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ABSTRACT

The synchronization of chaotic systems treats a pair of chaotic systems, which are usually called as master
and slave systems. In the chaos synchronization problem, the goal of the design is to synchronize the states
of master and slave systems asymptotically. In the hybrid synchronization design of master and slave
systems, one part of the systems, viz. their odd states, are completely synchronized (CS), while the other
part, viz. their even states, are completely anti-synchronized (AS) so that CS and AS co-exist in the process
of synchronization. This research work deals with the hybrid synchronization of hyperchaotic Xi systems
(2009) and hyperchaotic Li systems (2005). The main results of this hybrid research work are established
with Lyapunov stability theory. MATLAB simulations of the hybrid synchronization results are shown for
the hyperchaotic Xu and Li systems.

KEYWORDS

Hybrid Synchronization, Active Control, Chaos, Hyperchaos, Hyperchaotic Systems.

1. INTRODUCTION

Hyperchaotic systems are nonlinear chaotic systems with two or more positive Lyapunov
exponents. These systems have a lot of miscellaneous applications in Engineering. The
hyperchaotic system was first discovered by the German scientist, O.E. Rössler ([1], 1979).

Hyperchaotic systems possess salient features like high level of security, high level of capacity
and high level of efficiency. Hence, the hyperchaotic systems have important applications in
areas like neural networks [2], oscillators [3], communication [4-5], encryption [6],
synchronization [7], etc.

We note that many methods have been devised for the synchronization of chaotic systems. Some
important methods can be cited as Ott-Grebogi-Yorke method [8], Pecora-Carroll method [9],
backstepping method [10-12], sliding control method [13-15], active control method [16-18],
adaptive control method [19-20], sampled-data control method [21], delayed feedback method
[22], etc.

We describe the hybrid synchronization of a pair of chaotic systems called the master and slave
systems as follows. Here, one part of the systems, viz. the odd states, are completely
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synchronized (CS) and the other part of the systems, viz. the even states, are anti-synchronized so
that both CS and AS can exist together in the hybrid synchronization of the two systems.

This paper focuses upon active controller design for the hybrid synchronization of hyperchaotic
Xu systems ([23], 2009) and hyperchaotic Li systems ([24], 2005). The main results derived in
this paper have been proved using stability theorems of Lyapunov stability theory [25].

2. ACTIVE CONTROL METHODOLOGY

The master system is described by the chaotic dynamics

( )x Ax f x= + (1)

where A is the n n× matrix of the system parameters and : n nf →R R is the nonlinear part.
The slave system is described by the chaotic dynamics

( )y By g y u= + + (2)

where B is the n n× matrix of the system parameters, : n ng →R R is the nonlinear part and
nu ∈R is the active controller to be designed.

Let us define the hybrid synchronization error as

,  if   is odd

,  if   is even
i i

i
i i

y x i
e

y x i

−
=  +

(3)
We can calculate the error dynamics as

1
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∑

∑
 (4)

As mentioned earlier, the research goal is to find a controller u so that

lim ( ) 0
t

e t
→∞

= for all values of (0)e ∈Rn (5)

We apply the matrix Lyapunov method as our methodology.
Hence, we consider a candidate Lyapunov function

( ) ,TV e e Pe= (6)

where P is a positive definite n n× matrix.

We remark that : nV →R R is a positive definite function.
If we find a feedback controller u so that
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( ) ,TV e e Qe= − (7)

where Q is a positive definite matrix, then : nV → R R is a negative definite function.
Thus, the error dynamics (4) is globally exponentially stable by Lyapunov stability theory [25].
Hence, the states of the chaotic systems (1) and (2) will be globally and exponentially

hybrid synchronized for all initial conditions (0), (0) .nx y ∈R

3. HYPERCHAOTIC SYSTEMS

The hyperchaotic Xu system ([23], 2009) has the 4-D dynamics

1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x a x x x

x bx rx x

x cx x x

x x x dx

= − +
= +
= − −
= −









(8)

where , , , ,a b c r d are constant, positive parameters of the system.
The Xu system (8) exhibits a hyperchaotic attractor when the system parameters are taken as

10,    40,   2.5,   16,   2a b c r d= = = = = (9)

The Lyapunov exponents of the 4-D system (8) for the values of parameters in (9) are

1 2 3 41.0088,     0.1063,    0,     13.6191   = = = = − (10)

Note that there are two positive Lyapunov exponents in (10). This shows that the 4-D Xu system
(8) is hyperchaotic for the parametric values (9).
The strange attractor of the hyperchaotic Xu system is displayed in Figure 1.
The hyperchaotic Li system ([24], 2005) has the 4-D dynamics

1 2 1 4

2 1 1 3 2

3 3 1 2

4 2 3 4

( )x x x x

x x x x x

x x x x

x x x x


 



= − +
= − +
= − +
= +









(11)

where , , , ,     are constant, positive parameters of the system.
The Li system (11) exhibits a hyperchaotic attractor when the parameter values are taken as

35,   3,   12,   7,   0.58    = = = = = (12)

The Lyapunov exponents of the 4-D system (11) for the values of the parameters in (12) are

1 2 3 40.5011,     0.1858,    0,     26.1010   = = = = − (13)

Note that there are two positive Lyapunov exponents in (13). This shows that the 4-D Li system
(11) is hyperchaotic for the parametric values (12).
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The strange attractor of the hyperchaotic Li system is displayed in Figure 2.

Figure 1. The State Portrait of the Hyperchaotic Xu System

Figure 2. The State Portrait of the Hyperchaotic Li System

4. ACTIVE CONTROL DESIGN FOR THE HYBRID SYNCHRONIZATION OF

HYPERCHAOTIC XU SYSTEMS

In this section, we design an active controller for the hybrid synchronization of two identical
hyperchaotic Xu systems (2009) and establish our main result using Lyapunov stability theory.
The hyperchaotic Xu system is taken as the master system. The dynamics of the master system is
given by
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1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x a x x x

x bx rx x

x cx x x

x x x dx

= − +
= +
= − −
= −









(14)

where , , ,a b c d are positive parameters of the system and 4x ∈R is the state of the system.
The hyperchaotic Xu system is also taken as the slave system. The dynamics of the slave system
is given by

1 2 1 4 1

2 1 1 3 2

3 3 1 2 3

4 1 3 2 4

( )y a y y y u

y by ry y u

y cy y y u

y y y dy u

= − + +
= + +
= − − +
= − +









(15)

where 4y∈R is the state and 1 2 3 4, , ,u u u u are the active controllers to be designed.

We consider the hybrid synchronization problem for the systems (14) and (15).
Hence, the hybrid synchronization error e is defined as follows:

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −
= +
= −
= +

(16)

When we calculate the error dynamics, we obtain

1 2 1 4 2 4 1

2 1 1 1 3 1 3 2

3 3 1 2 1 2 3

4 2 1 3 1 3 4

( ) 2 2

2 ( )

e a e e e ax x u

e be bx r y y x x u

e ce y y x x u

e de y y x x u

= − + − − +
= + + + +
= − − + +
= − + + +









(17)

Let the active controller for achieving hybrid synchronization be taken as

1 2 1 4 2 4 1 1

2 1 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 2 1 3 1 3 4 4

( ) 2

2 ( )

u a e e e ax x k e

u be bx r y y x x k e

u ce y y x x k e

u de y y x x k e

= − − − + + −
= − − − + −
= + − −
= − − −

(18)

where ,  ( 1,2,3,4)ik i = are constants having positive values.

The error dynamics is simplified by the substitution of (18) into (17), and we obtain
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1 1 1

2 2 2

3 3 3

4 4 4

e k e

e k e

e k e

e k e

= −
= −
= −
= −









(19)

Theorem 4.1 The active control law defined by Eq. (18) achieves global and exponential hybrid
synchronization of the identical hyperchaotic Xu systems (14) and (15) for all initial conditions

4(0), (0) .x y ∈R

Proof. The proof is via Lyapunov stability theory [25] for global exponential stability.
As a candidate Lyapunov function , we consider the quadratic function defined by

( )2 2 2 2
1 2 3 4( )

1 1
,

2 2
TV e e e e e e e= = + + + (20)

Note that V is a positive definite function on 4.R
Next, we differentiate (18) along the trajectories of (17).
A simple calculation gives

2 2 2 2
1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − − (21)

Note that V is a negative definite function on 4.R
By Lyapunov stability theory [25], the error dynamics (19) is globally exponentially stable for all

values of 4(0) .e ∈R

This completes the proof. 
Next, we illustrate our hybrid synchronization results with MATLAB simulations.
The classical fourth order Runge-Kutta method with time-step 810h −= has been applied to solve
the hyperchaotic Xu systems (14) and (15) with the active nonlinear controller (18).
The feedback gains in the active controller (18) are chosen as follows.

We take 5,  ( 1,2,3,4).ik i= =

The parameters of the hyperchaotic Xu systems are taken as in the hyperchaotic case, i.e.

10,    40,   2.5,   16,   2a b c r d= = = = =

For simulations, the initial conditions of the hyperchaotic Xu system (14) are chosen as

1 2 3 4(0) 21,   (0) 7,   (0) 22,   (0) 14x x x x= = = = −

Also, the initial conditions of the hyperchaotic Xu system (15) are chosen as

1 2 3 4(0) 12,   (0) 11,   (0) 20,   (0) 27y y y y= = − = − =

Figure 3 depicts the hybrid synchronization of the identical hyperchaotic Xu systems.
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Figure 4 depicts the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e

Figure 3. Hybrid Synchronization of Identical Hyperchaotic Xu Systems

Figure 4. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e
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5. ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION

DESIGN OF HYPERCHAOTIC LI SYSTEMS

This section deals with the design of an active controller for the hybrid synchronization of two
identical hyperchaotic Li systems (2005). In this section, we establish our main result using
Lyapunov stability theory.

The hyperchaotic Li system is taken as the master system. Thus, the dynamics of the master
system is given by

1 2 1 4

2 1 1 3 2

3 3 1 2

4 2 3 4

( )x x x x

x x x x x

x x x x

x x x x


 



= − +
= − +
= − +
= +









(22)

where , , , ,     are positive parameters of the system and 4x ∈R is the state of the system.
The hyperchaotic Li system is taken as the slave system. The dynamics of the slave system is
given by

1 2 1 4 1

2 1 1 3 2 2

3 3 1 2 3

4 2 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u


 




= − + +
= − + +
= − + +
= + +









(23)

where 4y∈R is the state and 1 2 3 4, , ,u u u u are the active controllers to be designed.

For the hybrid synchronization, the error e is defined as

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −
= +
= −
= +

(24)

We obtain the error dynamics as

1 2 1 4 2 4 1

2 1 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 2 3 2 3 4

( ) 2 2

2

e e e e x x u

e e x e y y x x u

e e y y x x u

e e y y x x u

 
  



= − + − − +
= + + − − +
= − + − +
= + + +









(25)

We choose the active controller for achieving hybrid synchronization as
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1 2 1 4 2 4 1 1

2 1 1 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 4 2 3 2 3 4 4

( ) 2 2

2

u e e e x x k e

u e x e y y x x k e

u e y y x x k e

u e y y x x k e

 
  



= − − − + + −
= − − − + + −
= − + −
= − − − −

(26)

where ,  ( 1,2,3,4)ik i = are positive gains.

The error dynamics is simplified by the substitution of (26) into (25), and we obtain

1 1 1

2 2 2

3 3 3

4 4 4

e k e

e k e

e k e

e k e

= −
= −
= −
= −









(27)

Theorem 5.1 The active control law defined by Eq. (26) achieves global and exponential hybrid
synchronization of the identical hyperchaotic Li systems (22) and (23) for all initial conditions

4(0), (0) .x y ∈R

Proof. The proof is via Lyapunov stability theory [25] for global exponential stability.
As a candidate Lyapunov function, we take the quadratic function

( )2 2 2 2
1 2 3 4( )

1 1
,

2 2
TV e e e e e e e= = + + + (28)

Note that V is a positive definite function on 4.R
Next, we differentiate (26) along the trajectories of (25). A simple calculation gives

2 2 2 2
1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − − (29)

Note that V is a negative definite function on 4.R
Hence, by Lyapunov stability theory, the error dynamics (27) is globally exponentially stable for

all values of 4(0) .e ∈R 

Next, we illustrate our hybrid synchronization results with MATLAB simulations.
The classical fourth-order Runge-Kutta method with time-step 810h −= has been applied to solve
the hyperchaotic Li systems (22) and (23) with the active controller defined by (26).

The feedback gains in the active controller (26) are taken as follows. Let 5,  ( 1,2,3,4).ik i= =
We take the parameters of the hyperchaotic Li systems as

35,   3,   12,   7,   0.58    = = = = =

For simulations, the initial conditions of the hyperchaotic Li system (22) are chosen as

1 2 3 4(0) 15,   (0) 26,   (0) 14,   (0) 5x x x x= = − = − =
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Also, the initial conditions of the hyperchaotic Li system (23) are chosen as

1 2 3 4(0) 27,   (0) 18,   (0) 10,   (0) 24y y y y= = = = −

Figure 5 depicts the hybrid synchronization of the identical hyperchaotic Li systems.
Figure 6 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e

Figure 5. Hybrid Synchronization of Identical Hyperchaotic Li Systems

Figure 6. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e
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6. ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF

HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS

In this section, we design an active controller for the hybrid synchronization of hyperchaotic Xu
system (2009) and hyperchaotic Li system (2005) and establish our main result using Lyapunov
stability theory.
The hyperchaotic Xu system is taken as the master system, whose dynamics is given by

1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x a x x x

x bx rx x

x cx x x

x x x dx

= − +
= +
= − −
= −









(30)

where , , , ,a b c d r are positive parameters of the system and 4x ∈R is the state of the system.
The hyperchaotic Li system is taken as the slave system, whose dynamics is given by

1 2 1 4 1

2 1 1 3 2 2

3 3 1 2 3

4 2 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u


 




= − + +
= − + +
= − + +
= + +









(31)

where , , , ,     are positive parameters of the system, 4y∈R is the state and 1 2 3 4, , ,u u u u are

the active controllers to be designed.
For the hybrid synchronization, the error e is defined as

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −
= +
= −
= +

(32)

We obtain the error dynamics as

1 2 1 2 1 4 4 1

2 1 2 1 1 3 1 3 2

3 3 3 1 2 1 2 3

4 4 2 2 3 1 3 4

( ) ( ) 2e y y a x x e x u

e y y bx y y rx x u

e y cx y y x x u

e y dx y y x x u


 



= − − − + − +
= + + − + +
= − + + + +
= − + + +









(33)

We choose the active controller for achieving hybrid synchronization as

1 2 1 2 1 4 4 1 1

2 1 2 1 1 3 1 3 2 2

3 3 3 1 2 1 2 3 3

4 4 2 2 3 1 3 4 4

( ) ( ) 2u y y a x x e x k e

u y y bx y y rx x k e

u y cx y y x x k e

u y dx y y x x k e


 



= − − + − − + −
= − − − + − −
= − − − −
= − + − − −

(34)
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where ,  ( 1,2,3,4)ik i = are positive gains.

The error dynamics is simplified by the substitution of (34) into (33), and we obtain

1 1 1

2 2 2

3 3 3

4 4 4

e k e

e k e

e k e

e k e

= −
= −
= −
= −









(35)

Theorem 6.1 The active control law defined by Eq. (33) achieves global and exponential hybrid
synchronization of the hyperchaotic Xu system (30) and hyperchaotic Li system (31) for all initial

conditions 4(0), (0) .x y ∈R
Proof. The proof is via Lyapunov stability theory [25] for global exponential stability.
As a candidate Lyapunov function, we consider the quadratic function

( )2 2 2 2
1 2 3 4( )

1 1
,

2 2
TV e e e e e e e= = + + +

(36)

Note that V is a positive definite function on 4.R
Next, we differentiate (34) along the trajectories of (33). A simple calculation gives

2 2 2 2
1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − − (37)

Note that V is a negative definite function on 4.R
Hence, by Lyapunov stability theory [25], the error dynamics (35) is globally exponentially stable

for all values of 4(0) .e ∈R 
Next, we illustrate our hybrid synchronization results with MATLAB simulations.

The feedback gains in the active controller (34) are taken as follows. Let 5,  ( 1,2,3,4).ik i= =
The parameters of the hyperchaotic Xu and hyperchaotic Li systems are considered as in the
hyperchaotic case. Thus, we take

10,    40,   2.5,   16,   2,  35,   3,   12,   7,   0.58a b c r d     = = = = = = = = = =

For simulations, the initial conditions of the hyperchaotic Xu system (30) are chosen as

1 2 3 4(0) 27,   (0) 4,   (0) 13,   (0) 18x x x x= = = − =

Also, the initial conditions of the hyperchaotic Li system (31) are chosen as

1 2 3 4(0) 14,   (0) 28,   (0) 24,   (0) 5y y y y= = − = = −

Figure 7 depicts the hybrid synchronization of the non-identical hyperchaotic Xu and
hyperchaotic Li systems.
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Figure 8 depicts the time-history of the hybrid synchronization errors 1 2 3 4, , , .e e e e

Figure 7. Hybrid Synchronization of Hyperchaotic Xu and hyperchaotic Li Systems

Figure 8. Time-History of the Hybrid Synchronization Errors 1 2 3 4, , ,e e e e

7. CONCLUSIONS

This paper derived new results for the active controller design for the hybrid synchronization of
hyperchaotic Xu systems (2009) and hyperchaotic Li systems (2005). Using Lyapunov control
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theory, active control laws were derived for globally hybrid synchronizing the states of identical
hyperchaotic Xu systems, identical hyperchaotic Li systems and non-identical hyperchaotic Xu
and Li systems. MATLAB simulations were displayed in detail to demonstrate the hybrid
synchronization results derived in this paper for hyperchaotic Xu and Li systems.

REFERENCES

[1] Rössler, O.E. (1979) “An equation for hyperchaos,” Physics Letters A, Vol. 71, pp 155-157.
[2] Huang, Y. & Yang, X.S. (2006) “Hyperchaos and bifurcation in a new class of four-dimensional

Hopfield neural networks,” Neurocomputing, Vol. 69, pp 13-15.
[3] Machado, L.G., Savi, M.A. & Pacheco, P.M.C.L. (2003) “Nonlinear dynamics and chaos in coupled

shape memory oscillators,” International Journal of Solids and Structures, Vol. 40, No. 19, pp. 5139-
5156.

[4] Tao, Y. (1999) “Chaotic secure communication systems – history and new results”, Telecommun.
Review, Vol. 9, pp 597-634.

[5] Li, C., Liao, X. & Wong, K.W. (2005) “Lag synchronization of hyperchaos with applications to
secure communications,” Chaos, Solitons & Fractals, Vol. 23, No. 1, pp 183-193.

[6] Prokhorov, M.D. & Ponomarenko, V.I. (2008) “Encryption and decryption of information in chaotic
communication systems governed by delay-differential equations,” Chaos, Solitons & Fractals, Vol.
35, No. 5, pp 871-877.

[7] Yassen, M.T. (2008) “Synchronization hyperchaos of hyperchaotic systems”, Chaos, Solitons and
Fractals, Vol. 37, pp 465-475.

[8] Ott, E., Grebogi, C. & Yorke, J.A. (1990) “Controlling chaos”, Phys. Rev. Lett., Vol. 64, pp 1196-
1199.

[9] Pecora, L.M. & Carroll, T.L. (1990) “Synchronization in chaotic systems”, Phys. Rev. Lett., Vol. 64,
pp 821-824.

[10] Bowong, S. & Kakmeni, F.M.M. (2004) “Synchronization of uncertain chaotic systems via
backstepping approach,” Chaos, Solitons & Fractals, Vol. 21, No. 4, pp 999-1011.

[11] Suresh, R, & Sundarapandian, V. (2012) “Global chaos synchronization of WINDMI and Coullet
chaotic systems by backstepping control”, Far East J. Math. Sciences, Vol. 67, No. 2, pp 265-287.

[12] Suresh, R. & Sundarapandian, V. (2012) “Hybrid synchronization of n-scroll Chua and Lur’e chaotic
systems via backstepping control with novel feedback”, Arch. Control Sciences,  Vol. 22, No. 3, pp
255-278.

[13] Senejohnny, D.M. & Delavari, H. (2012) “Active sliding observer scheme based fractional chaos
synchronization,” Comm. Nonlinear Sci. Numerical Simulation, Vol. 17, No. 11, pp 4373-4383.

[14] Sundarapandian, V. (2012) “Anti-synchronization of hyperchaotic Xu systems via sliding mode
control”, International Journal of Embedded Systems, Vol. 2, No. 2, pp 51-61.

[15] Sundarapandian, V. (2013) “Anti-synchronizing sliding controller design for identical Pan systems,”
International Journal of Computational Science and Information Technology, Vol. 1, No. 1, pp 1-9.

[16] Huang, L. Feng, R. & Wang, M. (2004) “Synchronization of chaotic systems via nonlinear control,”
Physics Letters A, Vol. 320, No. 4, pp 271-275.

[17] Lei, Y., Xu, W. & Zheng, H. (2005) “Synchronization of two chaotic nonlinear gyros using active
control,” Physics Letters A, Vol. 343, pp 153-158.

[18] Sarasu, P. & Sundarapandian, V. (2011) “Active controller design for generalized projective
synchronization of four-scroll chaotic systems”, International Journal of System Signal Control and
Engineering Application, Vol. 4, No. 2, pp 26-33.

[19] Sundarapandian, V. (2012) “Adaptive control and synchronization of a generalized Lotka-Volterra
system,” Vol. 1, No. 1, pp 1-12.

[20]Sundarapandian, V. (2013) “Adaptive controller and synchronizer design for hyperchaotic Zhou
system with unknown parameters,” Vol. 1, No. 1, pp 18-32.

[21] Zhao, J. & Lü, J. (2006) “Using sampled-data feedback control and linear feedback synchronization
in a new hyperchaotic system,” Chaos, Solitons & Fractals, Vol. 35, pp. 376-382.

[22] Ma, H., Deshmukh, V., Butcher, E. & Averina, V. (2005) “Delayed state feedback and chaos control
for time-periodic systems via a symbolic approach”, Communications in Nonlinear Science and
Numerical Simulation, Vol. 10, No. 5, pp 479-497.



International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.2, May 2013

35

[23] Xu, J., Cai, G. & Zheng, S. (2009) “A novel hyperchaotic system and its control”, Journal of
Uncertain Systems, Vol. 3, No. 2, pp 137-144.

[24] Li, Y., Tang, W.K.S. & Chen, G. (2005) “Generating hyperchaos via state feedback control”,
International Journal of Bifurcation and Chaos,  Vol. 15, No. 10, pp 3367-3375.

[25] Hahn, W. (1967) The Stability of Motion, Springer, Berlin.

AUTHOR

Dr. V. Sundarapandian earned his D.Sc. in Electrical and Systems Engineering from
Washington University, St. Louis, USA in May 1996. He is Professor and Dean of the R
& D Centre at Vel Tech Dr. RR & Dr. SR Technical University, Chennai, Tamil Nadu,
India. So far, he has published over 310 research works in refereed international journals.
He has also published over 200 research papers in National and International Conferences.
He has delivered Key Note Addresses at many International Conferences with IEEE and
Springer Proceedings. He is an India Chair of AIRCC. He is the Editor-in-Chief of the
AIRCC Control Journals – International Journal of Instrumentation and Control Systems,
International Journal of Control Theory and Computer Modelling, International Journal of Information
Technology, Control and Automation, International Journal of Chaos, Computing, Modelling and
Simulation & International Journal of Information Technology, Modeling and Computing. His research
interests are Control Systems, Chaos Theory, Soft Computing, Operations Research, Mathematical
Modelling and Scientific Computing. He has published four text-books and conducted many workshops on
Scientific Computing, MATLAB and SCILAB.


