
International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September 2014

DOI :10.5121/ijite.2014.3301 1

LEVERAGING MOBILE DEVICES TO ENHANCE THE

PERFORMANCE AND EASE OF PROGRAMMING FOR

LOW-COST MOBILE ROBOTS

Ryan P. Grainger and David I. Grow

Department of Mechanical Engineering, New Mexico Tech, Socorro, New Mexico, USA

ABSTRACT

Programming simple robots allows teachers to reinforce unified science, technology, engineering, and

math (STEM) concepts. However, for many educators, the cost and computer requirements for robotics kits

are prohibitive. As mobile devices have become increasingly ubiquitous, low cost, and powerful, they may

prove to be an attractive means of coding for, controlling, and enhancing the capabilities of low-cost

mobile robots. This study looks into the viability of using LEGO Mindstorms NXT and Google Android

devices by using Bluetooth to establish a link between the two. This allows for the exchange of live data

remotely for use in various applications with the hope of creating a low-cost mobile programming

environment. The mobile applications developed were able to successfully exchange data with NXT

hardware via Bluetooth and show evidence that mobile devices can be used as a tool to assist in robotic

programming in education.

KEYWORDS

Android, Application Programming Interfaces, Bluetooth, Educational Robots, & LEGO Mindstorms NXT

1.INTRODUCTION

The field of Robotics continues to grow significantly, has entered into nearly every part of

industry, and global demand is at an all-time high [1]. However, for those with little or no

programming experience, the effort required to learn even basic reprogramming is often

prohibitive. This issue is compounded by the inconsistency in the K-12 programming emphasis.

Industry has made strides in addressing this gap by creating abstracted, and even graphical,

programming environments such as LabVIEW [2]. Nonetheless, many of these environments

have limitations including:

• Need for modestly advanced computer hardware

• Need for manual software/package updates

• Proprietary file types requiring external conversion

• Interaction limited to the machine the software is installed

• Restricted support for additional hardware components

• Costly licensing fees

Mobile devices such as phones and tablets, which are increasingly entering the educational

system, address these limitations and offer an alternative for robotic programming. Additionally,

mobile devices' onboard sensors and communications can be used to improve the robot's basic

abilities. Furthermore, programming on a student’s own mobile phone will promote a sense of

familiarity, which could increase student engagement, and also allow school funds to be spent in

other areas.

International Journal on Integrating Technology in Edu

To explore this concept, a virtual instrumentation panel, motor calibration tool, and advanced

instrumentation panel were developed as a proof

display information for a robot along with its sensors and to improve a robot's sensing abilities to

help with problem solving. Here we provide evidence that the use of a mobile device yields

multiple benefits over the traditional method and provides guidance for future work in this area.

The specific contributions of this paper are:

1. A real-time stream of information between a mobile device and a robot.

2. An easy-to-use application to determine and

3. An exploration into the feasibility of creating a fully interactive mobile programming

application, highlighting remaining challenges but demonstrating that this approach is

feasible in the near-term.

For the purposes of experimentation, this research uses the LEGO Mindstorms NXT, a low

and versatile robotics kit, and a Google Android Device in configurations similar to those in

Figure 1.

Figure 1. Setup (NXT and Android separate, NXT and

with the robot separately to command remotely and display data to the user, or integrated to allow sensors

from the mobile device to advance the robot's capabilities.

2.RELATED WORK

Alternative programming environments for the NXT have been studied to advance usability and

hardware capabilities. In 2007, Kim and Jeon

powered by LabVIEW of National Instruments, with that of Microsoft's Robotics Developer

Studio. They determined that while a visual programming environment is the best way to reach a

larger audience, a more flexible environment is needed for experienced programmers. Wadoo and

Jain [4] determined in 2011 that ROBOTC could advance the abilities of the NXT us

functions for PID control to develop a control systems laboratory at a minimal cost, in

comparison to expensive equipment that would have been difficult to program and provide

limited use. These insights push development of new programming env

graphical while also being intuitive to both new and old users

There is much debate over whether to use a graphical or textual programming environment. In

2008, Azemi and Pauley [5] performed a course

MATLAB; however, while both are textual

by students to have a more intuitive design as there were many graphical

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September

To explore this concept, a virtual instrumentation panel, motor calibration tool, and advanced

eloped as a proof-of-concept to show how a mobile device can

display information for a robot along with its sensors and to improve a robot's sensing abilities to

help with problem solving. Here we provide evidence that the use of a mobile device yields

tiple benefits over the traditional method and provides guidance for future work in this area.

contributions of this paper are:

time stream of information between a mobile device and a robot.

use application to determine and improve a robot's directional commands.

An exploration into the feasibility of creating a fully interactive mobile programming

application, highlighting remaining challenges but demonstrating that this approach is

term.

For the purposes of experimentation, this research uses the LEGO Mindstorms NXT, a low

and versatile robotics kit, and a Google Android Device in configurations similar to those in

Setup (NXT and Android separate, NXT and Android integrated). Mobile device can be used

with the robot separately to command remotely and display data to the user, or integrated to allow sensors

from the mobile device to advance the robot's capabilities.

nvironments for the NXT have been studied to advance usability and

hardware capabilities. In 2007, Kim and Jeon [3] compared the standard NXT

powered by LabVIEW of National Instruments, with that of Microsoft's Robotics Developer

etermined that while a visual programming environment is the best way to reach a

larger audience, a more flexible environment is needed for experienced programmers. Wadoo and

determined in 2011 that ROBOTC could advance the abilities of the NXT us

functions for PID control to develop a control systems laboratory at a minimal cost, in

comparison to expensive equipment that would have been difficult to program and provide

limited use. These insights push development of new programming environments to remain

tive to both new and old users

There is much debate over whether to use a graphical or textual programming environment. In

performed a course-study involving the shared use of

MATLAB; however, while both are textual-based programming languages, MATLAB was found

by students to have a more intuitive design as there were many graphical-based components to

cation (IJITE) Vol.3, No.3, September 2014

2

To explore this concept, a virtual instrumentation panel, motor calibration tool, and advanced

concept to show how a mobile device can

display information for a robot along with its sensors and to improve a robot's sensing abilities to

help with problem solving. Here we provide evidence that the use of a mobile device yields

tiple benefits over the traditional method and provides guidance for future work in this area.

improve a robot's directional commands.

An exploration into the feasibility of creating a fully interactive mobile programming

application, highlighting remaining challenges but demonstrating that this approach is

For the purposes of experimentation, this research uses the LEGO Mindstorms NXT, a low-cost

and versatile robotics kit, and a Google Android Device in configurations similar to those in

Android integrated). Mobile device can be used

with the robot separately to command remotely and display data to the user, or integrated to allow sensors

nvironments for the NXT have been studied to advance usability and

compared the standard NXT-G software,

powered by LabVIEW of National Instruments, with that of Microsoft's Robotics Developer

etermined that while a visual programming environment is the best way to reach a

larger audience, a more flexible environment is needed for experienced programmers. Wadoo and

determined in 2011 that ROBOTC could advance the abilities of the NXT using built-in

functions for PID control to develop a control systems laboratory at a minimal cost, in

comparison to expensive equipment that would have been difficult to program and provide

ironments to remain

There is much debate over whether to use a graphical or textual programming environment. In

study involving the shared use of C++ and

based programming languages, MATLAB was found

based components to

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September 2014

3

assist in programming. Additionally, the GUI allowed for better understanding of major topics

that were discussed during the course. The main issue was that MATLAB had to be purchased

and installed on their own personal computers. With their 2006 survey, Yoder and Black [6]

stated that the question “Which is better?” may never be answered; they found that students

actually preferred using a graphical-based language (LabVIEW). As robotics in education has

grown, the need for an intuitive way of programming is required.

Papers pertaining to robotics in education referenced the STEM disciplines (Science, Technology,

Engineering, and Mathematics). Ekong, Choi, and Rascoe [7], in 2010, successfully introduced

robotics into a middle-school STEM curriculum to inspire students to study and pursue careers in

science and engineering. The workshops involved teachers using a prior version of the LEGO

Mindstorms kit with the biggest difficulty being a lack of an intuitive programming environment.

In 2012, Saygin, et. al., [8] determined that the use of robotics in an educational environment

helped engage students to become active learners and presented engineering concepts in concrete,

relevant, and real-world contexts.

Based on prior work, it appears that a GUI interface is the most productive for students during the

learning process. Increasing use and access would allow students to engage in programming more

frequently. This research looks into the potential of using mobile devices as a new solution.

3.METHODS

Virtual instrumentation for the PC has been rapidly adopted in the past 20 years. They consist of

an industry-standard computer or workstation with powerful application software, cost-effective

plug-in boards, and driver software [9]. However, for average schools, these development boards

are classed as high-level equipment that could not be purchased on a budget, and the same goes

for the software and industry-standard computers. Since many schools already have access to the

LEGO Mindstorms NXT kits, the need to purchase additional development boards would be

removed; furthermore, having students use their own low-cost mobile devices would reduce the

need to purchase up-to-date computers. With this in mind, a greater focus has been placed on a

mutual communication standard and software development.

3.1 Bluetooth

Bluetooth is a key integration component for this research, as it allows the exchange of data over

short distances between various devices. Since the LEGO Mindstorms NXT and most mobile

devices come with Bluetooth, it allows for wireless communication of sensor data and motor

commands. The NXT's Bluetooth is based on a CSR BlueCoreTM 4 v2.0 +EDR System,

supporting the Serial Port Profile (SPP) [10]. This profile is based on RFCOMM protocol and

emulates a serial cable to provide a simple substitute for the existing RS-232 protocol [11] (the

original intention of Bluetooth [12]), including the familiar control signals. All Google Android

devices support this; however Apple officially lacks support for this on its iOS devices. For this

reason, and its worldwide popularity, Google Android was chosen.

3.2 MIT App Inventor

The basic applications (Virtual Instrumentation and Motor Calibration) were developed using

“MIT App Inventor,” originally created by Google under the name “App Inventor for Android.” It

is now maintained by the Massachusetts Institute of Technology (MIT) [13]. This development

software was chosen not only because it is a fast and efficient application development tool but

because the LEGO Mindstorms NXT components are already built in [14]. App Inventor allows

the development of applications for Android phones using a click-and-drag web-based interface

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September 2014

4

and either a connected mobile device or an emulator. Developing apps appear on the device, step-

by-step, as pieces are added. This allows application testing while building. When the application

is finished, it can be packaged to produce a stand-alone application to install.

3.3 Xamarin Studio and MonoBrick

Xamarin Studio is an Integrated Development Environment (IDE) for cross-platform mobile

development [15] that allows development in C# Language with access to the .NET Framework

[16]. MonoBrick is a LEGO Mindstorms communication library, developed by Anders Søborg,

written as a plug-in for Xamarin Studio. The library allows mobile devices to communicate with

the LEGO Mindstorms NXT brick using Bluetooth. MonoBrick has the following features [17]:

• Support for more than 20 analog and I2C sensors

• Individual and vehicle motor control

• A send-and-receive mailbox system

• The ability to set the brick name, acquire battery level, read firmware version, etc.

• Play tones and sound files

• Use the onboard file system to download and upload files

• Start and stop on-brick programs

• Use exceptions to catch sensor and connection errors

• Open and close connections with multiple NXT units

This environment and library will allow for better applications to be developed in comparison to

those made with MIT App Inventor. After contacting Søborg, the source code for MonoBrick was

acquired to expand the library and allow for custom sensors.

4.RESULTS

4.1 Real-time Data Acquisition and Control

With the built in functions of MIT App Inventor, a basic Virtual Instrumentation tool was made

(Figure 2). This tool provides the ability to connect the Mobile Device and NXT via Bluetooth,

display sensor and motor tachometer values in real-time, and allow the user to set different sensor

types and motor positions. A button located at the top is used to connect/disconnect the NXT with

the mobile device, with the status of connection shown on the button text. Once a connection is

made, the sensor and motor buttons can be pressed to change various settings. The four sensor

buttons correspond to the four ports located on the NXT; each sensor has the selective options of:

• Light

• Sound

• Touch

• Ultrasonic

Once a port is set to the correct sensor, the mobile device is able to acquire data in real-time. The

motors (A, B, & C) can also be read individually, however there is an additional option to set a

motor position using the arrow buttons to the left and right of each motor, incremented by ±90

degrees. The addition of motor control resulted in a closed-loop control architecture to be

employed, primarily due to small amounts of lag between actual and displayed motor positions. It

was also found that with the addition of each sensor and motor giving real-time information, the

lag increased, causing stability issues. This is believed to be due to the serial nature of the

International Journal on Integrating Technology in Edu

Bluetooth connection. Querying and streaming data from multiple sensors and motors moves

beyond the limitations of Bluetooth.

Figure 2. Entire Virtual Instrumentation Application (Main Page, Bluetooth List). Allows user to initialize

a connection, select and observe sensor/motor readings, a

Two tractable solutions were considered. First, to change to a different connection, such as

USB, which all NXT’s and most Android devices have. This connection would require

additional hardware and for the mobile device to support it. Second, the more feasible option

was to develop a system that prioritizes certain readings. If motor position is absolutely critical

it can be set at a higher priority than that of a touch sensor. For this research the sens

set, by default, to not stream data unless requested.

The results showed that the mobile application was able to successfully poll data from the NXT

hardware via Bluetooth. It was found that a limitation of the Bluetooth serial connection exists

and will need to be improved in future work

4.2 Interaction with Automated Routines

During programming, NXT motors are given a set direction that is determined as either forward

or backwards. This setup works with the robot configuratio

not all robot configurations have the motors in the same orientation, and it becomes difficult to

work out which motor directions will allow the robot to move as a whole. The only way to

determine motor direction is to eit

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September

Bluetooth connection. Querying and streaming data from multiple sensors and motors moves

ond the limitations of Bluetooth.

Entire Virtual Instrumentation Application (Main Page, Bluetooth List). Allows user to initialize

a connection, select and observe sensor/motor readings, and command motor position

Two tractable solutions were considered. First, to change to a different connection, such as

USB, which all NXT’s and most Android devices have. This connection would require

the mobile device to support it. Second, the more feasible option

was to develop a system that prioritizes certain readings. If motor position is absolutely critical

higher priority than that of a touch sensor. For this research the sens

set, by default, to not stream data unless requested.

The results showed that the mobile application was able to successfully poll data from the NXT

hardware via Bluetooth. It was found that a limitation of the Bluetooth serial connection exists

and will need to be improved in future work with this method.

Interaction with Automated Routines

During programming, NXT motors are given a set direction that is determined as either forward

or backwards. This setup works with the robot configuration in the provided manual; however

not all robot configurations have the motors in the same orientation, and it becomes difficult to

work out which motor directions will allow the robot to move as a whole. The only way to

determine motor direction is to either guess and test, or to manually determine which motors are

cation (IJITE) Vol.3, No.3, September 2014

5

Bluetooth connection. Querying and streaming data from multiple sensors and motors moves

Entire Virtual Instrumentation Application (Main Page, Bluetooth List). Allows user to initialize

nd command motor position.

Two tractable solutions were considered. First, to change to a different connection, such as

USB, which all NXT’s and most Android devices have. This connection would require

the mobile device to support it. Second, the more feasible option

was to develop a system that prioritizes certain readings. If motor position is absolutely critical

higher priority than that of a touch sensor. For this research the sensors were

The results showed that the mobile application was able to successfully poll data from the NXT

hardware via Bluetooth. It was found that a limitation of the Bluetooth serial connection exists

During programming, NXT motors are given a set direction that is determined as either forward

n in the provided manual; however

not all robot configurations have the motors in the same orientation, and it becomes difficult to

work out which motor directions will allow the robot to move as a whole. The only way to

her guess and test, or to manually determine which motors are

International Journal on Integrating Technology in Edu

configured to which ports, motor orientation, and the effect of any present gearing systems.

Both of these solutions work, but can be difficult and cumbersome.

The primary issue is that the robot does not know its actual orientation and configuration, which

is difficult when the robot has minimal sensing of its surroundings. Our solution was to use a

mobile device's various sensors and link the robot to them through Bluetooth. This allows the

mobile device to calibrate the motors and determine the direction each motor needs to move to

achieve a specific movement. This calibration process will specifically involve the NXT motors,

the mobile device's compass, and a Bluetooth connection. The mobile

through a process of directional movements and determine how the robot acts with the onboard

sensors; the result will then be displayed so the user can program the robot correctly. The

developed environment is capable of:

1. Determining the forward direction of the robot

2. Obtaining motor location and orientation on the chassis

3. Displaying which direction the motors must be set to achieve a specified velocity

Figure 3. Entire Motor Calibration Application (Main Page, Bluetooth List, Direction List). Determines

motor configuration with the use of compass readings and user input.

The Motor Calibration Tool, seen in Figure

Application/Interface (SPA/SPI), because the user would usually be required to observe all data at

one given time, with the exception of Bluetooth connection and manual overrides for selected

tests. A button is again used to connect/disconnect the NXT to th

connection is shown by the button text. An active readout is always displayed for the

magnetometer readings The average reading is based on a ten

reading is based on the standard deviati

as true when the deviation is less than 0.5 degrees. The motor control buttons (A, B,

perform forward motor commands and read the average reading both before and after the

movement is performed to determine the direction of rotation. The buttons adjacent to the motor

control buttons allow for the user to manually override the direction of rotation, using a list, to

one of the three choices: Stationary, Clockwise, and Anti

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September

configured to which ports, motor orientation, and the effect of any present gearing systems.

Both of these solutions work, but can be difficult and cumbersome.

ot does not know its actual orientation and configuration, which

is difficult when the robot has minimal sensing of its surroundings. Our solution was to use a

mobile device's various sensors and link the robot to them through Bluetooth. This allows the

bile device to calibrate the motors and determine the direction each motor needs to move to

achieve a specific movement. This calibration process will specifically involve the NXT motors,

the mobile device's compass, and a Bluetooth connection. The mobile device will run the motors

through a process of directional movements and determine how the robot acts with the onboard

sensors; the result will then be displayed so the user can program the robot correctly. The

developed environment is capable of:

mining the forward direction of the robot

Obtaining motor location and orientation on the chassis

Displaying which direction the motors must be set to achieve a specified velocity

Entire Motor Calibration Application (Main Page, Bluetooth List, Direction List). Determines

motor configuration with the use of compass readings and user input.

The Motor Calibration Tool, seen in Figure 3, was designed to be displayed as a Single

pplication/Interface (SPA/SPI), because the user would usually be required to observe all data at

one given time, with the exception of Bluetooth connection and manual overrides for selected

tests. A button is again used to connect/disconnect the NXT to the mobile device; the status of the

connection is shown by the button text. An active readout is always displayed for the

magnetometer readings The average reading is based on a ten-wide running average, the variance

reading is based on the standard deviation of the running average, and the stability readout reads

as true when the deviation is less than 0.5 degrees. The motor control buttons (A, B,

perform forward motor commands and read the average reading both before and after the

d to determine the direction of rotation. The buttons adjacent to the motor

control buttons allow for the user to manually override the direction of rotation, using a list, to

one of the three choices: Stationary, Clockwise, and Anti-Clockwise. The lower h

cation (IJITE) Vol.3, No.3, September 2014

6

configured to which ports, motor orientation, and the effect of any present gearing systems.

ot does not know its actual orientation and configuration, which

is difficult when the robot has minimal sensing of its surroundings. Our solution was to use a

mobile device's various sensors and link the robot to them through Bluetooth. This allows the

bile device to calibrate the motors and determine the direction each motor needs to move to

achieve a specific movement. This calibration process will specifically involve the NXT motors,

device will run the motors

through a process of directional movements and determine how the robot acts with the onboard

sensors; the result will then be displayed so the user can program the robot correctly. The

Displaying which direction the motors must be set to achieve a specified velocity

Entire Motor Calibration Application (Main Page, Bluetooth List, Direction List). Determines

, was designed to be displayed as a Single-Page

pplication/Interface (SPA/SPI), because the user would usually be required to observe all data at

one given time, with the exception of Bluetooth connection and manual overrides for selected

e mobile device; the status of the

connection is shown by the button text. An active readout is always displayed for the

wide running average, the variance

on of the running average, and the stability readout reads

as true when the deviation is less than 0.5 degrees. The motor control buttons (A, B, & C)

perform forward motor commands and read the average reading both before and after the

d to determine the direction of rotation. The buttons adjacent to the motor

control buttons allow for the user to manually override the direction of rotation, using a list, to

Clockwise. The lower half of the

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September 2014

7

display either shows a message that signifies too few/many motors being used or an output for the

two correctly selected and calibrated motors. When the tests are successful a command example

is given for a left turn along with left and right movement tests and a command for either

forward/backward movement.

In summary, the application is able to successfully determine motor directions for use in

programming and the manual override assisted in any incorrect calibrations. Magnetic

interference proved to be the largest issue. Both the environment and the robot itself caused issues

with the magnetometer; thus the most successful tests were performed when the robot was used

on flat ground with no walls or objects in the surrounding area, with the device placed farthest

away from the motors and battery pack.

4.3 Augmented Control and Processing

Development with MIT App Inventor proved difficult for tasks beyond the basic back-and-forth

communication and simple routines. This required switching to Xamarin Studio and with it a

code-based programming environment. There are numerous advantages to using Xamarin

compared to MIT App Inventor:

• Variety of screen sizes, which allows the overall appearance of the application to have a

more professional appearance

• Multiple windows, to retain information, with the ability for data to be transferred

between them, allowing for a more immersive environment

• Wider range of layouts & views; preconfigured menu systems require less time to be

spent on the appearance and for the user to become more familiar with standardized

layouts

• C# Support, allowing for cross-platform code (iOS, Android, Windows, and Mac)

• Smaller file size, allowing the developed application to take up less space on a device

• No application size restriction, meaning no application becoming too big for the

development system to handle

• Support for older and newer OS versions, allowing all possible users the ability to run

software without incompatibility issues

• Ability to read an assortment of onboard sensors, including those appearing on future

devices

A further advantage of the MonoBrick library is enhanced communication between Android and

the NXT, allowing support for more than 20 analog and I
2
C third-party sensors. Moreover, with

access to source code, many more drivers can be developed, allowing for a large database of NXT

sensors.

With the functions of Xamarin and MonoBrick, an Advanced Virtual Instrumentation tool was

made (Figure 4). This tool provides the ability to connect the Mobile Device and NXT via

Bluetooth, display motor tachometer values, NXT sensor readings, and Android sensors in real-

time. Since Xamarin allows multiple windows, the connection settings have been moved to the

initial screen, requiring an established connection to be made before anything else can be done.

Once a connection is made, the sensor ports can be set to connect to various types of sensors and

to selectively interpret the inputs as boolean, scaled, percentage, and raw values. These are chosen

using an implementation similar to a drop-down menu.

International Journal on Integrating Technology in Edu

Figure 4. Entire Advanced Virtual Instrumentation Application. Allows user to initialize a connection,

observe motor tachometer readings, and display sensor readings from both the robot and mobile device.

The application is able to determine if an onboard sensor exists, and constantly displays all data

relating to the sensor. Those not available, or those unable to be read, inform the user of such.

These onboard sensors are run in a separate subroutine as they c

the NXT. Sensors such as GPS normally can only be used outside with clear access to satellites;

however there are a variety of ways to determine location depending on what additional

equipment the device has. For example,

give a rough estimate of position.

An added bonus of Xamarin being a code

be run directly inside of the application allowing for quick tests and valid

include:

• Real-time PID tuning during line

• PID control of motor angle trajectories

• Android compass headings to determine robot direction

• Point-to-point GPS navigation and path

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September

Entire Advanced Virtual Instrumentation Application. Allows user to initialize a connection,

observe motor tachometer readings, and display sensor readings from both the robot and mobile device.

pplication is able to determine if an onboard sensor exists, and constantly displays all data

relating to the sensor. Those not available, or those unable to be read, inform the user of such.

These onboard sensors are run in a separate subroutine as they can be read faster than those from

the NXT. Sensors such as GPS normally can only be used outside with clear access to satellites;

however there are a variety of ways to determine location depending on what additional

equipment the device has. For example, mobile phones can use localization of radio towers to

give a rough estimate of position.

An added bonus of Xamarin being a code-based programming environment is that programs can

be run directly inside of the application allowing for quick tests and validations. Supported tests

time PID tuning during line-following task

PID control of motor angle trajectories

Android compass headings to determine robot direction

point GPS navigation and path-finding

cation (IJITE) Vol.3, No.3, September 2014

8

Entire Advanced Virtual Instrumentation Application. Allows user to initialize a connection,

observe motor tachometer readings, and display sensor readings from both the robot and mobile device.

pplication is able to determine if an onboard sensor exists, and constantly displays all data

relating to the sensor. Those not available, or those unable to be read, inform the user of such.

an be read faster than those from

the NXT. Sensors such as GPS normally can only be used outside with clear access to satellites;

however there are a variety of ways to determine location depending on what additional

mobile phones can use localization of radio towers to

based programming environment is that programs can

ations. Supported tests

International Journal on Integrating Technology in Edu

These tests demonstrate some of

an Android Device.

4.4 Graphical User Interface

Using the knowledge gained, a preliminary Graphical User Interface was developed (Figure

that allows the user to add commands and graphically alter the settings of various conditions

and actions that the robot can perform. When a command is accessed various visual inputs are

displayed to allow command settings to be changed, a dynamic onscre

when needed; if a Bluetooth connection has already been established with an NXT, live

feedback from sensors and motors are displayed allowing the user to make appropriate

modifications. This enables the user determine what the robot do

perform actions accordingly. The

to convey the program's structure; similar to that of a C programming language or its

descendants, with start and end symbols to represent br

flow constructs such as conditions or loops to easily identify by the user, in addition various

colors and shapes are applied to visually determine the type of command used. While only in

the initial stages of development, it is clear that a graphical representation of programming will

allow users to easily transition, when necessary, into a text

Figure 5. Preliminary Graphical User Interface (Programming Window, Command Window).

Allows the user to create a list of commands using a dynamic interface that the robot can then

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September

These tests demonstrate some of what is possible with a Graphical Programming Environment on

Graphical User Interface

Using the knowledge gained, a preliminary Graphical User Interface was developed (Figure

that allows the user to add commands and graphically alter the settings of various conditions

and actions that the robot can perform. When a command is accessed various visual inputs are

displayed to allow command settings to be changed, a dynamic onscreen keyboard is shown

when needed; if a Bluetooth connection has already been established with an NXT, live

feedback from sensors and motors are displayed allowing the user to make appropriate

modifications. This enables the user determine what the robot does with sensor data and

perform actions accordingly. The list of programming commands makes use of an indent style

to convey the program's structure; similar to that of a C programming language or its

descendants, with start and end symbols to represent braces. The indentation allows for control

flow constructs such as conditions or loops to easily identify by the user, in addition various

colors and shapes are applied to visually determine the type of command used. While only in

opment, it is clear that a graphical representation of programming will

allow users to easily transition, when necessary, into a text-based language with little difficulty.

cal User Interface (Programming Window, Command Window).

Allows the user to create a list of commands using a dynamic interface that the robot can then

perform.

cation (IJITE) Vol.3, No.3, September 2014

9

what is possible with a Graphical Programming Environment on

Using the knowledge gained, a preliminary Graphical User Interface was developed (Figure 5)

that allows the user to add commands and graphically alter the settings of various conditions

and actions that the robot can perform. When a command is accessed various visual inputs are

en keyboard is shown

when needed; if a Bluetooth connection has already been established with an NXT, live

feedback from sensors and motors are displayed allowing the user to make appropriate

es with sensor data and

use of an indent style

to convey the program's structure; similar to that of a C programming language or its

aces. The indentation allows for control

flow constructs such as conditions or loops to easily identify by the user, in addition various

colors and shapes are applied to visually determine the type of command used. While only in

opment, it is clear that a graphical representation of programming will

based language with little difficulty.

cal User Interface (Programming Window, Command Window).

Allows the user to create a list of commands using a dynamic interface that the robot can then

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September 2014

10

4.5 Interpreter

With the graphical structure in place the next step was to turn the user created commands into

working commands that the Android device could interpret and run. A database structure was

created using SQLite which allowed for fast and easy access to vital information among

operations. While SQLite’s read operations can be multitasked, writes can only be performed

sequentially; this limitation is ideal as writing to the file would only occur during the

programming process but reading is performed throughout the application; and because of its

small size, SQLite is well suited to embedded systems like Android.

The creation of a database was only part of the solution, the commands had to be interpreted

along with the implementation of loops to simplify development, a basic algorithm was

developed in MATLAB to separate issues with Android and provide a simpler language with

which to debug with. Several parts were carried out using MATLAB; these parts were mainly

related to command components that were not already built using Xamarin Studio. These

components involve the implementation of a “goto” or “jump” functions to create “while” loops

and “if-else” statements; as well as their respective start and end braces. Once the MATLAB

script was reintegrated into C# the initial testing showed positive results and basic programs were

able to created easily and perform the set tasks correctly.

5.DISCUSSION & FUTURE WORK

A key broader impact of this work is that the same programming environment can be utilized in

primary education to help in assuring that a greater number of next-generation engineers can have

an early introduction to programming. Most schools focus on teaching students how to use a

computer and run available applications, rather than exploring the deeper concepts such as

computational problem-solving, which lay the foundation for innovation [18]. In both K-12 and

many industries unfamiliar with programming, an intuitive programming interface is needed,

especially where large numbers of low cost, yet highly capable, mobile robots are present.

The present study provides preliminary evidence that mobile devices are a great tool to assist in

programming robots for educational use. With the growing issue of obsoletion caused by rapidly

evolving technologies, this application is a promising and affordable solution for students,

educators, and other users of robotic systems. Future work will allow greater advancement in

application complexity and we are working to support additional sensors, improving filtering, and

improving polling techniques from sensors and motors. The application developed in the research

is currently in the public beta-test stage and will be available in the Google Play store in the near

future.

With the range of built-in sensors in mobile devices constantly increasing, an application that can

combine these with a mobile robotic platform will allow low-cost robotics to have advanced

capabilities. A fully interactive mobile programming application could be developed to run on

mobile devices, freeing robotic development to be used in mobile environments. The use of

mobile devices as programming tools would allow on-the-go development without the difficulty

of using large machines, such as laptops which cannot be integrated into a robotic platform.

Networked mobile devices could allow users to exchange programs and work together

simultaneously, even when not working in the same room.

International Journal on Integrating Technology in Education (IJITE) Vol.3, No.3, September 2014

11

REFERENCES

[1] IFR: All-time-high for industrial robots in 2013. [Online]. Available: http://www.ifr.org/news/ifr-

press-release/ifr-all-time-high-for-industrial-robots-in-2013-601/

[2] National Instruments LabVIEW. [Online]. Available: http://www.ni.com/labview/

[3] S.-H. Kim and J. W. Jeon, (2007) “Programming LEGO Mindstorms NXT with visual programming,”

in Control, Automation and Systems, 2007. ICCAS ’07. International Conference on, Oct 2007, pp.

2468–2472.

[4] S. Wadoo and R. Jain, (2012) “A LEGO based undergraduate control systems laboratory,” in

Systems, Applications and Technology Conference (LISAT), 2012 IEEE Long Island, May 2012, pp.

1–6.

[5] A. Azemi and L. Pauley, (2008) “Teaching the introductory computer programming course for

engineers using Matlab,” in Frontiers in Education Conference, 2008. FIE 2008. 38th Annual, Oct

2008, pp. T3B–1–T3B–23.

[6] M. Yoder and B. Black, (2006) “Work in progress: A study of graphical vs. textual programming for

dsp,” in Frontiers in Education Conference, 36th Annual, Oct 2006, pp. 17–18.

[7] D. U. Ekong, T. A. Choi, and B. Rascoe, (2011) "A Robotics Workshop for Middle School STEM

Teachers", in proceedings of ASEE SE Section Annual Conference, Charleston, SC. April 10-12,

2011.

[8] Saygin, C., Yuen, T., Shipley, H., Wan, H., & Akopian, D, (2012) “Design, development, and

implementation of educational robotics activities for K-12 students” 2012 ASEE Annual Conference.

[9] National Instruments virtual instrumentation. [Online]. Available: http://www.ni.com/white-

paper/4752/en/

[10] LEGO Mindstorms NXT Bluetooth developer kit. [Online]. Available:

http://mindstorms.lego.com/en-us/support/files/default.aspx

[11] Bluetooth basics. [Online]. Available: http://www.bluetooth.com/Pages/Basics.aspx

[12] Bluetooth fast-facts. [Online]. Available: http://www.bluetooth.com/Pages/Fast-Facts.aspx

[13] What is App Inventor? [Online]. Available: http://appinventor.mit.edu/explore/content/what-app-

inventor.html

[14] LEGO Mindstorms components. [Online]. Available:

http://appinventor.mit.edu/explore/content/legomindstorms.html

[15] Xamarin Studio. [Online]. Available: http://xamarin.com/how-it-works

[16] C# and .NET. [Online]. Available: http://msdn.microsoft.com/en-us/library/vstudio/z1zx9t92.aspx

[17] MonoBrick. [Online]. Available: http://www.MonoBrick.dk/software/MonoBrick/

[18] C. e. A. Wilson, (2010) “Running on empty: The failure to teach K-12 computer science in the digital

age”. [Online]. Available: http://www.acm.org/runningonempty/

Authors

Ryan Paul Grainger received the B.Sc. degree in mechanical engineering and the M.Sc.

degree in mechatronics from New Mexico Institute of Mining and Technology, Socorro,

New Mexico, USA, in 2012 and 2014, respectively. Since then, he has been with Inquiry

Facilitators, Bernalillo, New Mexico, USA, where he is currently a facilitator & consulting

engineer.

David Issac Grow received the B.Sc. degree in physics and the M.Sc. degree in

mechanical engineering from University of Utah, Salt Lake City, Utah, USA, in 2004 and

2006, respectively and the Ph.D. degree in mechanical engineering from Johns Hopkins

University, Baltimore, Maryland, USA, in 2011. Since then, he has been at New Mexico

Institute of Mining and Technology, Socorro, New Mexico, USA, where he is currently

an assistant professor of mechanical engineering.

