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ABSTRACT 

The task scheduling is a key process in large-scale distributed systems like cloud computing infrastructures 

which can have much impressed on system performance. This problem is referred to as a NP-hard problem 

because of some reasons such as heterogeneous and dynamic features and dependencies among the 

requests. Here, we proposed a bi-objective method called DWSGA to obtain a proper solution for 

allocating the requests on resources. The purpose of this algorithm is to earn the response quickly, with 

some goal-oriented operations. At first, it makes a good initial population by a special way that uses a bi-

directional tasks prioritization. Then the algorithm moves to get the most appropriate possible solution in a 

conscious manner by focus on optimizing the makespan, and considering a good distribution of workload 

on resources by using efficient parameters in the mentioned systems. Here, the experiments indicate that 

the DWSGA amends the results when the numbers of tasks are increased in application graph, in order to 

mentioned objectives. The results are compared with other studied algorithms. 
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1.INTRODUCTION 
The cloud computing system is a distributed system which offers the utility computing vision 
with some attractive qualities such as sharing the many dynamic resources by virtualization 
technology in order to meet the requirements of widely varying Requests.  
 
Generally, task scheduling process is an important issue in distributed systems because the 
requests should be mapped on resources in an efficient manner by considering the environment 
properties. Because of heterogeneous resources and many numbers of tasks with different 
characteristics in these systems, this issue is known as a NP-hard (Non-deterministic Polynomial-
time hard) problem. Since a good scheduling method would impress on the system performance 
and there is no direct method to find an optimal solution in polynomial time, the scheduling 
process must rely on finding the best solution within possibilities.  
 
Many methods are proposed for this problem. Each method often focuses on main objectives such 
as the completion time of all tasks (makespan), or distribution of workload on resources. For 
example, many fundamental heuristic methods like greedy (First-fit) [1] and Round-Robin (RR) 
[2], Min-min, Max-min or Sufferage [3] try to achieve the makespan. Some different dynamic list 
scheduling methods are presented for heterogeneous distributed systems [4] which often do not 
consider the latency among.  
 
A number of meta-heuristic based methods were presented to solve NP problems such as: particle 
swarm optimization (PSO) [5], tabu search (TS) [6], simulated annealing (SA) [7], genetic 
algorithm (GA) etc. In contrast, GA by [8] [9] [10] are known to give good results in several 
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optimization domains and provide robust search techniques that allow a high-quality solution to 
be obtained from a large search space and parallel search in polynomial time by applying the 
principle of evolution. It could present several solutions to evaluate the efficient parameters.  
 
Some of GA based proposed scheduling algorithms exert random methods in its steps like 
providing the initial population or ordering tasks in the same level in the workflow[11], and some 
of them use a simple workflow graph. 
 
Already, we proposed another hybrid meta-heuristic workflow scheduling method by considering 
response time and reliability in heterogeneous distributed systems [12]. Here, we suggest a 
dynamic bi-objective method (DWSGA) in order to find a proper scheduling solution with 
computational applications according to cloud system environments. This algorithm tries to 
reduce the number of GA operation iterations by making an optimized initial population, in order 
to appropriate workload diffusion on resources, simultaneously. 
 
The rest of this paper is organized as follows: the related works are discussed in section 2, in 
section 3 the problem definition is described, and in section 4 the proposed algorithm is 
presented. The simulation result of DWSGA is presented in section 5, and the conclusion in 
section 6 would end the article. 
 

2. RELATED WORKS 

 
Some non-preemptive methods such as First-Fit and Round-Robin are used in some cloud 
systems such as Eucalyptus. Task starvation is a major problem in these methods that causes non-
optimal usage and workload balancing of resources. 
Also some other heuristic proposed algorithms in distributed systems, like the ones proposed by 
[13], [15], [15] and [16] by considering with Grid and Cloud systems, focus on makespan and the 
workload distribution. Since many parameters influence the data transfer speed rate, such as 
distance, noise etc, so there is communication latency among resources. But the mentioned 
methods do not consider the communication latency. A duplication task method is adopted in 
[17]. Because of the high-workload and delay in these systems, task duplication is not an efficient 
method because it increases the makespan of other application.  

GVNS algorithm has proposed for heterogeneous systems [18]. This method combines the GA 
and variable neighbourhood search (VNS) algorithms. At first some solutions are produced in 
normal GA by considering a task priority similar to the HEFT. Then using two steps in VNS 
phase (two novel neighbourhood structures) predecessor for each task will be selected. It should 
be noted that, in the step one a task on the highest computation workload resource is chosen 
randomly, and will be reallocated to another randomly selected resource; then in second step, for 
all tasks on the highest communication workload resource, the VNS randomly selects a 
predecessor for each task, and reallocates the predecessors to the mentioned resource. Although it 
can be occurred a good selection in first phase, the second phase maybe cancels it. The GVNS 
tries to obtain a near minimum completion time, but here the bandwidth of the links is dedicated 
and the runtime of algorithm is long.  

DCLS algorithm [19] is proposed for cloud computing systems. It is a dynamic list based 
scheduling that focuses on reducing the makespan. For each application, the DCLS lists the tasks 
by considering the graph topology without being influenced by the other parameters. Then the 
tasks will be allocated on resources by the order list. The task on the top of this list will be 
assigned to the resource that can finish the task at the earliest time. It continues until unassigned 
tasks are entered (as dynamic method). Here the communication cost of resources is considered.  
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In this approach we seek to obtain a suitable task scheduling with respect to the fully connected 
resource graph with different communication to computation ratios. This method makes initial 
population by merging the optimal characteristics in Best-Fit and Round-Robin and bi-objective 
resource allocation methods with a different GA stages such as mutation and selection generation. 
 

3. PROBLEM DEFINITION 

 
In cloud system environments, there is a data-center unit which is undertaken to collect and save 
the information of resources and tasks. Some static and dynamic key information such as: 
physical and virtual memory storage space, disk storage space, the load average of the resource 
node, the number of the running tasks, the current running tasks’ number of threads, and the 
status of these tasks, CPU usage, etc, are collected. These data are updated frequently, in real-
time [20]. 
 
Some static and dynamic information that impress for scheduling more than the other could be 
used here. Since a lot of tasks are received instantaneously, the workload and other dynamic 
information influence the selection of a good candidate resource for task. 
 
An application is a workflow that contains a set of tasks that are connected to each other by 
precedence constraint. Each task will be executed and give an output dataset. This dataset is then 
sent to the next task as defined by the structure of the workflow. Generally, a workflow has the 
structure of a DAG (Directed Acyclic Graph): a graph where the nodes are the tasks and the 
edges are the precedence constraints [21]. 
 
According to many workflow projects, the workflow application structures can be categorized as 
either balanced-structure or unbalanced-structure [9]. In the balanced-structure workflows, nodes 
are related together considering certain level, but the unbalanced-structure application is complex, 
like [22] and has more relation among nodes where the level of some nodes is not certain (see 
Figure 1). When the size of the workflow is increased the processing time may become very long. 
Because of their heterogeneity, the heterogeneous system platform has hosts with different 
properties and calculation capacities. 
 
Some of applications are computation-intensive and some are communication-intensive. The 
communication to computation ratio (CCR) is a measure that indicates whether a task graph is 
communication-intensive, computation-intensive or moderate [23]. The CCR factor is computed 
by the average communication cost divided by the average computation cost on target system. 
An application DAG graph is represented as G=(V,E), where V is the set of v nodes presented as 
tasks and E is the set of e edges or dependencies among tasks, indicating the relation and 
precedence constraints. Each task in this graph has a weight w(vi), that is the length or the same 
number of instructions of the task, and the data transfer rate among tasks is introduced by the 
weigh w(ei,j) of the edges.  
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a) A balanced-structure graph   b) An unbalanced-structure graph 

Figure 1. Two types of graphs in workflow applications 

At a cursory glance, the used notations in this paper are described as follow: 

Table 1. Definitions of the notations. 

Notation Definition 

V The set of v nodes that present as tasks in application graph 

E 
The set of e edges or dependencies between tasks in application 
graph 

vi A task in application graph 

w(ei,j) The weight of edge between task vi  and vj  in graph 

rj
MIPS

 
The number of resource instruction per minutes as processing 
speed 

Tpred (vi) Set of predecessors of task vi   

Tsucc (vi) Set of successors of task vi   

Tready(vi,pj) The time when all the predecessors of task vi have been executed  

Tavail(pj) The time when processor pj is available to the execution of task vi  

TST (vi,pj) The start time of task vi 

TFT(vi,pj)  The finish time of task vi 

Tpriority(vi) The priority of task vi 

CC(vi,vj) The cost of data transferring between two tasks vi and vj 

Tc(vi,vj) Size of output data from vi  to vj 

C(k,l) The bandwidth of link between two resources pk and pl 

d(vi) Depth of task vi in critical path 

 
No task is dispatched until its precedence tasks are completes. The start time of each task is 
determined in accordance with the following equation:  
 
TST (vi,rj) = max { Tavail(rj) , Tready(vi,rj)}              (1) 
 
where, Tavail(rj) is the time when resource rj is available for the execution of task vi , Tready(vi,rj) is 
the time when all the predecessors of task vi are executed, and all the necessary input data are 
available and could be transmitted to the processor rj, through the following equation: 
Tready(vi,rj) = max{TFT(vk) +w(ek,i)}  ,  vk ∈ Tpred (vi)  
                (2) 
where, TFT(vk) is the finish time of predecessor, and w(ek,i) is the weight between task and its 
predecessor. The finish time of each task can be computed as:  
 
TFT(vi,rj)=TST (vi,rj)+(w(vi)/rj

MIPS)+CC(vi,vj)            (3) 
 
In the workflow graph, the tasks with Tpred =Ø are entry tasks, and the tasks with Tsucc =Ø are exit 
tasks.  
 
The experiment is conducted on the unbalanced-structured graph presented in figure 1(b). In these 
graphs some tasks are not in certain level, so the task selection to send to the ready queue is 
important. The resources are fully connected by different links’ capabilities (see Figure 2): 
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Figure. 2. An example of resource’s connections 

When the tasks are being assigned to the resources, the cost of data transfer between two tasks 
can be computed as follow: 

CC(vi,vj) = Tc(vi,vj) / C(k,l)                (4) 

Since heterogeneous distributed systems like cloud, have some properties that should be 
considered in the scheduling process, the important constraints are:  

• The amount of entry requests are always more than the amount of resources. So each 
resource can process more than one request 

• The request characteristics are always variable and indeterminate, such as: arrival time, 
execution time, and etc. 

• The cloud environment is a collection of heterogeneous resources with dynamic hardware 
and software features such as: the node workload average, CPU usage, etc. 

4. PROPOSED ALGORITHM 
 
In this approach, a hybrid meta-heuristic method, based on GA is used, by considering the cloud 
computing system characteristics. Generally, the pseudo-code of the proposed algorithm is as 
follow: 

Pseudo code of DWSGA method 

Input: Available resources and unmapped tasks of an application 
Output: An optimum derived scheduling  

1. Make a virtual list of available resources from Data center information 
2. Repeat 
3. For all tasks vi ϵ V in each application graph do 
4.    Find the depth (in critical path) 
5. End for 
6.    Set the priority of each task by equation (5) considering the graph topology 
7.    Update virtual list of resources 

     // make initial population 

8.    For  each chromosome   
do 

9.       Find the best fit resources for each task based on the execution time order by Best-fit 
&& RR methods (is described in 4.2. section) 

10.        Go to the next place in resource list for finding candidate resources for next 
chromosome 

11.       If the counter=last resource index then 
12.          Go to the first place in resource list 
13.    End for 

   // doing other operations 
14.    Evaluate all chromosomes using equation (7) 
15.    While the stop conditions are met 
16.       One-point crossover operation 
17.       Goal-oriented mutation operation 
18.       Select the best chromosomes as elites 
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19.    End while 
20.    Save the best solution 
21.    Dispatch all mapped tasks on candidate resources due to obtain the best solution 
22. Until there are unscheduled application 

In the following sections, the algorithm steps are described. 

4.1. Encoding 
 

In GA method, every solution is encoded as a chromosome. Each chromosome has N genes, as 
the chromosome length. In workflow scheduling each schedule appears in a chromosome form. 
Each schedule contains the tasks of application and the related candidate resources. Figure 3 
presents a chromosome in DWSGA method. 

 

 

Figure. 3. A sample chromosome in schedule encoding in DWSGA 

Here, first, the tasks of the graph are ordered on priority based on their influence on the other 
tasks in the graph for execution according to section 4.3; second, the tasks should mapped on 
suitable resources from a set of available resources.  
In this algorithm, to make a chromosome, each task is mapped to a selected resource from a 
virtual list of available resources, according to the data-center information. The virtual list will be 
updated in some operations such as initial population. 
 

4.2. Initial Population 

 
A set of multiple possible solutions (chromosomes) is assumed to be referred to as a population. 
The initial population is made randomly in normal genetic algorithm.  
 
Making a good and goal oriented initial population that would lead to find the response in a rapid 
manner is the concern here. For this purpose, for making initial population, after the tasks are 
sorted by priority, they will be placed in the first row of genes in the chromosome, and for each 
task, a suitable resource will be selected with minimum running time for the task from virtual list 
of available resources based on w(vi) and rj

MIPS as resource speed at the first time. 

 

 

Figure 4. A part of virtual list of available resources 

The virtual list, consist of workload of available resources at current schedule time. 
This process is repeated for all genes as Best-fit, in this manner, in first chromosome for each 
gene, the algorithm selects the fittest resource from the first place in available resource virtual 
list, but for the second chromosome, it finds the best resource from the second place in list and so 
on like Round-Robin method but here for resource selection. If the counter is finished, the 
resource selection will be continued from first place. This process will continue until a population 
is made. 
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This method assures that all resources will be selected for making population. Thus, all possible 
solutions can almost be made, and attended the balance the load on resources. 
 

 

Figure 5. A sample of selecting candidate resources 

A good property of this technique for making initial population is leading the algorithm to find an 
optimized solution, faster than other algorithms.  
 
After an available resource is selected as the candidate, the virtual list will be updated based on 

the rest processing capacity on current workload of resources for designated tasks. 
 

4.3. Task Prioritization 
 

Before making the initial population, all tasks of entered application should be sorted based on 
priority in graph topology. Because some tasks on the unbalanced application graph cannot be 
categorized in levels, and each task’s length and successor are different from the others, the task 
selection based on graph topology is an important problem. Since each task produces some 
outputs as input data set for its successor, the predecessor task should be executed before 
children. Completion time of each task influences the application completion time. So a bi-
directional ordering method is being proposed that could be computed as the priority of tasks in 
both horizontal and vertical direction in graph topology, according to the following equation: 

Tpriority(vi) = w(vi)+ j )*w(ei,j))  ,  vj∈ Tpred (vi)          (5) 

where, d(vj) is the depth of the task vj in critical path. The critical path for each task is the longest 
path from it to an exit task. Each task has some successors, and each successor has a depth. 
According to the unbalanced-structured graph shown in figure 1(b) the set of successors of v6 are: 
Tsucc(v6)={v12,v13,v14}. So the execution of task v6 is efficient for its successor and the execution of 
each successor of v6 is efficient for their successor alternatively, as well. Also v11 can be executed 
with v19 at the same time, because the depth of task v11 is 0. So we can select the more important 
successor of each task with an important depth. Thus, the limited range of depth selection is 
between α and β for selecting the most important successor for equation (5). 

where, β represents the depth of successor with the longest sequence and α can be computed as: 

      α = β – floor of (β / 2)                                      (6) 

The priority of each task with respect to its dependencies in graph topology will be computed, 
and a list of task ordering is prepared by descending to make the first row of chromosomes. 
 

4.4. Crossover 
 
Here, a one-point crossover is used. Two parents and their two genes are selected randomly. Then 
two other solutions by a change in resource sections of selected genes are created. For example in 
two selected chromosomes for the randomly selected point such as second to the last genes, the 
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candidate resources are changed by each other. Figure 6 illustrates the before and after crossover 
in mentioned example. 

 

 
Figure. 6 Crossover operation method in this algorithm 

4.5. Mutation 
 

To make a mutation in solutions, a goal-oriented method that tries to lead the algorithm to reduce 
the makespan and workload of heaviest resource is used. The mutation steps are: 

 
Pseudo code of mutation method 

1. Select a chromosome, randomly 
2. Compute the finished time of all resources, and find the resources with minimum (as 

r_min_w), and maximum (as r_max_w) workload in current selected chromosome 
3. Select a task on  r_max_w  randomly 
4. time_max=makespan by r_max_w 
5. time_min= makespan by r_min_w 
6. If (time_min < time_max) then 
7. Assign the selected task on r_min_w 
8. Else   
9.       while (! select a suitable resource) 
10. Select next-best resource in list with lower workload 
11. Assign the selected task on this resource 
12. End while 

 
The mutation operation causes the GA not to stop in the local minimum, but this method in 
mutation leads to the finding of a good solution in a rapid manner. 

4.6. Evaluation and Selection Solutions 
  
In GA, to determine the value of a solution, it should be evaluated by a fitness function with 
efficient parameters in quality of solution. The fitness function is applied on all solutions and 
computes their values, and then a solution with the best value, based on parameters placement 
policy, is obtained as the minimum or maximum for the fittest solution. 
Here, the fitness value of each solution is computed through: 

Fitness = max (TFT(vi,rj))                          (7) 

where, TFT(vi,rj) is the completion time of task vi mapped on resource rj based on equation (3). So 
the maximum value of TFT(vi,rj) presents completion time of last task or the completion time of all 
tasks in workflow by current scheduling. 
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The chromosome with minimum fitness value is considered as the best solution among the others. 
Some of the best of chromosomes are will be selected by elitism method for next iteration. 

Target is: Minimizing (Fitness)                             (8) 

4.7. Stop Conditions 
 
The algorithm would stop upon meeting a stop conditions. The conditions to end the process are 
[12]: 

• Number of generations, will reach to a maximum bound 

• The makespan of the best solution will not be changed after the certain number of 
generations  

• All chromosomes converge to the same mapping 

5. PERFORMANCE EVALUATION 
 
This section presents the comparative evaluation DWSGA with two algorithms, GVNS and 
DCLS and demonstrates and evaluates the makespan and speedup rate subjects. The experiments 
are conducted considering cloud systems with respect to heterogeneity in resources and tasks 
properties as in some previous works such as random DAG generator in [17, 25] with different 
complexity rate, in order to simulate workflow applications. Some other parameters applied are 
from [18, 17, 24, 12] that are listed in tables 2. The parameters used in GA values such as 
probability for crossover operation and mutation operation are 0.2 and 0.125 respectively. Here 
the initial population size is 30.  
 

Table 2. Simulation Parameters 

Parameter Value 

Number of tasks in application 40 ~ 200 
Task size 12 ~ 72 (*103 MI) 

The number of resources 200 
Resource speed 500~1000 (MIPS) 

The bandwidth among 
resources 

10 ~ 100 (mbps) 

CCR value ~0.5 ~1.0 ~2.0 

  

 

The average results are described and the figures are presented as follows: 

5.1. The Makespan Evaluation 
 
As mentioned, one of the main objectives in all methods is makespan. In this experiment, the 
proposed method was compared with two mentioned algorithms in different CCR rates. Figure 7 
to 9 and Table 3 illustrate how the DWSGA reduces makespan in CCR 0.5 at least about by 
0.7%, in CCR 1.0 at least about by 2.9% and in CCR 2.0 at least about by 4.7 in comparison with 
other mentioned algorithms in this section with respect to the different number of tasks and 1000 
iterations. This is because of a good initial population and search space, that leads the search in 
mutation operation by reducing the workload from heaviest resource to the lightest and if not 
found it selects the next lightest resource. 
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5.2. The Speedup Evaluation 
 

To recognize the quality of distribution of workload among resources, the speedup value is 
evaluated. This can be computed by equations in [10] and [18], that is, dividing the completion 
time of tasks in one resource t (Uct), in parallel resources.  
Speedup= Uct / makespan                (9) 
 
So a higher value represents better result. According to experiments in Figure 7 to 9 and Table 3, 
the DWSGA distributes better workload then the two mentioned algorithms. This is because the 
search is being led to reduce workload from high to low in resources in mutation and selection 
operations. The results are optimized at least about by 1.2%, 2% and 5.7% in CCR 0.5, 1.0 and 
2.0 respectively.  

Table 3. The comparison of  DWSGA with others per cent 

 
Makespan Speedup 

 
DCLS GVNS DCLS GVNS 

CCR 0.5 0.7% 9.1% 1.2% 16.5% 
CCR 1.0 2.9% 13.0% 2.0% 14.7% 
CCR 2.0 4.7% 13.6% 5.7% 15.4% 

 

 

     
Figure7. The makespan and Speedup in CCR 0.5 

 

     

Figure 8. The makespan and Speedup in CCR 1.0 
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Figure 9. The makespan and Speedup in CCR 2.0 

6. CONCLUSIONS 

In this approach, we proposed a hybrid heuristic scheduling method for workflow applications in 
cloud systems by considering efficient parameters. The GA based proposed algorithm, tries to get 
an optimized solution in a rapid manner with respected to completion time and distribution of 
workload on resources. It uses some conversant methods such as making initial population by 
ordering the tasks, based on a bi-directional priority method and other goal-oriented operations 
that lead the algorithm to fulfill the objectives with speeding up the good solution finding process. 
The DWSGA controls the search by an especial mutation method that reassigns resources based 
on workload in addition to considering the most effective task. The DWSGA results are 
compared to DCLS and GVNS algorithms. The produced solution through this proposed 
algorithm is perceived and it improves the results in comparison with them.  In the next work we 
want to present a method that would support mapping the resources on tasks in other objectives 
with a new perspective. 
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