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ABSTRACT 

This paper investigates the global chaos synchronization of identical hyperchaotic Bao systems (Bao and 

Liu, 2008), identical hyperchaotic Xu systems (Xu, Cai and Zheng, 2009) and non-identical hyperchaotic 

Bao and hyperchaotic Xu systems. Active nonlinear control is the method adopted for the global chaos 

synchronization of the hyperchaotic systems addressed in this paper and the synchronization results have 

been established using Lyapunov stability theory. Since the Lyapunov exponents are not required for 

these calculations, the active nonlinear control method is very effective and convenient to achieve global 

chaos synchronization of identical and non-identical hyperchaotic Bao and hyperchaotic Xu systems. 

Numerical simulations have been provided to demonstrate the effectiveness of the synchronization results 

for the hyperchaotic Cao and hyperchaotic Xu systems. 
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1. INTRODUCTION 

Chaos is a very interesting and complex nonlinear phenomenon. The first chaotic attractor was 

discovered by Lorenz ([1], 1963), when he studied the atmospheric convection. Since then, 

chaos has been received extensive investigations and chaos phenomenon has been observed in a 

variety of fields including physical systems [2], chemical systems [3], ecological systems [4], 

secure communications [5-6], etc. 

The seminal work on chaos synchronization problem was published by Pecora and Carroll ([7], 

1990). From then on, chaos synchronization has been extensively and intensively studied in the 

last three decades [8-30].   

In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

is used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of global chaos synchronization is to 

use the output of the master system to control the slave system so that the states of the slave 

system have the same amplitude but opposite signs as the states of the master system 

asymptotically. In other words, the differences of the states of the master and slave systems are 

designed to converge to zero asymptotically, when global chaos synchronization occurs. 
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In the recent years, various schemes have been deployed for chaos synchronization such as PC 

method [2], OGY method [8], active control [9-12], adaptive control [13-15], backstepping 

design [16], sampled-data feedback [17], sliding mode control [18-20], etc. Recently, active 

control method has been applied to achieve anti-synchronization of two identical chaotic 

systems [21-22]. 

Hyperchaotic system is usually defined as a chaotic system with at least two positive Lyapunov 

exponents, implying that its dynamics are expanded in several different directions 

simultaneously. Thus, the hyperchaotic systems have more complex dynamical behaviour which 

can be used to improve the security of a chaotic communication system. Hence, the theoretical 

design and circuit realization of various hyperchaotic signals have become important research 

topics [23-27]. 

In this paper, we use active control to derive new results for the global chaos synchronization of 

identical hyperchaotic Bao systems ([28], 2008), identical hyperchaotic Xu systems ([29], 2009) 

and non-identical hyperchaotic Bao and hyperchaotic Xu systems.  

This paper is organized as follows. In Section 2, we describe the problem statement and our 

methodology using Lyapunov stability theory. In Section 3, we discuss the global chaos 

synchronization of identical hyperchaotic Bao systems (2008) using active nonlinear control. In 

Section 4, we discuss the global chaos synchronization of identical hyperchaotic Xu systems 

(2009) using active nonlinear control. In Section 5, we discuss the global chaos synchronization 

of hyperchaotic Bao and hyperchaotic Xu systems using active nonlinear control. In Section 6, 

we summarize the main results obtained in this paper. 

2. PROBLEM STATEMENT AND OUR METHODOLOGY 

As the master or drive system, we consider the chaotic system described by   

  ( ),x Ax f x= +&          (1) 

where 
n

x ∈R is the state vector, A is the n n× matrix of system parameters and : n n
f →R R  

is the nonlinear part of the system.   

As the slave or response system, we consider the following chaotic system described by 

  ( ) ,y By g y u= + +&         (2) 

where 
n

y ∈R is the state of the slave system, B is the n n× matrix of system parameters, 

: n n
g →R R is the nonlinear part of the system and u is the active controller to be designed. 

If A B= and ,f g= then x and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems. 

For the global chaos synchronization of the chaotic systems (1) and (2) using active control, we 

design a state feedback controller ,u which synchronizes the states of the master system (1) and 

the slave system (2) for all initial conditions (0), (0) .n
x y ∈R  
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Thus, we define the synchronization error as 

,e y x= −          (3) 

Hence, the error dynamics is obtained as 

( ) ( )e By Ax g y f x u= − + − +&        (4) 

Thus, the global chaos synchronization problem is essentially to find a feedback controller 

(active controller) u so as to stabilize the error dynamics (4) for all initial conditions, i.e. 

lim ( ) 0,
t

e t
→∞

=  for all (0) n
e ∈R       (5) 

We use the Lyapunov stability theory as our methodology. We take as a candidate Lyapunov 

function 

( ) ,T
V e e Pe=          (6) 

where P is a positive definite matrix. Note that : n
V R→R is a positive definite function by 

construction. 

If we find a feedback controller u so that 

( ) ,T
V e e Qe= −&          (7) 

where Q is a positive definite matrix, then : n
V →& R R is a negative definite function. 

Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentially stable.  

3.  SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC BAO SYSTEMS 

In this section, we discuss the synchronization of identical hyperchaotic Bao systems ([28], 

2008). 

As the master system, we consider the hyperchaotic Bao system described by 

     

1 2 1 4

2 2 1 3

3 1 2 3

4 1 2 3

( )x a x x x

x cx x x

x x x bx

x kx dx x

= − +

= −

= −

= +

&

&

&

&

               (8) 

where 1 2 3 4, , ,x x x x are the state variables and , , , ,a b c d k are positive constants. 
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As the slave system, we consider the controlled hyperchaotic Bao dynamics described by 

      

1 2 1 4 1

2 2 1 3 2

3 1 2 3 3

4 1 2 3 4

( )y a y y y u

y cy y y u

y y y by u

y ky dy y u

= − + +

= − +

= − +

= + +

&

&

&

&

          (9) 

where 
1 2 3 4, , ,y y y y are the state variables and 

1 2 3 4, , ,u u u u are the active controls. 

The four-dimensional Bao system (11) is hyperchaotic when 

36,   3,   20,   0.1a b c d= = = =   and  21.k =  

The hyperchaotic portrait of the Bao system is shown in Figure 1. 

 

Figure 1. State Orbits of the Hyperchaotic Bao System 

The synchronization error is defined as 

        ,   ( 1, 2,3,4)i i ie y x i= − =              (10) 
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A simple calculation gives the error dynamics  

       

1 2 1 4 1

2 2 1 3 1 3 2

3 3 1 2 1 2 3

4 1 2 3 2 3 4

( )

( )

e a e e e u

e ce y y x x u

e be y y x x u

e ke d y y x x u

= − + +

= − + +

= − + − +

= + − +

&

&

&

&

            (11) 

We consider the active nonlinear controller defined by 

          

1 2 4

2 2 1 3 1 3

3 1 2 1 2

4 1 4 2 3 2 3

( 1)

( )

u ae e

u c e y y x x

u y y x x

u ke e d y y x x

= − −

= − + + −

= − +

= − − − −

                          (12) 

Substitution of (12) into (11) yields the linear error dynamics 

  
1 1 2 2 3 3 4 4,   ,   ,   e ae e e e be e e= − = − = − = −& & & &            (13) 

We consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( ) ,

2 2

T
V e e e e e e e= = + + +             (14) 

which is a positive definite function on 4.R  

Differentiating (14) along the trajectories of the error system (13), we get 

       2 2 2 2

1 2 3 4( ) ,V e ae e be e= − − − −&          (15) 

which is a negative definite function on 4
R since a and  b  are positive constants. 

Thus, by Lyapunov stability theory [25], the error dynamics (13) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 1. The identical hyperchaotic Bao systems (8) and (9) are globally and 

exponentially synchronized with the active nonlinear controller (12).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method with initial time-

step 610h
−= is used to solve the two systems of differential equations (8) and (9) with 

the nonlinear controller (12). 

The parameters of the identical hyperchaotic Bao systems (8) and (9) are selected as 

    36,   3,   20,   0.1a b c d= = = =   and  21.k =          
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The initial values for the master system (8) are taken as 

       1 2 3 4(0) 5,   (0) 8,   (0) 12,   (0) 21x x x x= = = =  

and the initial values for the slave system (9) are taken as 

      1 2 3 4(0) 14,   (0) 20,   (0) 18,   (0) 12y y y y= = = =  

Figure 2 depicts the synchronization of the identical hyperchaotic Bao systems (8) and (9). 

 

Figure 2.  Synchronization of Identical Hyperchaotic Bao Systems 

4. SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC XU SYSTEMS 

In this section, we discuss the synchronization of identical hyperchaotic Xu systems ([29], 

2009). 

As the master system, we consider the hyperchaotic Xu system described by 

     

1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x x x x

x x rx x

x x lx x

x x x mx

α

β

γ

= − +

= +

= − −

= −

&

&

&

&

               (16) 

where 1 2 3 4, , ,x x x x are the state variables and , , , , ,r l mα β γ are positive constants. 
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As the slave system, we consider the controlled hyperchaotic Xu dynamics described by 

      

1 2 1 4 1

2 1 1 3 2

3 3 1 2 3

4 1 3 2 4

( )y y y y u

y y ry y u

y y ly y u

y y y my u

α

β

γ

= − + +

= + +

= − − +

= − +

          (17) 

where 
1 2 3 4, , ,y y y y are the state variables and 

1 2 3 4, , ,u u u u are the active controls. 

The four-dimensional Xu system (16) is hyperchaotic when 

 10,   40,   2.5,   16,   1r lα β γ= = = = =  and  2.m =  

The hyperchaotic portrait of the Xu system is shown in Figure 3. 

 

Figure 3. State Orbits of the Hyperchaotic Xu System 

The synchronization error is defined as 

        ,   ( 1, 2,3, 4)i i ie y x i= − =              (18) 
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A simple calculation gives the error dynamics  

       

1 2 1 4 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

4 2 1 3 1 3 4

( )

( )

( )

e e e e u

e e r y y x x u

e e l y y x x u

e me y y x x u

α

β

γ

= − + +

= + − +

= − − − +

= − + − +

&

&

&

&

            (19) 

We consider the active nonlinear controller defined by 

          

1 2 4

2 1 2 1 3 1 3

3 1 2 1 2

4 2 4 1 3 1 3

( )

( )

u e e

u e e r y y x x

u l y y x x

u me e y y x x

α

β

= − −

= − − − −

= −

= − − +

                          (20) 

Substitution of (20) into (19) yields the linear error dynamics 

  
1 1 2 2 3 3 4 4,   ,   ,   e e e e e e e eα γ= − = − = − = −& & & &            (21) 

We consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( ) ,

2 2

T
V e e e e e e e= = + + +             (22) 

which is a positive definite function on 4.R  

Differentiating (22) along the trajectories of the error system (21), we get 

       2 2 2 2

1 2 3 4( ) ,V e e e e eα γ= − − − −&          (23) 

which is a negative definite function on 4
R since α and  γ  are positive constants. 

Thus, by Lyapunov stability theory [25], the error dynamics (21) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 2. The identical hyperchaotic Xu systems (16) and (17) are globally and 

exponentially synchronized with the active nonlinear controller (20).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method with initial time-

step 610h
−= is used to solve the two systems of differential equations (16) and (17) with 

the nonlinear controller (20). 

The parameters of the identical hyperchaotic Xu systems (16) and (17) are selected as 

  10,   40,   2.5,   16,   1r lα β γ= = = = =  and  2.m =  
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The initial values for the master system (16) are taken as 

       1 2 3 4(0) 12,   (0) 14,   (0) 7,   (0) 18x x x x= = = =  

and the initial values for the slave system (17) are taken as 

      1 2 3 4(0) 26,   (0) 10,   (0) 18,   (0) 24y y y y= = = =  

Figure 4 depicts the synchronization of the identical hyperchaotic Xu systems (16) and (17). 

 

Figure 2.  Synchronization of Identical Hyperchaotic Xu Systems 
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5. SYNCHRONIZATION OF NON-IDENTICAL HYPERCHAOTIC BAO AND 

HYPERCHAOTIC XU SYSTEMS 

In this section, we consider the global chaos synchronization of non-identical hyperchaotic Bao 

system ([28], 2008) and hyperchaotic Xu system ([29], 2009). 

As the master system, we consider the hyperchaotic Bao system described by 

      

1 2 1 4

2 2 1 3

3 1 2 3

4 1 2 3

( )x a x x x

x cx x x

x x x bx

x kx dx x

= − +

= −

= −

= +

&

&

&

&

               (24) 

where 
1 2 3 4, , ,x x x x are the state variables and  , , , ,a b c d k are positive constants. 

As the slave system, we consider the controlled hyperchaotic Xu dynamics described by 

      

1 2 1 4 1

2 1 1 3 2

3 3 1 2 3

4 1 3 2 4

( )y y y y u

y y ry y u

y y ly y u

y y y my u

α

β

γ

= − + +

= + +

= − − +

= − +

          (25) 

where 1 2 3 4, , ,y y y y are the state variables, , , , , ,r l mα β γ  are positive constants and 

1 2 3 4, , ,u u u u are the active controls. 

The synchronization error is defined as 

        ,   ( 1, 2,3, 4)i i ie y x i= − =              (26) 

A simple calculation gives the error dynamics  

        

1 2 1 4 2 1 1

2 1 1 2 1 3 1 3 2

3 3 3 1 2 1 2 3

4 2 1 2 1 3 2 3 4

( ) ( )( )

( )

e e e e a x x u

e e x cx ry y x x u

e e b x ly y x x u

e me kx mx y y dx x u

α α

β β

γ γ

= − + + − − +

= + − + + +

= − + − − − +

= − − − + − +

&

&

&

&

            (27) 

We consider the active nonlinear controller defined by 

          

1 2 4 2 1

2 1 2 1 2 1 3 1 3

3 3 1 2 1 2

4 2 4 1 2 1 3 2 3

( )( )

( )

u e e a x x

u e e x cx ry y x x

u b x ly y x x

u me e kx mx y y dx x

α α

β β

γ

= − − − − −

= − − − + − −

= − − + +

= − + + − +

                         (28) 



International Journal of Information Technology Convergence and Services (IJITCS) Vol.1, No.6, December 2011 

11 

 

 

 

Substitution of (28) into (27) yields the linear error dynamics 

  1 1 2 2 3 3 4 4,   ,   ,   e e e e e e e eα γ= − = − = − = −& & & &            (29) 

We consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( ) ,

2 2

T
V e e e e e e e= = + + +             (30) 

which is a positive definite function on 4.R  

Differentiating (30) along the trajectories of the error system (29), we get 

       2 2 2 2

1 2 3 4( ) ,V e e e e eα γ= − − − −&          (31) 

which is a negative definite function on 4
R since α and  γ  are positive constants. 

Thus, by Lyapunov stability theory [25], the error dynamics (29) is globally 

exponentially stable. Hence, we obtain the following result. 

Theorem 3. The non-identical hyperchaotic Bao system (24) and hyperchaotic Xu 

system (25) are globally and exponentially synchronized with the active nonlinear 

controller (28).    � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method with initial time-

step 610h
−= is used to solve the two systems of differential equations (24) and (25) with 

the nonlinear controller (28). 

The parameters of the identical hyperchaotic Bao system (24) are selected as 

 36,   3,   20,   0.1a b c d= = = =   and  21.k =         

The parameters of the identical hyperchaotic Xu system (25) are selected as 

  10,   40,   2.5,   16,   1r lα β γ= = = = =  and  2.m =  

The initial values for the master system (24) are taken as 

       1 2 3 4(0) 25,   (0) 6,   (0) 9,   (0) 14x x x x= = = =  

and the initial values for the slave system (25) are taken as 

      1 2 3 4(0) 12,   (0) 18,   (0) 10,   (0) 29y y y y= = = =  

Figure 5 depicts the synchronization of the non-identical hyperchaotic systems, viz. 

hyperchaotic Bao system (24) and hyperchaotic Xu system (25). 
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Figure 5.  Synchronization of Hyperchaotic Bao and Hyperchaotic Xu Systems 

6. CONCLUSIONS 

It is well-known that the hyperchaotic systems are chaotic systems with at least two positive 

Lyapunov exponents and that the hyperchaotic systems have more complex dynamical 

behaviour than chaotic systems. Thus, the hyperchaotic systems can be used to improve the 

security of a chaotic communication system. In this paper, using the active control method, new 

results have been derived for the global chaos synchronization for the identical hyperchaotic 

Bao systems (2008), identical hyperchaotic Xu systems (2009) and non-identical hyperchaotic 

Bao and hyperchaotic Xu systems. The global synchronization results derived in this paper have 

been proved using Lyapunov stability theory. Since the Lyapunov exponents are not required 

for these calculations, the active control method is very convenient and efficient for the global 

chaos synchronization of identical and non-identical hyperchaotic Bao and hyperchaotic Xu 

systems. Numerical simulation results have been presented to illustrate the global chaos 

synchronization results derived in this paper.  
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