approximate the control law instead of our (T-S) type 

and added the supervisory controller to the output of the fuzzy inference system as a part of the 

control law. In [14], the authors used a fuzzy inference system of T-S type to approximate the 

control law and added also the supervisory controller. Based on the initial proposal works [8], 

[14] we construct our feedback fuzzy direct adaptive control of Takagi-Sugeno (T-S) type for 

SISO nonlinear systems, and based on the universal function approximation property of fuzzy 

systems [4], [16], [17], we use only one part of control law without use of the supervisory 

controller (the second part) as done in [8] and [14]. As a comparison to [14], where the authors 

used six (6) fuzzy membership functions to define the state space, in our work we minimize the 

number of this membership functions to only two (2) for every input to the TS fuzzy controller, 

thus the number of rules is minimized where we have got good results as we will see in the 

simulation results section. The parameters of the consequent part of the fuzzy system are 

adapted and changed according to a law derived using Lyapunov stability theory where the 

asymptotic stability is established with the tracking errors converging to a neighborhood of the 

origin.  

       This work is organised as follows: in section 2, the problem formulation is introduced, in 

section 3, the stability analysis is developed and the adaptive laws are derived, in section 4, the 

adaptive direct fuzzy controller is applied in simulation to control three nonlinear systems, and 

section 5 concludes the paper. 

2. PROBLEM FORMULATION 

Consider a non linear system that can be transformed into the following form [10]: 
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,.),...,( )1()( ubxxxfx nn += −
&      xy =                                                         (1) 

 

Where    Ru∈ and Ry ∈  are the input and output of the system respectively, )(xf  is a non 

linear function and b  is a positive constant (this is a usual assumption [7], [15]. We assume that 

the state vector nTnT

n Rxxxxxxx ∈== − ),...,(),...,,( )1(

21
&  is available for measurement. The 

control objective is to force the output y to follow a given bounded reference signal )(tym
, 

under the constraints that all signals involved must be bounded. More specifically, determine a 

feedback control estimation ),( θxu of u , and all this is based on a fuzzy inference system FIS of 

Takagi-Sugeno TS type. Determine also an adaptive law using Lyapunov theory for adjusting 

the parameters vectorsθ  such that the closed-loop system must be globally stable in the sense 

that all variables must be uniformly bounded and the tracking error 
myye −=  should be as 

small as possible. Define now the error vector as  
 

nTn
Reeee ∈= −

),...,,(
)1(

&                                                                           (2) 

Step1: We choose u  to cancel the nonlinearities in a nonlinear system so that the closed-loop 

dynamics is in a linear form, and guarantees tracking convergence based on a feedback 

linearization theory. If the function )(xf  is known and assuming b  to be positive constant, 

then, from (1), the optimal control law is  
 

))(.(
1

xfv
b

u −=•                                                                                               (3) 

 

Substituting (3) into (1), we can cancel the nonlinearities and obtain the simple input-state 
relation        

 

vx n =)(
                                                                                                       (4) 

 

Step2: We choose the artificial input v  (an equivalent input) as a simple linear pole-placement 

controller eKyv
Tn

m .
)( −=   that provides guarantee about the stability of the overall system, 

with the vector 

 
nT

n RkkkK ∈= − ),...,,( 110
                                                                             (5) 

 

chosen so that the polynomial : 

 

  0....... 0

1

1 =+++ −
− ksks n

n

n
                                                                    (6) 

 

has all its roots strictly in the left-half complex plane. Then the optimal control law is: 
 

))(..(
1 )(

xfeKy
b

u
Tn

m −−=•                                                                            (7)  

based on 
myye −=   then  

 
)()()( n

m

nn
yye −=                                                                                          (8) 
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Substituting (7) into (1), using (8) and based on xy =  (see(1)) we have : 

 

0........ 0

)1(

1

)( =+++ −
− ekeke n

n

n                                                                   (9) 

 

This implies that 0)(lim =∞→ tet
(exponentially stable dynamics), which is the main objective of 

control.  Since )(xf  is unknown, the optimal control 
•

u of (7) can not be implemented. Our 

purpose is to design a TS system with output ),( θxu to approximate this optimal control law as 

will be described in the following section.  

 

3. THE TS FUZZY ADAPTIVE CONTROLLER 

A TS fuzzy inference system with linear consequences is composed of rules of the form: 
 

n

i

n

ii

i

i

nn

ii zazaauthenAiszandAiszifR +++= ......: 11011
 ,  

 

where 
1z …

nz are functions of state variables. 
i

jA  are fuzzy sets. If we take ]...[ 10

i

n

iiT

i aaa=θ  as 

the vector of adjustable parameters of the consequence of rule iR . The output of a TS fuzzy 
system can be put in the following form 

 

)(.)( xxu
T

c ξθ=                                                          (10) 

 

where ]...[ 21

T

n

TTT θθθθ =  contains all adjustable parameters and )(xξ  is a vector of fuzzy basis 

functions. It has been proven that (10) can approximate over a compact set ZΩ , any smooth 

function up to a given degree of accuracy [4], [16], [17]. It can thus be used to approximate the 

ideal control law •
u as given in (7). In the following, we derive the adaptation law for the 

parameters of the fuzzy TS system using Lyapunov synthesis approach. As mentioned in section 

2 (Problem formulation), since )(xf  is unknown, the optimal control •
u of (7) can not be 

implemented. Our purpose is then to design a fuzzy inference system FIS of TS type with 

output ),( θxu to approximate this optimal control law. Thus, we replace the control input u  in 

(1) by the FIS system with output ),( θxu , then (1) becomes:  

),(.)()( θxubxfx
n +=                                                                                    (11) 

 

Now adding and subtracting •ub.  to (11) we will have:  

 
•• −++= ububxubxfx

n ..),(.)()( θ                                                             (12) 

 
Substituting (7) into (12), we obtain: 

 

+−+= •ubxubxfx n .),(.)()( θ )(.)(
xfeKy

Tn

m −−                                         (13) 

 

thus: 

 

).),(.(.)()( •−+−=− uxubeKyx
Tn

m

n θ                                                         (14) 

 

Based on xy =  in (1) and using (2) and (8), equation (14) leads to the error system  
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)].),(.([. •−+= uxubbeAe cc θ&                                                                         (15) 

 

with 
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
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







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





−−−−−

=

−− 12210 ...
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nn

c
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A  ,  























=

1

0

.

0

0

cb                    (16) 

 

Let’s now study the stability of the system in order to develop an adaptive law to adjust the 

parameter vectorθ  of the fuzzy controller. Define the optimal parameter vector •
θ as the 

parameter vector which corresponds to the best (optimal) approximator term ),( 
•

θxu  of the 

optimal control signal •
u of (7). Based on this and by using an appropriate fuzzy approximator 

[4], [16], [17], we can write  

 

),(
•• ≈ θxuu .                                                                                                (17) 

 

Thus, the error equation (15) can be rewritten as  

 

))],(),(.([.
•

−+= θθ xuxubbeAe cc
&                                                              (18) 

 

Based on (10) we have  

 

)(.),( xxu
T ξθθ = ,  and  )(.),( xxu

T

ξθθ ••
=                                              (19)                                                                                

 

let  •
−= θθϕ   and using (19),  thus (18) becomes                                                                                                                                                     

 

)(.... xbbeAe
T

cc ξϕ+=&                                                                              (20)  

 

Define the Lyapunov function candidate:      

 

 ϕϕ
γ

TT b
ePeV

.2
..

2

1
+=                                                                              (21)     

 

Where γ  is a positive constant and P is a solution of the Lyapunov equation: 

 

QPAPA c

T

c −=+.   with   0>Q .                                                        (22) 

 

Differentiate V with respect to time: 

 

ϕϕ
γ

ϕϕ
γ

&&&&& TTTT bb
ePeePeV

22
..

2

1
..

2

1
+++=                                             (23) 

 

using (20) and  (22), we have : 
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ϕϕ
γ

ξϕ && TT

c

TT b
xbPbeeQeV ++−= )(.

2

1
                                               (24) 

 

Let  
nP   be the last column of P, and using (16) we obtain: 

 

n

T

c

T
PePbe =                                                                                          (25)          

 

 Substituting (25) into (24), we obtain   

 

])(.[
2

1
ϕξγϕ

γ
&& ++−= xPe

b
eQeV n

TTT
                                              (26) 

 

If we choose the adaptive law: 

 

)(. xPe n

T ξγθ −=&                                                                                      (27) 

 

This will result in  

 

0))(.( =+ ϕξγϕ
γ

&xPe
b

n

TT                                                                      (28) 

 

We use the fact that θθθϕ &&&& =−=
•

, because the optimal parameter vector •θ is constant and 

obviously its derivative is zero, i.e., 0=
•

θ& , then (26) becomes  

 

 eQeV
T

2

1
−=&                                                                                         (29) 

 

From (22) we have 0>Q ,    it follows that: 

 

0..
2

1
≤−= eQeV

T&                                                                               (30)  

 

According to Lyapunov stability theory, i.e., V& is negative definite (or semi-definite), we 

conclude that 0)(lim =∞→ tet , which is the objective. 

 

Remark 1: 

In the above developments, stability results are provided using Lyapunov theory without use of 

the compensatory (supervisory) control term in addition to the control law as usually done in 

most cases [8], [14] as mentioned in the introduction.  

 

Remark 2: 

To understand how to apply our proposed feedback fuzzy (T-S) adaptive controller scheme in 

the simulation section, we summarize the leading steps in the following. 
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Step 1. Off line computations 

- Specify the parameters: 0k ,...., 1−nk , such that  all roots of  0....... 0

1

1 =+++ −
− ksks n

n

n
                                               

are in the open left-half plane.  

- Specify a positive definite nxn  matrix Q . 

- Solve the Lyapunov equation (22) to obtain a symmetric matrix 0>P . 

- Specify the premise parameters of the (T-S) fuzzy controller, which are the centres, the widths 

and the shape of each basis function (membership functions) for each input to the (T-S) 

controller. 

- give an initial value to any constant to be initialized, for example the parameters of the 

consequent part of the (T-S) controller and so on.  

  

Step 2. On-line adaptation 

- Apply the feedback control (10) to the plant (1), where cu  in (10) is the output of the (T-S) 

fuzzy system (controller). 

- Use the adaptive law (27) to adjust the connections weights θ  of the (T-S) controller. 

 

4. SIMULATION RESULTS 

4.1. Example 1 

In this example, we apply the direct adaptive fuzzy controller to regulate to the origin an 

unstable system where the dynamic equation as given in [8], [14] is as follows: 

 

)(
1

1
)(

)(

)(

tu
e

e
tx

tx

tx

+
+

−
=

−

−

&                                                                               (31) 

 

From (31), if the input 0)( =tu , we have: )(

)(

)(
tx

tx

e1

e1
tx

−

−

+

−
=&  > 0  for 0)( >tx , and 

)(

)(

)(
tx

tx

e1

e1
tx

−

−

+

−
=& < 0  for 0tx <)( .  Based on this, we can confirm that the plant (31) is 

unstable. xy =  is the output of the system in (31). The reference signal will be 0=my .  

According to the steps of the design procedure given in remark 2, the parameters are chosen as 

8.0=γ , step size 2.0=dt , and 5.70 == kk  in order to have all roots of  00 =+ ks  in the left-

half plane. We chose Q  in (22) as 05 >=Q . Then by solving (22) we can obtain 3333.0=P . 

The (T-S) fuzzy controller has three inputs )]([][ 321 ekxxxzzzz T

mm −== &  with 

][ mxxe −= .  All the three inputs to the (T-S) fuzzy controller are fuzzified with two fuzzy 

sets and similar Gaussian membership functions given by: 

 

).2/)(exp()( 2

NNiiN czz σµ −−=                                                    (32)                                        

 ).2/)(exp()( 2

PPiiP czz σµ −−=                                                  (33) 

 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.1, No.1, Feb 2011 

21 

 

where 
iz  stands for the input number i . The widths of the membership functions are 

7.0== NP σσ  for the first and the second input 1z , 2z  and are 2.0== NP σσ  for the third 

input
3z . The centres are set to 1−=Nc , 1=Pc  for the three inputs 1z , 2z  and 

3z . 

This gives eight rules of the form: 

 
iR : if 1z  is 

i
A1  and 2z  is 

i
A2    and 

3z is 
i

3A   

then   
332211 zazazau iii

i ++= , with  1=i to  8                                        (34)  

 

We have 24 parameters to tune. All parameters (
i

a1 ,
i

a2  and 
i

a3 ) are initialised to zero. The 

initial conditions are 1)0( =x . Figure 1 shows the system state )(tx  and the desired position 

)(txm . We see from this Figure 1 that the proposed fuzzy direct adaptive control could lead 

rapidly the plant to the origin, i.e., 0)()( == txty mm
. Figure 2 shows the corresponding control 

input )(tu . Clearly both the state and the control signal are bounded. Compared with the result 

in [8], [14], a good improvement on our system performance is observed, especially the 

response time (1.6 sec in our system and  8 sec in [8] and 11 sec in [14] ).    

 

          

 
Figure 1. The system state 
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 Figure 2. The control input. 

 
 

 

 

4.2. Example 2 

In this example, we consider a two dimensional nonlinear system controlled in [18]: 

 

21 xx =&  

).(.
.

).sin(
.

.

)..4sin(
.4

2

2

2

1

1
2 tub

x

x

x

x
x +
















=

π

π

π

π
&                                              (35) 

 

We apply the direct adaptive fuzzy controller to control the system state )(1 tx  to track a desired 

trajectory which is specified as the output of a second order with a bandwidth driven by a unity 

amplitude, 0.5 mean, square wave (see Figure 3). The parameters of the controller are chosen as 

9.0=γ , step size 01.0=dt , Since the degree of the system is 2=n  the error polynomial is 

0. 01

2 =++ ksks , we set 450 =k  and 51 =k , so that all their roots are in the open left-half plane. 

We choose 0)125,125( >= diagQ , then by solving (22) we can obtain :    

 









=

12.7778   1.3889

1.3889    581.9444
P                                                                     (36)                                   

 

The structure of the TS fuzzy controller is exactly the same as in the previous example. The 

widths of the membership functions are 5.1== NP σσ  for the first, the second and the third 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.1, No.1, Feb 2011 

23 

 

input 
11 xz = , 12 mxz =  and ekxz T

m −= 13
& . The centres are set to 1−=Nc , 1=Pc  for 1z ,  

2z , and  5.0−=Nc , 5.0=Pc  for 3z . All initial conditions are set to zero. We assume that the 

control gain b  is taken as a non unity gain ( 2=b ). From above, it is clear that b  is bounded. 

Figure 3 shows that the system state )(1 tx  (in continuous) could track the desired trajectory 

)()( txty mm =  (in dashed) perfectly. Figure 4 and Figure 5 show respectively the 

corresponding velocity of the system )(2 tx  (in continuous) with the desired velocity )(tym
&  (in 

dashed) and the control input )(tu . From these Figures, we can confirm the smooth property of 

our fuzzy adaptive control system without the use of the supervisory term in the control law 

under the assumption that the control gain is bounded.  

 

 

 
              

                   
                              Figure 3.  The system state (____) and the desired trajectory (---) 
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                      Figure 4.  The velocity of the system (____) with the desired velocity (---) 
 

                    

 
                                         Figure 5.  The corresponding control input 
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4.3. Example 3 

In this example, we apply the performance of the proposed fuzzy adaptive system to control the 

level in a Three Tank System by simulation and compare its behaviour to a proportional integral 

PI controller by simulation. The Three-Tank System [2], [19], [20] is a benchmark process 

widely used for modelling and control strategies nonlinear systems. The nonlinear controlled 

system consists of three plexiglass cylinders T1, T2 and T3 with identical cross-sectional area A 

which are interconnected in series by two connecting pipes. The liquid leaving T2 is collected in 

a reservoir from which pumps 1 and 2 (driven by DC motors) supply tanks T1 and T2 with flow 

rates Q1 and Q2. All three tanks are equipped with piezo-resistive pressure transducer for 

measuring the level of the liquid ( 1L , 2L and 3L  in cm). The tanks are coupled by two 

connecting cylindrical pipes with a cross section S  and an outflow coefficient 31 µµ = . The 

nominal outflow is located at tank T2, it also has a circular cross section of S and an outflow 

coefficient 2µ . The connecting pipes and the tanks are additionally equipped with manually 

adjustable valves and outlets for the purpose of simulating clogs as well as leaks. In this 

example, we will consider the Three Tank System as a SISO system, i.e., we will be interested 

to control the level 2L  in tank T2 by the flow rate Q2. The dynamic equation describing the 

SISO Three Tank System [2], [19] is as follows: 

 

222
2 2gLSQ

dt

dL
A µ−=                                                                     (37) 

Where, )(5.0 2
cmS = , 4896.02 =µ , )(154 2

cmA = , )/(100*81.9 2
scmg = is the 

universal gravitation and 21 Lxy ==  is the level in tank T2. The reference signal will 

be 21 Lmyxm m == . The parameters are chosen as 008.0=γ , step size 1=dt , and 

5.10 == kk  in order to have all roots of  00 =+ ks  in the left-half plane. We chose Q  in (22) 

as 02 >=Q . Then by solving (22) we can obtain 6667.0=P . The TS fuzzy controller has 

three inputs )]([][ 222321 ekmLLmLzzzz
T−== &  with ][ 22 LmLe −= .  All the three 

inputs to the TS fuzzy controller are fuzzified with two fuzzy sets and similar Gaussian 

membership functions given by: 

).2/)(exp()( 2

NNiiN czz σµ −−=                                                      (38)                                        

 ).2/)(exp()( 2

PPiiP czz σµ −−=                                     (39) 

where iz  stands for the input number i .  The widths of the membership functions are 

6== NP σσ  for the first and the second input 21 Lz = , 22 Lmz =  and are 5.3== NP σσ  

for the third input ekmLz
T−= 23

& . The centres are set to 10=Nc , 20=Pc  for 1z and 2z , 

and  1−=Nc , 3=Pc  for 3z . This gives eight rules of the form: 

 
iR :   if 1z  is 

i
A1  and 2z  is 

i
A2    and 

3z is 
i

3A    

                    then   
332211 zazazau

iii

i ++= , with  1=i to  8                 (40) 

                                                                                                                                      

We have 24 parameters to tune. All parameters (
i

a1 ,
i

a2 and 
i

a3 ) are initialised to zero. The initial 

conditions are 0)0(2 =L . The used PI parameters are 5.7=pk  (proportional action) and 

5.6=iT  (integral action). Simulation results are shown in Figures 6 and 7, where the 

corresponding results to the TS controller are in dotted, while those corresponding to the PI 
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controller are in continuous and the reference signal is in dashed. Figure 6 shows the evolution 

of the level 2L  in tank T2 driven by the TS controller and by the PI controller. Figure 7 shows 

the corresponding control inputs respectively for the TS and for the PI controller. In the first 

time interval ( st 9000 <≤ ) of Figure 6, we can see that the system output (level in tank T2) 

with the TS controller has got the reference rapidly (less response time than with the PI 

controller), and also has less overshoot at every reference variation than with the PI controller.  

 

      In the same time when controlling level 2L  in tank T2, we check the ability of our controller 

against perturbations.  So, we create a clogging, i.e., we close the nominal outflow valve of tank 

T2 with degree of %50 at time st 900= . In other words, in tank T2, the cross section S  of 

the nominal outflow valve will take the value )(2/5.0 2
cmS =  at st 900=  instead of the 

nominal value )(5.0 2
cmS = . Simulation results are shown in the remaining (last) time 

interval ( st 1200900 ≤≤ ) of the same previous Figures 6 and 7. Clearly, we can see that 

disturbances are suppressed rapidly with less amplitude for the TS controller than with the PI 

controller. i.e., the disturbances are suppressed at around st 970=  with less amplitude for the TS 

fuzzy controller, and at around st 1040=  for PI controller. Corresponding control inputs for the 

TS fuzzy controller and for the PI controller are also shown in the last time interval 

( st 1200900 ≤≤ ) of Figure 7. As a concluding remarks, from these figures, we can confirm that 

the proposed TS controller was able to stabilise the level of the liquid in tank T2 at each interval 

and also was able to eliminate disturbances introduced through the outflow pipe of tank T2 on a 

better way than with the PI controller, confirming also the robust smoothing property of the TS 

system without use of the supervisory term in the control law as discussed in the introduction.  

        

 
Figures 6.  The Level in tank T2 with the TS controller (…..) and with the PI controller ( ____) 
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            Figures  7. The control signals of the TS controller (…..) and the PI controller ( ____) 
 

 

 

5. CONCLUSIONS  

In this paper, we developed a stable fuzzy direct adaptive control scheme for a class of unknown 

nonlinear systems based on feedback linearization theory. We used for this purpose an on-line 

Takagi-Sugeno (T-S) system to approximate the ideal control law. The consequent parameters 

of the used fuzzy controller are adapted and changed according to a law derived using 

Lyapunov stability theory. The proposed method could guarantee the stability of the resulting 

closed-loop system in the sense that all signals involved were uniformly bounded. All this was 

achieved without the use of the supervisory term in the control law. Finally, we used the direct 

adaptive fuzzy system to control an unstable nonlinear system (Example 1), a two dimensional 

nonlinear system (Example 2) and the level in a Three Thank System (Example 3). The results 

were encouraging with comparison to other related works confirming the smoothing capability 

of our feedback fuzzy adaptive control architecture. 
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