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ABSTRACT

In this paper, we establish new results for the adaptive controller and synchronizer design for the
hyperchaotic Zhou system (2009), when the parameters of the system are unknown. Using adaptive
control theory and Lyapunov stability theory, we first design an adaptive controller to stabilize the
hyperchaotic Zhou system to its unstable equilibrium at the origin. Next, using adaptive control theory
and Lyapunov stability theory, we design an adaptive controller to achieve global chaos synchronization
of the identical hyperchaotic Zhou systems with unknown parameters. Simulations have been provided for
adaptive controller and synchronizer designs to validate and illustrate the effectiveness of the schemes.
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1. INTRODUCTION

Hyperchaotic systems have been defined as chaotic systems having more than one positive
Lyapunov exponent. Hyperchaotic systems exhibit complex dynamics and characteristics such
as high capacity, high security and high efficiency. Some classical hyperchaotic systems are
hyperchaotic Rössler system [1], hyperchaotic Lorenz-Haken system [2], hyperchaotic Chua’s
circuit [3], hyperchaotic Chen system [4], hyperchaotic Lü system [5], etc.

The control of a chaotic system is to devise a state feedback control law to stabilize the system
around its unstable equilibrium points [6-7]. Active control [8] is applied when the system
parameters are known and adaptive control [9] is applied when the system parameters are
unknown.

Synchronization of chaotic systems is said to occur when a chaotic attractor drives another
chaotic attractor. In the last two decades, there has been considerable interest devoted to the
synchronization of chaotic and hyperchaotic systems.

In their seminal paper in 1990, Pecora and Carroll [10] introduced a method to synchronize two
identical chaotic systems and showed that it was possible for some chaotic systems to be
completely synchronized. Subsequently, chaos synchronization has been applied in a wide
variety of fields including physics [11], chemistry [12], ecology [13], secure communications
[14-15], cardiology [16], robotics [17], etc.

Some common methods applied to the chaos synchronization problem are active control method
[18-22], adaptive control method [23-27], sampled-data feedback method [28], time-delay
feedback method [29], backstepping method [30-33], sliding mode control method [34-38], etc.
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This research paper has been organized as follows. In Section 2, we provide an analysis and
description of the hyperchaotic Zhou system ([39], 2009). In Section 3, we detail our new
results for the adaptive control of the hyperchaotic Zhou system with unknown parameters. In
Section 4, we detail our new results for the adaptive synchronization of the identical
hyperchaotic Zhou systems with unknown parameters. In Section 5, we give the conclusions of
this research paper.

2. SYSTEM DESCRIPTION

The hyperchaotic Zhou system ([39], 2009) is described by the four-dimensional dynamics
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(1)

where 1 2 3 4, , ,x x x x are the states and , , ,a b c d are constant, positive parameters of the system.

The system (1) exhibits hyperchaotic behaviour when the parameter values are

35,   3,   12,   0 34.8a b c d= = = < < (2)

Figure 1 depicts the hyperchaotic phase portrait of the hyperchaotic Zhou system (1), where, for
simulation, the values of , ,a b c are as given in (2) and the value of d is chosen as 1.d =

When the parameter values are taken as in (2) for the hyperchaotic system (1), the system
linearization matrix at the equilibrium point 0 (0,0,0,0)E = is given by
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which has the eigenvalues

2 2

1 2 3 4

4 4
,   ,   ,

2 2

a a d a a d
c b   − + + − − += = − = =

Since 1 is a positive eigenvalues of ,A it is immediate from Lyapunov stability theory [40] that

the hyperchaotic Zhou system (1) is unstable at the equilibrium point 0 (0,0,0,0).E =
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Figure 1. Phase Portrait of the Hyperchaotic Zhou System

3. ADAPTIVE CONTROL OF THE QI-CHEN CHAOTIC SYSTEM

3.1 Main Results

In this section, we design an adaptive controller for globally stabilizing the hyperchaotic Zhou
system (2009) with unknown parameters.

Thus, we consider the controlled hyperchaotic Zhou system, which is described by
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(3)

where 1 2 3, ,u u u and 4u are feedback controllers to be designed using the states 1 2 3 4, , ,x x x x and

estimates ˆ ˆˆ ˆ, , ,a b c d of the unknown parameters , , ,a b c d of the system.

In order to ensure that the controlled system (3) globally converges to the origin asymptotically,
we consider the following adaptive control functions
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where ˆ ˆˆ ˆ, , ,a b c d are estimates of the parameters , , , ,a b c d respectively, and , ( 1, 2,3, 4)ik i =
are positive constants.

Substituting the control law (4) into the controlled hyperchaotic Zhou dynamics (3), we obtain
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3 3 3 3

4 1 4 4

ˆ( ) ( )
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= − −

= − − −
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(5)

We define the parameter estimation errors as

ˆ ˆˆ ˆ,    ,   ,a b c de a a e b b e c c e d d= − = − = − = − (6)

Using (6), the closed-loop dynamics (5) can be expressed simply as
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(7)

For deriving an update law for adjusting the parameter estimates, we apply the Lyapunov
approach.

Consider the quadratic Lyapunov function

( )2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
( , , , , , , , ) ,

2a b c d a b c dV x x x x e e e e x x x x e e e e= + + + + + + + (8)

which is a positive definite function on 8.R

Note also that

ˆ ˆˆ ˆ,   ,   ,a b c de a e b e c e d= − = − = − = −      (9)

Differentiating V along the trajectories of (7) and using (9), we obtain
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In view of Eq. (10), the estimated parameters are updated by the following law:
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(11)

where 5 6 7, ,k k k and 8k are positive constants.

Substituting (11) into (10), we get

2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8a b c dV k x k x k x k x k e k e k e k e= − − − − − − − − (12)

which is a negative definite function on 8.R

Thus, by Lyapunov stability theory [40], we obtain the following result.

Theorem 1. The controlled hyperchaotic Zhou system (1) having unknown system parameters is

globally and exponentially stabilized for all initial conditions 4(0)x R∈ by the adaptive control

law (4), where the parameter update law is given by (11) and the gains ,  ( 1, ,8)ik i =  are

positive constants. 

3.2 Numerical Results

For numerical simulations, we have applied the fourth order Runge-Kutta method (MATLAB)

with the step-size 810h −= to solve the hyperchaotic Zhou system (3) with the adaptive control
law (4) and the parameter update law (11). The parameters of the hyperchaotic Zhou system (3)
are taken as

35,   3,   12,   1a b c d= = = =

For the adaptive and update laws, we take 5,   ( 1, 2, ,8).ik i= = 

Suppose that the initial values of the estimated parameters are

ˆ ˆˆ ˆ(0) 9,   (0) 12,   (0) 4,   (0) 6a b c d= = = =

The initial state of the controlled Qi-Chen system (3) is taken as

1 2 3 4(0) 25,   (0) 16,   (0) 20,   (0) 30x x x x= = − = = −

When the adaptive control law (4) and the parameter update law (11) are used, the state
trajectories of the controlled modified hyperchaotic Zhou system converge exponentially to the
equilibrium 0 (0,0,0,0)E = as shown in Figure 2. The time-history of the parameter estimates

is shown in Figure 3. The time-history of the parameter estimation errors is shown in Figure 4.
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Figure 2. Time Responses of the Controlled Hyperchaotic Zhou System

Figure 3. Time-History of the Parameter Estimates ˆ ˆˆ ˆ( ),  ( ),  ( ),  ( )a t b t c t d t
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Figure 4. Time-History of the Parameter Estimates , , ,a b c de e e e

4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC ZHOU

SYSTEMS

4.1 Theoretical Results

In this section, we derive new results for the adaptive synchronization of identical hyperchaotic
Zhou systems (2009) with unknown parameters.

As the master system, we take the hyperchaotic Zhou dynamics described by
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2 2 1 3

3 3 1 2

4 1 2 3

( )

0.5

x a x x x

x cx x x

x bx x x

x dx x x

= − +
= −
= − +
= +









(13)

where , ( 1, 2,3, 4)ix i = are the state variables and , , ,a b c d are unknown system parameters.

The system (13) is hyperchaotic when the parameter values are taken as

35,   3,   12,   1a b c d= = = =

As the slave system, we consider the modified hyperchaotic Zhou dynamics described by
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(14)

where , ( 1, 2,3, 4)iy i = are the state variables and , ( 1, 2,3, 4)iu i = are the nonlinear controllers

to be designed.

The synchronization error is defined by

,   ( 1, 2,3, 4)i i ie y x i= − = (15)

Then the error dynamics is obtained as
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(16)

Let us now define the adaptive control functions 1 2 3 4( ), ( ), ( ), ( )u t u t u t u t as

1 2 1 4 1 1

2 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 1 2 3 2 3 4 4

ˆ( ) ( )( )

ˆ( ) ( )
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ˆ( ) ( ) 0.5( )
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= − + −

= − − − −

(17)

where ˆ ˆˆ ˆ( ), ( ), ( ), ( )a t b t c t d t are estimates of the parameters , , , ,a b c d respectively, and

, ( 1, 2,3, 4)ik i = are positive constants.

Substituting the control law (17) into (16), we obtain the error dynamics as
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2 2 2 2

3 3 3 3

4 1 4 4

ˆ( )( )

ˆ( )

ˆ( )

ˆ( )

e a a e e k e

e c c e k e
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e d d e k e

= − − −
= − −

= − − −

= − −









(18)

We define parameter estimation errors as

ˆ ˆˆ ˆ,   ,   ,a b c de a a e b b e c c e d d= − = − = − = − (19)
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Substituting (19) into (18), the error dynamics simplifies to

1 2 1 1 1

2 2 2 2

3 3 3 3

4 1 4 4

( )a

b

d

e e e e k e

e e e k e

e e e k e

e e e k e

= − −
= −
= − −
= −









(20)

For the derivation of the update law for adjusting the parameter estimates, the Lyapunov
approach is used.

Consider the quadratic Lyapunov function

( )2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
( , , , , , , , ) ,

2a b c d a b c dV e e e e e e e e e e e e e e e e= + + + + + + + (21)

which is a positive definite function on 8.R

Note also that

ˆ ˆˆ ˆ,   ,   ,a b c de a e b e c e d= − = − = − = −      (22)

Differentiating V along the trajectories of (20) and using (22), we obtain

2 2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 3 2

1 4

ˆˆ ˆ( )

ˆ

a b c

d

V k e k e k e k e e e e e a e e b e e c

e e e d

    = − − − − + − − + − − + −     
 + −  

 


(23)

In view of Eq. (23), the estimated parameters are updated by the following law:

1 2 1 5

2
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2
2 7

1 4 8
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ˆ

ˆ

ˆ

a

b

c

d

a e e e k e

b e k e

c e k e

d e e k e

= − +

= − +

= +

= +









(24)

where 5 6 7 8, , ,k k k k are positive constants.

Substituting (24) into (23), we get

2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8a b c dV k e k e k e k e k e k e k e k e= − − − − − − − − (25)

From (25), we find that V is a negative definite function on 8.R

Thus, by Lyapunov stability theory [40], it is immediate that the synchronization error and the
parameter error decay to zero exponentially with time for all initial conditions.
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Hence, we have proved the following result.

Theorem 2. The identical hyperchaotic Zhou systems (13) and (14) with unknown parameters
are globally and exponentially synchronized for all initial conditions by the adaptive control law
(17), where the update law for parameters is given by (24) and , ( 1, ,8)ik i =  are positive

constants. 

4.2 Numerical Results

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the two
systems of differential equations (13) and (14) with the adaptive control law (17) and the
parameter update law (24).

We take the parameter values as in the hyperchaotic case, viz.

35,   3,   12,   1a b c d= = = =

We take the positive constants ,  ( 1, ,8)ik i =  as

5ik = for 1, 2, ,8.i = 

Suppose that the initial values of the estimated parameters are

ˆ ˆˆ ˆ(0) 6,   (0) 10,   (0) 20,    (0) 15a b c d= = = =

We take the initial values of the master system (13) as

1 2 3 4(0) 7,   (0) 5,   (0) 16,   (0) 12x x x x= = − = = −

We take the initial values of the slave system (14) as

1 2 3 4(0) 14,   (0) 28,   (0) 10,   (0) 6y y y y= = = − =

Figure 5 shows the adaptive chaos synchronization of the identical hyperchaotic Zhou systems.

Figure 6 shows the time-history of the synchronization error 1 2 3 4, , , .e e e e

Figure 7 shows the time-history of the parameter estimates ˆˆ ˆ( ), ( ), ( ).a t b t c t

From this figure, it is clear that the parameter estimates converge to the original values
35,   3,   12,   1,a b c d= = = = respectively.

Figure 8 shows the time-history of the parameter estimation errors , , , .a b c de e e e
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Figure 5. Adaptive Synchronization of the hyperchaotic Zhou Systems

Figure 6. Time-History of the Synchronization Error 1 2 3 4, , ,e e e e
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Figure 7. Time-History of the Parameter Estimates ˆ ˆˆ ˆ( ), ( ), ( ), ( )a t b t c t d t

Figure 8. Time-History of the Parameter Estimation Error , , ,a b c de e e e
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5. CONCLUSIONS

In this paper, we derived new results for the adaptive stabilization and synchronization of the
hyperchaotic Zhou system (2009) with unknown system parameters. First, an adaptive
controller law was designed for stabilizing the hyperchaotic Zhou system (2009) to its unstable
equilibrium at the origin. Next, an adaptive synchronizer law was designed for synchronizing
identical hyperchaotic Zhou systems. The main results of this paper on adaptive control and
adaptive synchronization were established using adaptive control theory and Lyapunov stability
theory. Since the Lyapunov exponents are not required for these calculations, the proposed
adaptive control method is very effective and convenient to achieve control and synchronization
of the hyperchaotic Zhou system. Numerical simulations have been provided to validate and
demonstrate the effectiveness of the proposed adaptive control and synchronization schemes.
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