
International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

Dear Author, DOI :10.5121/ijite.2014.3206 51

A BI-OBJECTIVE WORKFLOW APPLICATION

SCHEDULING IN CLOUD COMPUTING SYSTEMS

Yalda Aryan1 and Arash Ghorbannia Delavar2

1 Educational Computer Group, Research Centre of Teachers, Isfahan, Iran
2 Department of Computer, Payam Noor University, PO BOX 19395-3697, Tehran, Iran

ABSTRACT

The task scheduling is a key process in large-scale distributed systems like cloud computing infrastructures

which can have much impressed on system performance. This problem is referred to as a NP-hard problem

because of some reasons such as heterogeneous and dynamic features and dependencies among the

requests. Here, we proposed a bi-objective method called DWSGA to obtain a proper solution for

allocating the requests on resources. The purpose of this algorithm is to earn the response quickly, with

some goal-oriented operations. At first, it makes a good initial population by a special way that uses a bi-

directional tasks prioritization. Then the algorithm moves to get the most appropriate possible solution in a

conscious manner by focus on optimizing the makespan, and considering a good distribution of workload

on resources by using efficient parameters in the mentioned systems. Here, the experiments indicate that

the DWSGA amends the results when the numbers of tasks are increased in application graph, in order to

mentioned objectives. The results are compared with other studied algorithms.

KEYWORDS

Cloud computing, Heterogeneous distributed computing systems, market oriented systems, Workflow

scheduling, Genetic Algorithm

1.INTRODUCTION
The cloud computing system is a distributed system which offers the utility computing vision
with some attractive qualities such as sharing the many dynamic resources by virtualization
technology in order to meet the requirements of widely varying Requests.

Generally, task scheduling process is an important issue in distributed systems because the
requests should be mapped on resources in an efficient manner by considering the environment
properties. Because of heterogeneous resources and many numbers of tasks with different
characteristics in these systems, this issue is known as a NP-hard (Non-deterministic Polynomial-
time hard) problem. Since a good scheduling method would impress on the system performance
and there is no direct method to find an optimal solution in polynomial time, the scheduling
process must rely on finding the best solution within possibilities.

Many methods are proposed for this problem. Each method often focuses on main objectives such
as the completion time of all tasks (makespan), or distribution of workload on resources. For
example, many fundamental heuristic methods like greedy (First-fit) [1] and Round-Robin (RR)
[2], Min-min, Max-min or Sufferage [3] try to achieve the makespan. Some different dynamic list
scheduling methods are presented for heterogeneous distributed systems [4] which often do not
consider the latency among.

A number of meta-heuristic based methods were presented to solve NP problems such as: particle
swarm optimization (PSO) [5], tabu search (TS) [6], simulated annealing (SA) [7], genetic
algorithm (GA) etc. In contrast, GA by [8] [9] [10] are known to give good results in several

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

52

optimization domains and provide robust search techniques that allow a high-quality solution to
be obtained from a large search space and parallel search in polynomial time by applying the
principle of evolution. It could present several solutions to evaluate the efficient parameters.

Some of GA based proposed scheduling algorithms exert random methods in its steps like
providing the initial population or ordering tasks in the same level in the workflow[11], and some
of them use a simple workflow graph.

Already, we proposed another hybrid meta-heuristic workflow scheduling method by considering
response time and reliability in heterogeneous distributed systems [12]. Here, we suggest a
dynamic bi-objective method (DWSGA) in order to find a proper scheduling solution with
computational applications according to cloud system environments. This algorithm tries to
reduce the number of GA operation iterations by making an optimized initial population, in order
to appropriate workload diffusion on resources, simultaneously.

The rest of this paper is organized as follows: the related works are discussed in section 2, in
section 3 the problem definition is described, and in section 4 the proposed algorithm is
presented. The simulation result of DWSGA is presented in section 5, and the conclusion in
section 6 would end the article.

2. RELATED WORKS

Some non-preemptive methods such as First-Fit and Round-Robin are used in some cloud
systems such as Eucalyptus. Task starvation is a major problem in these methods that causes non-
optimal usage and workload balancing of resources.
Also some other heuristic proposed algorithms in distributed systems, like the ones proposed by
[13], [15], [15] and [16] by considering with Grid and Cloud systems, focus on makespan and the
workload distribution. Since many parameters influence the data transfer speed rate, such as
distance, noise etc, so there is communication latency among resources. But the mentioned
methods do not consider the communication latency. A duplication task method is adopted in
[17]. Because of the high-workload and delay in these systems, task duplication is not an efficient
method because it increases the makespan of other application.

GVNS algorithm has proposed for heterogeneous systems [18]. This method combines the GA
and variable neighbourhood search (VNS) algorithms. At first some solutions are produced in
normal GA by considering a task priority similar to the HEFT. Then using two steps in VNS
phase (two novel neighbourhood structures) predecessor for each task will be selected. It should
be noted that, in the step one a task on the highest computation workload resource is chosen
randomly, and will be reallocated to another randomly selected resource; then in second step, for
all tasks on the highest communication workload resource, the VNS randomly selects a
predecessor for each task, and reallocates the predecessors to the mentioned resource. Although it
can be occurred a good selection in first phase, the second phase maybe cancels it. The GVNS
tries to obtain a near minimum completion time, but here the bandwidth of the links is dedicated
and the runtime of algorithm is long.

DCLS algorithm [19] is proposed for cloud computing systems. It is a dynamic list based
scheduling that focuses on reducing the makespan. For each application, the DCLS lists the tasks
by considering the graph topology without being influenced by the other parameters. Then the
tasks will be allocated on resources by the order list. The task on the top of this list will be
assigned to the resource that can finish the task at the earliest time. It continues until unassigned
tasks are entered (as dynamic method). Here the communication cost of resources is considered.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

53

In this approach we seek to obtain a suitable task scheduling with respect to the fully connected
resource graph with different communication to computation ratios. This method makes initial
population by merging the optimal characteristics in Best-Fit and Round-Robin and bi-objective
resource allocation methods with a different GA stages such as mutation and selection generation.

3. PROBLEM DEFINITION

In cloud system environments, there is a data-center unit which is undertaken to collect and save
the information of resources and tasks. Some static and dynamic key information such as:
physical and virtual memory storage space, disk storage space, the load average of the resource
node, the number of the running tasks, the current running tasks’ number of threads, and the
status of these tasks, CPU usage, etc, are collected. These data are updated frequently, in real-
time [20].

Some static and dynamic information that impress for scheduling more than the other could be
used here. Since a lot of tasks are received instantaneously, the workload and other dynamic
information influence the selection of a good candidate resource for task.

An application is a workflow that contains a set of tasks that are connected to each other by
precedence constraint. Each task will be executed and give an output dataset. This dataset is then
sent to the next task as defined by the structure of the workflow. Generally, a workflow has the
structure of a DAG (Directed Acyclic Graph): a graph where the nodes are the tasks and the
edges are the precedence constraints [21].

According to many workflow projects, the workflow application structures can be categorized as
either balanced-structure or unbalanced-structure [9]. In the balanced-structure workflows, nodes
are related together considering certain level, but the unbalanced-structure application is complex,
like [22] and has more relation among nodes where the level of some nodes is not certain (see
Figure 1). When the size of the workflow is increased the processing time may become very long.
Because of their heterogeneity, the heterogeneous system platform has hosts with different
properties and calculation capacities.

Some of applications are computation-intensive and some are communication-intensive. The
communication to computation ratio (CCR) is a measure that indicates whether a task graph is
communication-intensive, computation-intensive or moderate [23]. The CCR factor is computed
by the average communication cost divided by the average computation cost on target system.
An application DAG graph is represented as G=(V,E), where V is the set of v nodes presented as
tasks and E is the set of e edges or dependencies among tasks, indicating the relation and
precedence constraints. Each task in this graph has a weight w(vi), that is the length or the same
number of instructions of the task, and the data transfer rate among tasks is introduced by the
weigh w(ei,j) of the edges.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

54

a) A balanced-structure graph b) An unbalanced-structure graph

Figure 1. Two types of graphs in workflow applications

At a cursory glance, the used notations in this paper are described as follow:

Table 1. Definitions of the notations.

Notation Definition

V The set of v nodes that present as tasks in application graph

E
The set of e edges or dependencies between tasks in application
graph

vi A task in application graph

w(ei,j) The weight of edge between task vi and vj in graph

rj
MIPS

The number of resource instruction per minutes as processing
speed

Tpred (vi) Set of predecessors of task vi

Tsucc (vi) Set of successors of task vi

Tready(vi,pj) The time when all the predecessors of task vi have been executed

Tavail(pj) The time when processor pj is available to the execution of task vi

TST (vi,pj) The start time of task vi

TFT(vi,pj) The finish time of task vi

Tpriority(vi) The priority of task vi

CC(vi,vj) The cost of data transferring between two tasks vi and vj

Tc(vi,vj) Size of output data from vi to vj

C(k,l) The bandwidth of link between two resources pk and pl

d(vi) Depth of task vi in critical path

No task is dispatched until its precedence tasks are completes. The start time of each task is
determined in accordance with the following equation:

TST (vi,rj) = max { Tavail(rj) , Tready(vi,rj)} (1)

where, Tavail(rj) is the time when resource rj is available for the execution of task vi , Tready(vi,rj) is
the time when all the predecessors of task vi are executed, and all the necessary input data are
available and could be transmitted to the processor rj, through the following equation:
Tready(vi,rj) = max{TFT(vk) +w(ek,i)} , vk ∈ Tpred (vi)
 (2)
where, TFT(vk) is the finish time of predecessor, and w(ek,i) is the weight between task and its
predecessor. The finish time of each task can be computed as:

TFT(vi,rj)=TST (vi,rj)+(w(vi)/rj

MIPS)+CC(vi,vj) (3)

In the workflow graph, the tasks with Tpred =Ø are entry tasks, and the tasks with Tsucc =Ø are exit
tasks.

The experiment is conducted on the unbalanced-structured graph presented in figure 1(b). In these
graphs some tasks are not in certain level, so the task selection to send to the ready queue is
important. The resources are fully connected by different links’ capabilities (see Figure 2):

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

55

Figure. 2. An example of resource’s connections

When the tasks are being assigned to the resources, the cost of data transfer between two tasks
can be computed as follow:

CC(vi,vj) = Tc(vi,vj) / C(k,l) (4)

Since heterogeneous distributed systems like cloud, have some properties that should be
considered in the scheduling process, the important constraints are:

• The amount of entry requests are always more than the amount of resources. So each
resource can process more than one request

• The request characteristics are always variable and indeterminate, such as: arrival time,
execution time, and etc.

• The cloud environment is a collection of heterogeneous resources with dynamic hardware
and software features such as: the node workload average, CPU usage, etc.

4. PROPOSED ALGORITHM

In this approach, a hybrid meta-heuristic method, based on GA is used, by considering the cloud
computing system characteristics. Generally, the pseudo-code of the proposed algorithm is as
follow:

Pseudo code of DWSGA method

Input: Available resources and unmapped tasks of an application
Output: An optimum derived scheduling

1. Make a virtual list of available resources from Data center information
2. Repeat
3. For all tasks vi ϵ V in each application graph do
4. Find the depth (in critical path)
5. End for
6. Set the priority of each task by equation (5) considering the graph topology
7. Update virtual list of resources

 // make initial population

8. For each chromosome
do

9. Find the best fit resources for each task based on the execution time order by Best-fit
&& RR methods (is described in 4.2. section)

10. Go to the next place in resource list for finding candidate resources for next
chromosome

11. If the counter=last resource index then
12. Go to the first place in resource list
13. End for

 // doing other operations
14. Evaluate all chromosomes using equation (7)
15. While the stop conditions are met
16. One-point crossover operation
17. Goal-oriented mutation operation
18. Select the best chromosomes as elites

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

56

19. End while
20. Save the best solution
21. Dispatch all mapped tasks on candidate resources due to obtain the best solution
22. Until there are unscheduled application

In the following sections, the algorithm steps are described.

4.1. Encoding

In GA method, every solution is encoded as a chromosome. Each chromosome has N genes, as
the chromosome length. In workflow scheduling each schedule appears in a chromosome form.
Each schedule contains the tasks of application and the related candidate resources. Figure 3
presents a chromosome in DWSGA method.

Figure. 3. A sample chromosome in schedule encoding in DWSGA

Here, first, the tasks of the graph are ordered on priority based on their influence on the other
tasks in the graph for execution according to section 4.3; second, the tasks should mapped on
suitable resources from a set of available resources.
In this algorithm, to make a chromosome, each task is mapped to a selected resource from a
virtual list of available resources, according to the data-center information. The virtual list will be
updated in some operations such as initial population.

4.2. Initial Population

A set of multiple possible solutions (chromosomes) is assumed to be referred to as a population.
The initial population is made randomly in normal genetic algorithm.

Making a good and goal oriented initial population that would lead to find the response in a rapid
manner is the concern here. For this purpose, for making initial population, after the tasks are
sorted by priority, they will be placed in the first row of genes in the chromosome, and for each
task, a suitable resource will be selected with minimum running time for the task from virtual list
of available resources based on w(vi) and rj

MIPS as resource speed at the first time.

Figure 4. A part of virtual list of available resources

The virtual list, consist of workload of available resources at current schedule time.
This process is repeated for all genes as Best-fit, in this manner, in first chromosome for each
gene, the algorithm selects the fittest resource from the first place in available resource virtual
list, but for the second chromosome, it finds the best resource from the second place in list and so
on like Round-Robin method but here for resource selection. If the counter is finished, the
resource selection will be continued from first place. This process will continue until a population
is made.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

57

This method assures that all resources will be selected for making population. Thus, all possible
solutions can almost be made, and attended the balance the load on resources.

Figure 5. A sample of selecting candidate resources

A good property of this technique for making initial population is leading the algorithm to find an
optimized solution, faster than other algorithms.

After an available resource is selected as the candidate, the virtual list will be updated based on

the rest processing capacity on current workload of resources for designated tasks.

4.3. Task Prioritization

Before making the initial population, all tasks of entered application should be sorted based on
priority in graph topology. Because some tasks on the unbalanced application graph cannot be
categorized in levels, and each task’s length and successor are different from the others, the task
selection based on graph topology is an important problem. Since each task produces some
outputs as input data set for its successor, the predecessor task should be executed before
children. Completion time of each task influences the application completion time. So a bi-
directional ordering method is being proposed that could be computed as the priority of tasks in
both horizontal and vertical direction in graph topology, according to the following equation:

Tpriority(vi) = w(vi)+ j)*w(ei,j)) , vj∈ Tpred (vi) (5)

where, d(vj) is the depth of the task vj in critical path. The critical path for each task is the longest
path from it to an exit task. Each task has some successors, and each successor has a depth.
According to the unbalanced-structured graph shown in figure 1(b) the set of successors of v6 are:
Tsucc(v6)={v12,v13,v14}. So the execution of task v6 is efficient for its successor and the execution of
each successor of v6 is efficient for their successor alternatively, as well. Also v11 can be executed
with v19 at the same time, because the depth of task v11 is 0. So we can select the more important
successor of each task with an important depth. Thus, the limited range of depth selection is
between α and β for selecting the most important successor for equation (5).

where, β represents the depth of successor with the longest sequence and α can be computed as:

 α = β – floor of (β / 2) (6)

The priority of each task with respect to its dependencies in graph topology will be computed,
and a list of task ordering is prepared by descending to make the first row of chromosomes.

4.4. Crossover

Here, a one-point crossover is used. Two parents and their two genes are selected randomly. Then
two other solutions by a change in resource sections of selected genes are created. For example in
two selected chromosomes for the randomly selected point such as second to the last genes, the

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

58

candidate resources are changed by each other. Figure 6 illustrates the before and after crossover
in mentioned example.

Figure. 6 Crossover operation method in this algorithm

4.5. Mutation

To make a mutation in solutions, a goal-oriented method that tries to lead the algorithm to reduce
the makespan and workload of heaviest resource is used. The mutation steps are:

Pseudo code of mutation method

1. Select a chromosome, randomly
2. Compute the finished time of all resources, and find the resources with minimum (as

r_min_w), and maximum (as r_max_w) workload in current selected chromosome
3. Select a task on r_max_w randomly
4. time_max=makespan by r_max_w
5. time_min= makespan by r_min_w
6. If (time_min < time_max) then
7. Assign the selected task on r_min_w
8. Else
9. while (! select a suitable resource)
10. Select next-best resource in list with lower workload
11. Assign the selected task on this resource
12. End while

The mutation operation causes the GA not to stop in the local minimum, but this method in
mutation leads to the finding of a good solution in a rapid manner.

4.6. Evaluation and Selection Solutions

In GA, to determine the value of a solution, it should be evaluated by a fitness function with
efficient parameters in quality of solution. The fitness function is applied on all solutions and
computes their values, and then a solution with the best value, based on parameters placement
policy, is obtained as the minimum or maximum for the fittest solution.
Here, the fitness value of each solution is computed through:

Fitness = max (TFT(vi,rj)) (7)

where, TFT(vi,rj) is the completion time of task vi mapped on resource rj based on equation (3). So
the maximum value of TFT(vi,rj) presents completion time of last task or the completion time of all
tasks in workflow by current scheduling.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

59

The chromosome with minimum fitness value is considered as the best solution among the others.
Some of the best of chromosomes are will be selected by elitism method for next iteration.

Target is: Minimizing (Fitness) (8)

4.7. Stop Conditions

The algorithm would stop upon meeting a stop conditions. The conditions to end the process are
[12]:

• Number of generations, will reach to a maximum bound

• The makespan of the best solution will not be changed after the certain number of
generations

• All chromosomes converge to the same mapping

5. PERFORMANCE EVALUATION

This section presents the comparative evaluation DWSGA with two algorithms, GVNS and
DCLS and demonstrates and evaluates the makespan and speedup rate subjects. The experiments
are conducted considering cloud systems with respect to heterogeneity in resources and tasks
properties as in some previous works such as random DAG generator in [17, 25] with different
complexity rate, in order to simulate workflow applications. Some other parameters applied are
from [18, 17, 24, 12] that are listed in tables 2. The parameters used in GA values such as
probability for crossover operation and mutation operation are 0.2 and 0.125 respectively. Here
the initial population size is 30.

Table 2. Simulation Parameters

Parameter Value

Number of tasks in application 40 ~ 200
Task size 12 ~ 72 (*103 MI)

The number of resources 200
Resource speed 500~1000 (MIPS)

The bandwidth among
resources

10 ~ 100 (mbps)

CCR value ~0.5 ~1.0 ~2.0

The average results are described and the figures are presented as follows:

5.1. The Makespan Evaluation

As mentioned, one of the main objectives in all methods is makespan. In this experiment, the
proposed method was compared with two mentioned algorithms in different CCR rates. Figure 7
to 9 and Table 3 illustrate how the DWSGA reduces makespan in CCR 0.5 at least about by
0.7%, in CCR 1.0 at least about by 2.9% and in CCR 2.0 at least about by 4.7 in comparison with
other mentioned algorithms in this section with respect to the different number of tasks and 1000
iterations. This is because of a good initial population and search space, that leads the search in
mutation operation by reducing the workload from heaviest resource to the lightest and if not
found it selects the next lightest resource.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

60

5.2. The Speedup Evaluation

To recognize the quality of distribution of workload among resources, the speedup value is
evaluated. This can be computed by equations in [10] and [18], that is, dividing the completion
time of tasks in one resource t (Uct), in parallel resources.
Speedup= Uct / makespan (9)

So a higher value represents better result. According to experiments in Figure 7 to 9 and Table 3,
the DWSGA distributes better workload then the two mentioned algorithms. This is because the
search is being led to reduce workload from high to low in resources in mutation and selection
operations. The results are optimized at least about by 1.2%, 2% and 5.7% in CCR 0.5, 1.0 and
2.0 respectively.

Table 3. The comparison of DWSGA with others per cent

Makespan Speedup

DCLS GVNS DCLS GVNS

CCR 0.5 0.7% 9.1% 1.2% 16.5%
CCR 1.0 2.9% 13.0% 2.0% 14.7%
CCR 2.0 4.7% 13.6% 5.7% 15.4%

Figure7. The makespan and Speedup in CCR 0.5

Figure 8. The makespan and Speedup in CCR 1.0

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

61

Figure 9. The makespan and Speedup in CCR 2.0

6. CONCLUSIONS

In this approach, we proposed a hybrid heuristic scheduling method for workflow applications in
cloud systems by considering efficient parameters. The GA based proposed algorithm, tries to get
an optimized solution in a rapid manner with respected to completion time and distribution of
workload on resources. It uses some conversant methods such as making initial population by
ordering the tasks, based on a bi-directional priority method and other goal-oriented operations
that lead the algorithm to fulfill the objectives with speeding up the good solution finding process.
The DWSGA controls the search by an especial mutation method that reassigns resources based
on workload in addition to considering the most effective task. The DWSGA results are
compared to DCLS and GVNS algorithms. The produced solution through this proposed
algorithm is perceived and it improves the results in comparison with them. In the next work we
want to present a method that would support mapping the resources on tasks in other objectives
with a new perspective.

REFERENCES

[1] R. P. BRENT, (July 1989), “ Efficient Implementation of the First-Fit Strategy for Dynamic Storage Allocation”

Australian National University, ACM Transactions on Programming Languages and Systems, Vol. 11, No. 3.

[2] Daniel Nurmi & Rich Wolski & Chris Grzegorczyk & Graziano Obertelli & Sunil Soman & Lamia Youseff &
Dmitrii Zagorodnov, (2009), “The Eucalyptus open-source cloud-computing system”, IEEE International
Symposium on Cluster Computing and the Grid (CCGrid).

[3] Hesam Izakian & Ajith Abraham & Václav Snášel, “Comparison of Heuristics for Scheduling Independent Tasks
on Heterogeneous Distributed Environments”.

[4] Henri Casanova & Frédéric Desprez & Frédéric Suter, (2010), “On cluster resource allocation for multiple parallel
task graphs”, ELSEVIER, J. Parallel and Distributed Computing, 70, 1193–1203.

[5] Suraj Pandey, (2010), “Scheduling and Management of Data Intensive Application Workflows in Grid and Cloud
computing Environments”, Doctoral Thesis. Department of Computer Science and Software Engineering, the
University of Melbourne, Australia.

[6] S. Porto & C. Ribeiro, (1995), “A tabu search approach to task scheduling on heterogeneous processors under
precedence constraints”, International Journal of High Speed Computing, 7, 45–72.

[7] A. Kalashnikov & V. Kostenko, (2008), “A parallel algorithm of simulated annealing for multiprocessor
scheduling”, International Journal of Computer and Systems Sciences 47, 455–463.

[8] Jia Yu & Rajkumar Buyya, K. Ramamohanarao, (2009), “Workflow Scheduling Algorithms for Grid computing”,
Department of Computer Science and Software Engineering, The University of Melbourne, VIC 3010, Australia.
http://www.cloudbus.org/reports.

[9] Myungryun Yoo, (2009), “Real-time task scheduling by multiobjective genetic algorithm”, ELSEVIER, The
Journal of Systems and Software, 82, 619–628.

[10] Fatma.A. Omara & Mona. M. Arafa, (2010), “Genetic algorithms for task scheduling problem”, ELSEVIER, J.
Parallel and Distributed Computing, 70, 13_22.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.2, June 2014

62

[11] ADNAN Fida, (2008), “Workflow Scheduling for Service Oriented Cloud Computing”, MSc Thesis, College of
Graduate Studies and Research In Partial Fulfillment, Department of Computer Science University of
Saskatchewan Saskatoon.

[12] Arash Ghorbannia Delavar & Yalda Aryan, (2012), “A Goal-Oriented Workflow Scheduling in Heterogeneous
Distributed Systems”, International Journal of Computer Applications, 0975 – 8887.

[13] E. Ilavarasan & P. Thambidurai, (2007), “Low Complexity Performance Effective Task Scheduling Algorithm for
Heterogeneous Computing Environments”, Journal of Computer Sciences 3 (2): 94-103.

[14] S. Padmavathi & S. Mercy Shalinie, (2010), “Scable Low Complexity Task Scheduling Algorithm for Cluster of
Workstations”, Journal of Engineering Science and Technology Vol. 5, No. 3, 332 – 341.

[15] Zhiao Shi & Jack J. Dongarra, (2006), “Scheduling workflow applications on processors with different
capabilities”, Future Generation Computer Systems 22, 665–675.

[16] Xiaofeng Wang & Chee Shin Yeo & Rajkumar Buyya & Jinshu Su, (2011), “Optimizing the makespan and
reliability for workflow applications with reputation and a look-ahead genetic algorithm”, ELSEVIER, Future
Generation Computer Systems 27, 1124–1134.

[17] Xiaoyong Tang & Kenli Li & Guiping Liao & Renfa Li, (2010), “List scheduling with duplication for
heterogeneous computing systems”, J. Parallel and Distributed Computing, 70, 323_329.

[18] Yun Wen & Hua Xu & Jiadong Yang, (2011), “A heuristic-based hybrid genetic-variable neighborhood search
algorithm for task scheduling in heterogeneous multiprocessor system”, ELSEVIER, Information Sciences, 181,
567–581.

[19] Jiayin Li & Meikang Qiu & Zhong Ming & Gang Quan & Xiao Qin & Zonghua Gue, (2012), “Online
optimization for scheduling preemptable tasks on IaaS cloud systems”, ELSEVIER, Journal of Parallel and
Distributed Computing, 72, 666–677.

[20] Junwei Ge & Bo Zhang & Yiqiu Fang, (2010), “Research on the Resource Monitoring Model Under Cloud
Computing Environment”, WISM, LNCS 6318, pp. 111–118, Springer, Verlag Berlin Heidelberg.

[21] Xiaoyong Tang & Kenli Li & Renfa Li & Bharadwaj Veeravalli, (2010), “Reliability-aware scheduling strategy
for heterogeneous distributed computing systems”, J. Parallel and Distributed Computing, 70, 941_952.

[22] Arash Ghorbannia Delavar & Vahe Aghazarian & Sanaz Litkouhi & Mohsen Khajeh naeini, (2011), “A
Scheduling Algorithm for Increasing the Quality of the Distributed Systems by using Genetic Algorithm”,
International Journal of Information and Education Technology, Vol. 1, No. 1, ISSN: 2010-3689,.

[23] M. Mezmaz & N. Melab & Y. Kessaci & Y.C. Lee c & E.-G. Talbi & A.Y. Zomaya & D. Tuyttens, (2011) “A
parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems”, ELSEVIER,
J. Parallel and Distributed Computing.

[24] Young Choon Lee & Albert Y. Zomaya, (2010) “Rescheduling for reliable job completion with the support of
clouds”, Future Generation Computer Systems 26, 1192_1199.

[25] P. Chitra & R. Rajaram & P. Venkatesh, (2011) “Application and comparison of hybrid evolutionary
multiobjective optimization algorithms for solving task scheduling problem on heterogeneous systems”, Applied
Soft Computing 11, 2725–2734.

Authors

Yalda Aryan received the B.Sc. from Azad University, Arak, IRAN, and M.Sc. in
Payam Noor University, Tehran, IRAN, in 2012, both in computer engineering. She
achieved the top student award in M.Sc. course. She is a teacher in computer science
since 2002. She is the head of Educational Computer Group of Research Center of
Teachers, Isfahan, Iran. Her research interests include computational intelligence,
Cluster computing and cloud computing, Data mining in medicine.

 Arash Ghorbannia Delavar received the MSc and Ph.D. degrees in computer
engineering from Sciences and Research University, Tehran, IRAN, in 2002 and 2007.
He obtained the top student award in Ph.D. course. He is currently an assistant professor
in the Department of Computer Science, Payam Noor University, Tehran, IRAN. He is
also the Director of Virtual University and Multimedia Training Department of Payam
Noor University in IRAN. Dr. Arash Ghorbannia Delavar is currently editor of many
computer science journals in IRAN. His research interests are in the areas of computer
networks, microprocessors, data mining, Information Technology, and E-Learning.

