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ABSTRACT 
 
Water-filling is the power allocation that maximizes the parallel-channel eigen-MIMO information-

theoretic capacity. However, for practical designs, designing for error performance is also important. The 

overall uncoded error rate, in a system with water-filled eigen-channels using digital modulation, degrades 

through the errors in the data that uses the weaker eigen-channels. This is because in water-filling, a lower 

transmit power is allocated (and a lower proportion of the overall capacity) to the weaker eigenchannels. 

One general solution is to discard the weaker eigen-channels, but this does still not allow simple control 

over the values of, or trade-off between, capacity and the error rate. In this paper a design approach is 

presented for the control of, and improvement in, the overall error performance, while maintaining the 

ergodic capacity as high as possible. The approach is direct; the eigen-channel power allocation is 

optimized for capacity maximization constrained by a desired error performance on the eigenchannels via 

constraints on their SNRs. A useful feature is that the capacity and the error performance can be managed 

through the eigen-channel SNR constraint. Statistical simulations with Rayleigh channels quantify the 

significant SER improvement compared to full eigen-MIMO (maximum number of eigen-channels) with 

water-filling, when using a fixed modulation set. This set comprises pre-chosen constellations for a 

constant number of eigen-channels, and this remains fixed for the all the channel realizations, i.e., with 

time for the time-varying channel. The improvement in error performance is at the expense of a small loss 

in capacity. 

 

KEYWORDS 
 
MIMO; water-filling; convex optimization; eigen-channel; ergodic capacity; MIMO capacity 

 

1. INTRODUCTION 

 
Open-loop multiple-input multiple-output (MIMO) systems have the practical advantage of not 

requiring channel knowledge at the transmitter. But this practical advantage comes with a 

performance penalty because joint optimization between the transmitter and receiver is not fully 

deployed. When channel state information (CSI) is available at the transmitter, as assumed in this 

paper, MIMO performance can be improved based on a desired optimization criterion such as 

capacity, average error rate, etc.  

 

Several jointly optimal linear precoder and decoder (LPD) designs, also called beamformers, 

based on perfect channel knowledge at the transmitter, are presented in the literature. These are 

too numerous to list here, but representative examples are [1]-[12]. The work in [1] includes the 

design that maximizes output SNR, which is called dominant eigenmode transmission. It  
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transmits only via the strongest eigenchannel, so the power allocation is trivial and the design is 

very practical. Water-filled power allocation (i.e., with the total power constrained) for capacity 

maximization, is presented in [2] and [3]. For Rayleigh channels, the majority of the available 

capacity is available by deploying just one or a few of the available eigenchannels [4]. The 

optimal design that minimizes the overall error rate allocates the power on the eigenchannels 

according to an inverse water-filling policy [5], [6]. A different approach based on inverse SNR 

(or equivalently, mean squared estimation error) between the input and output of each 

eigenchannel is studied in [5], [7]. A general solution is a weighted sum of inverse SNRs and 

leads to a number of well-known solutions depending on the choice of weights [7]. The optimum 

design that maximizes SNR subject to a zero-forcing constraint is also considered in [6]. An 

optimal LPD design in [8] is for minimizing the pairwise error probability (PEP) with the total 

transmit power constraint. Minimization of the geometric mean square error, defined as the 

determinant of the error covariance matrix, is treated in [9]. Capacity maximization with a peak 

power constraint is treated in [10].  

 

There are many other specialized schemes (e.g. [11]-[14] with channel estimation and imperfect 

feedback), but the basic principles appear in different forms from different disciplines 

(information theory, signal processing, communications theory and techniques, adaptive antennas, 

etc.). However, there are practical shortcomings with each type of optimized LPD design. For 

offering insight into MIMO configurations that are practical but can still maintain high 

performance, formulations are required that lie between the limiting capacity, and, for example, 

the existing constrained design examples of [1]-[12].  

 

As an example, using water-filling in practice (i.e., with digital modulations), causes the uncoded 

error performance to deteriorate with the weakest eigenchannel. Although the weaker eigen-

channels contribute weakly to the overall capacity, the large difference between the average SNR 

of the strongest eigenchannel and the average SNR on the lowest eigenchannel can cause 

disproportionate error rates across the eigen-channels. In this sense, the overall error rate is 

dominated by the weakest eigen-channel. For example, in a 33  system with water-filling, the 

difference between the average SNR on the strongest eigenchannel and the average SNR on the 

lowest eigenchannel is approximately 13.5 dB when the average SNR at each receive antenna is 

20 dB. This difference increases to 16.8 dB in a 44  system. As a result, full eigen-MIMO 

systems with water-filling (i.e. with maximized capacity without an error performance constraint) 

have a weak uncoded SER performance which is may not be desirable in practice.  

 

A preferred system has good reliability and high throughput, simultaneously. One solution is to 

deploy only the strong eigen-channels, but it is still not straightforward to control the capacity and 

SER. Also, the highest possible capacity cannot always be guaranteed for a desired output SER 

performance - it is well-known that these quantities trade-off with each other. For the simple 

example of a 22  MIMO with the fixed  modulation set (see below) and a target overall SER of 
310 , the dominant eigenmode transmission is not the scheme for the highest capacity (seen via 

simulation below, for 25 dB SNR).   

 

In this paper, the capacity and reliability (the uncoded SER), are determined together. The method 

is to constrain the eigenchannel SNRs for reliability (maximum error rate) and seek a power 

allocation over the eigenchannels for the highest capacity. First, an optimization problem is 

addressed for maximizing the capacity with the total transmit power constraint and a maximum 

allowable SNR reduction (loss of SNR relative to known average SNR at each receiver) imposed 

on the eigenchannels - a quantity controlled by the system designer. The optimal power allocation 

is obtained via convex optimizations with inequality constraints [16]. The use of convex 

optimization itself is not new – it has become a standard tool in MIMO systems design over the 

last decade. Then, based on the SNR at each receiver and the maximum allowable SNR loss, the 
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best power allocation scheme is selected from the presented optimization, water-filling and 

dominant eigenmode transmission for the highest capacity. One feature of the approach is that the 

position of the capacity between the bounds can be controlled by appropriately setting the 

maximum allowable SNR loss.  

 

The simulation results demonstrate an improvement in the SER performance over the case with 

water-filling, using a fixed modulation set in a 22  MIMO system (a choice of QAM is assigned 

to eigenchannel 1 and BPSK to eigenchannel 2). In general, fixed-set modulation has different 

constellations assigned to a fixed number of eigenchannels, all the time. Fixed-common 

modulation, in which the same constellation is assigned to all the eigenchannels, is a special case 

of fixed-set modulation. In other words, unlike adaptive modulation, the modulation over the 

ordered eigenchannels does not change for different channel realizations. The advantage of the 

fixed-set modulation over adaptive modulation is the reduced complexity in both hardware and 

required protocol support. The setting-up of adaptive modulation, particularly in a large multi-

user network, can lead to a large capacity overhead in the system, e.g.  [15]. Finally, in discussing 

reliability via the error performance of a practical system, the role of data coding is important, but 

it is not yet possible to optimize eigen-MIMO with general coding.  

 

The rest of the paper is organized as follows. Section II describes the eigen-MIMO system model. 

The problem of capacity maximization with SNR constraint is addressed in section III, with the 

simulation results presented in section VI, and section V is the conclusion. The notation is 

conventional: vectors are lower case letters and matrices are in bold upper case, with  H
 ,  T

  

and  *
  meaning conjugate transpose, transpose, and complex conjugate, respectively; I  is the 

identity matrix; and  E  denotes expectation. 

 

2. CLOSED-LOOP MIMO SYSTEM MODEL 

 
Consider a MIMO quasi-static, flat block-fading channel with M  transmit and N  receive 

antennas. The channel is modeled by a random (fading) distribution which remains static over a 

fading block cycle, but becomes independent across different blocks. A beamformer W , derived 

using channel knowledge at the transmitter, is shown in Fig. 1. 
 

W
x s

Channel : H

v

y
Decoder

Perfect Feedback

 
 

Figure 1. An ideal, closed-loop MIMO system with a transmit beamformer for using channel knowledge 

which has ideal feedback from the receiver. The ideal feedback link is not part of the capacity calculation 

for the forward link. 

 

At each symbol time, the 1M  data vector signal to be transmitted, x , is multiplied  by the 

MM    weight   matrix W ,  before  transmission. With perfect timing, etc., the MIMO system 

is modeled in the usual way with notation 

 

                                                   vsHvxWHy 






MM

                                           (1) 
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where y  is the 1N  received signal vector, H  is the channel matrix  with  )1,0(~)(
,

CN
ji

H ,   

is  the known average SNR at each receive antenna, and v ~ )1,0(CN  is the additive noise. With 

M

HE Ixx   and xWs  , the covariance matrix of the transmitted signal is given by 

HHE WWssR
ss

 . From the total average transmit power constraint, W  satisfies 

M
F


ss

RW tr
2

, so with xWs  , we have ME H sstr . 

 

3. EIGEN-MIMO CAPACITY MAXIMIZATION 

 
The capacity of a sample realization of the channel is first addressed. The ergodic capacity is the 

ensemble average of the capacity achieved when the optimization is performed for each 

realization of H , i.e. 
H

CEC  . The information theoretic capacity with a fixed channel H  is 

defined as [3] 

                                    






 




H

N

MEp M
IC

H

HHRIy);s
ss

sss
H

s

detlogmax(max
2

tr)(

                           (2) 

 

where )(s
s

p  is the probability density function of the vector s , and )( y;sI  is the mutual 

information between s  and y .  

 

The matrix H  with rank  NMr ,min  can be rewritten as H
VUΛH

2/1  where V  and U  are 

the unitary matrices containing the corresponding input and output singular vectors, respectively 

and 2/1
Λ  is a non-negative MN   diagonal matrix with ith diagonal element as 

2/1

i  (the square 

root of ith eigenvalue). In addition the diagonal elements satisfy 1 ii .  As a result, 

HH
VVHH  , and   

                                        






 




2/12/1

2

tr

detlogmax VΛRVΛI
ss

ss

H

H

N

ME M
C

H

.                                (3) 

 

Also, note that VRVR
ssss

H
~

is non-negative definite, and 
ssss

RR tr
~

tr  . Thus, the 

maximization over 
ss

R  with ME H sstr , can be over 
ss

R
~

 with ME H ss~~tr . Moreover, 

since for any non-negative definite matrix A ,   iii ,det AA  , so 

 

                                            


















 


i
iiiN

MM
,

2/12/1 ~
1

~
det

ssss
RΛRΛI                                (4) 

 

with the equality for when 
ss

R
~

 is diagonal. Therefore      

                 

                                                     















r

i
ii

ME

p
M

C
H

1
2~~tr

1logmax
ss

H                                        (5) 

 

where  
iii

p
,

~
ss

R , and the optimum design corresponds to the SNR on the eigenchannels. The 

above results set the scene and are known. The remaining problem is the optimal power allocation 

under SNR constraint. 
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3.1. Optimal Power with SNR Constraint 

 
Here, the rL 2  strongest eigenchannels are deployed, and their SNRs are constrained as 

 

                                        LjSNR SNRj ,...,1;)(dB)(dB)((dB)

(dB)





  
                                       (6) 

 

where 
SNR
   is  the  maximum difference between the SNR on the eigenchannels and the average 

SNR at each receive antenna,  . In other words, the approach guarantees that the SNR loss on 

each eigenchannel is smaller than 
SNR
 . Thus, in this optimization problem, there are L  

inequality constraints, 10/(dB)10)/( 
jj

pM , in (6) as well as one equality constraint, 

Mp
i
 . The optimization problem now becomes    

 

                                    

 

Mp

LjpM

pMpppf

L

i i

jj

L

i
iiL

ppp L















1

1
2210

,...,,

,...,1;)/(tosubject

)/(1log),...,,(maximize
21

                               (7) 

 

where the objective for the maximization, i.e.,   


L

i ii
pM

1 2
)/(1log , is concave in the 

variable Lip
i

,...,1;  . Equivalently, we can rewrite (7) as 

 

                                   

 

Mp

LjpMpppf

pMpppf

L

i i

jjLj

L

i
iiL

ppp L















1

21

1
2210

,...,,

,...,1;0)/(),...,,(tosubject

)/(1log),...,,(minimize
21

                          (8)   

               

where
L

fff ...,,,
21

 are convex real functions of Lip
i

,...,1;  . In fact, (8) is a convex optimization 

problem that includes inequality constraints. A particular interior-point algorithm called the 

logarithmic barrier method [16] is used here to solve the problem (8). The first step is to rewrite 

(8), making the inequality constraints implicit in the objective 

 

                                       

Mp

pppfgpppf

L

i i

L

j
LjL

ppp L













1

1
21210

,...,,

tosubject

)),...,,((),...,,(minimize
21                                (9) 

 

where :g  is the indicator function  for the nonpositive reals, 

 

                                                            









0;

0;0
)(

u

u
ug  .                                                      (10) 

The problem (9) has no inequality constraint, but its objective function is not differentiable, so 

descent methods (e.g, Newton’s method, etc.) cannot be applied. The logarithmic barrier method 

approximates the indicator function, g , by the function 

 

                                                           )(log)/1()(ˆ
10

utug                                                     (11) 
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where 0t  is a parameter that sets the accuracy of the approximation. Like g , the function ĝ  is 

convex and nondecreasing, and becomes   for 0u . Unlike g , however, ĝ  is differentiable  

and  increases  to    as  u   increases  to  zero. As t  increases, the approximation becomes more 

accurate. Substituting ĝ  for g  in (9) gives 

  

                               

Mp

pppftpppf

L

i i

Lj

L

j
L

ppp L













1

21
1

10210
,...,,

tosubject

)),...,,((log)/1(),...,,(minimize
21                       (12)    

         

The objective here is convex since )(log)/1(
10

ut   is convex and increasing in u , and it is 

differentiable. The function  


L

j LjL
pppfppp

1 211021
)),...,,((log),...,,(  is called the 

logarithmic barrier or log barrier for the problem (12). Its domain is the set of points that satisfy 

the inequality constraints of (8) strictly. Denoting ),...,,( optopt

2

opt

1 L
ppp  as the solution of (12), it is 

shown [16; page 563] that ),...,,( optopt

2

opt

1 L
ppp  is no more than L/t-suboptimal. This suggests a 

straightforward method for solving the original problem (8), with a specified accuracy   by 

taking  /Lt .  

 

The next step is to solve the equality constraint problem (12), by eliminating the equality 

constraint and then solve the resulting unconstrained problem using methods for unconstrained 

minimization. 
1

p  (for example) can be eliminated using the parameterization,  


L

i i
pMp

21 . 

The reduced problem is then 

 

                                  

   





















L

j
jj

L

i i

L

i
ii

L

i i

L
ppp

pMpMM

pMpMMt

ppp
L

2
102110

2
2212

32
,...,,

)/(log)()/(log

)/(1log)()/(1log

),...,,(minimize
32

                 (13)   

                                                                                         

where the objective is now multiplied by t . Since an affine function of a convex function is also 

convex, eliminating equality constraints preserves convexity. Moreover, the elimination of the 

equality constraints involves linear algebraic operations. Thus, (13) and (12) are equivalent. Since  

),...,,(
32 L

ppp  is differentiable, a sufficient condition for a point ),...,,( optopt

3

opt

2 L
ppp  to be optimal 

is 

                                                           0),...,,( optopt

3

opt

2


L
ppp                                                  (14) 

 

where ).(   denotes  the  gradient  operator. Thus solving the unconstrained minimization 

problem (13) is the same as finding a solution of (14), which is a set of 1L  equations in the 

1L  variables 
L

ppp ,...,,
32

. There is no analytical solution to the optimality problem (14) and so 

the problem is solved iteratively, for example using gradient descent: 

 

                                                                )()()1( nnn
pp                                                     (15) 

 

where  Tn

L

nnn ppp )()(

3

)(

2

)( p is the solution vector point at nth iteration and 
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 


















































kk

k

L

j j

kk

k

L

j jkLk

k

pM

M

pMM

M

pM

M

pMM

Mt

p

)/(

)/(

))(/(

)/(

)/(1

)/(

)()/(1

)/(

log

12

1

21

1

2

10,... ,2

1,1

.                 (16)   

          

In (15), )(n  is the step size at iteration n, chosen via a simple inexact line search called a 

backtracking line search. In the terminology of iterative methods, the convergence of the gradient 

descent algorithm using the backtracking line search is at least linear [16]. The stopping 

convergence criteria of an iterative algorithm such as (15) is usually of the form  , where 

  is small and positive, as suggested by the suboptimality condition [16]. The stopping criterion 

is often checked immediately after the descent direction,  , is computed.  

 

The method also requires a suitable starting point )0(
p . The objective function in (13) is convex 

only on the region that the inequality constraints Ljpppf
Lj

,...,1;0),...,,(
21

  are satisfied. As 

a result the objective function (14) is not convex over the whole work space 

 MppMpppp
L

j jj

L

L
S   



21

1

32
;0),...,,(  of the iterative algorithm used here. Since 

the objective function ),...,,(
32 L

ppp  may have several local minima, the work space S  is 

divided into D  distinct subspaces and the iterative algorithm is run with different starting point 

candidates chosen from different subspaces. For example, with uniform gridding of the work 

space and splitting the interval for 
j

p  into q equal, distinct segments, we get, at most, 1 LqD  

subspaces.  Then, the  converged  results  are  compared  to see which one is  the global minima. 

Denoting )(c

d
p  as the convergent point associated with the starting point chosen from the dth 

segment, the optimum point allocation is set as 

 

                                               TcT

L
pppp ][][ )(

opt

opt

1

optopt

2

opt

1

opt
pp                                       (17) 

 

with                                                     )(minarg )(

,.. . ,1

)(

opt )(

c

d

Dd

c

c
d

pp
p





.                                                (18) 

 

In practice, MIMO systems with 4N  are of immediate interest, and simulations suggest that 

for any 4N , 1 Nq  suffices to avoid local convergence using the above procedure. Finally, 

we get  





L

i iip
M

C
1

opt

2
)1(log

H
 and the optimal beamformer opt

W  is obtained    from   

H
WWR

ss
    and 

H
VRVR

ssss

optopt ~
  as  2/1optopt )

~
ss

RV(W  . 

 

3.2. Selection from Different Power Allocation Schemes 

 
In general, the presented optimization in (7) does not maximize the ergodic capacity for all values 

of system parameters  , and 
SNR
 . (this can be seen in the simulations below.) The designer may 

choose from different power allocation schemes with the metric of ergodic capacity constrained 

by a maximum allowable SNR loss 
SNR
  (in dB). The designer picks 

SNR
  according to the 

desired capacity and SER system performances, i.e., capacity and SER are traded off through this 

parameter. 
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The different power allocation schemes for selection are from: the presented optimization; the 

water-filling schemes applied to different number of eigenchannels, 2L ; and the dominant 

eigenmode transmission. The selection procedure is as follows. For each value of 
SNR
 , the best 

power allocation scheme, along with the best choice for L  that achieves the highest capacity, is 

selected from the Capacity–
SNR
  plane. This selection guarantees that the average SNR loss on 

each eigenchannel would be smaller than 
SNR
 . 

 

4. SIMULATION RESULTS 

 
To evaluate the performance of the above approach, a 22  and a 33  MIMO system are 

simulated, but the formulation is applicable to any MN   MIMO system. In addition, throughout 

the simulations, the theoretical ergodic capacities of water-filled eigen-MIMO and dominant 

eigenmode transmission are used as benchmarks.  

 

 Figure 2 plots the ergodic capacity (in bits per channel use) versus the SNR loss 
SNR
 (dB) for a 

33  MIMO system using the presented optimization applied to different number of 

eigenchannels, 2L , with 20 dB. Recall that 
SNR
  is the maximum allowable SNR loss 

relative to the average SNR at each receive antenna, imposed on the eigenchannels. It can be 

verified that for 2L , the choice of 
SNR
  that can be set within the presented optimization is 

lower bounded by the one obtained with equal SNRs of all eigenchannels, denoted as 
LSNR

min . The 

value   of  
LSNR

min   depends on various system parameters such as ),min( NMr  and L  (e.g., for 

a 33  system, 08.6
3

min 
LSNR

dB, and 8.1
2

min 
LSNR

dB   whereas   in a 22  system 

96.3
2

min 
LSNR

dB). 

 

It is worth noting that in water-filling schemes, a fixed reduction of SNR is imposed on each 

eigenchannel (this cannot be controlled by the designer) and since the associated SNR loss on the 

weakest eigenchannel is the largest loss of all the eigenchannels, it can be set as a lower bound for 

the allowable maximum SNR loss   in the water-filling scheme. This sets 
SNR
 (dB) for the water 

filling case. This is the reason that water-filled capacity curves are the straight lines as seen in 

Fig. 2. The  same  situation  also holds for the dominant eigenmode transmission  
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Figure 2. The ergodic capacity versus the SNR loss 
SNR
 (dB) for a 33  MIMO system with 20 dB 
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(not shown in Fig. 2). The dominant eigenmode transmission has the (fixed) lowest SNR loss of 

)(log10
max10

dom 
SNR

; 
maxmax

 E , among all schemes. 

 

The capacity results of the presented optimization fall behind the optimal water-filled eigen-

MIMO capacity for the same L . The reason is that, unlike the water-filling scheme that discards 

the weakest eigenchannel if the power allocated to it is negative, all of the available L  

eigenchannels are used by the presented optimization all the time. It is seen in Fig. 2 that none of 

the power allocation schemes maximize the ergodic capacity for all values of  , and 
SNR
 . The 

designer can choose from a number of power allocation schemes (the presented optimization; the 

water-filling schemes applied to different number of eigenchannels, 2L ; and the dominant 

eigenmode transmission) and the metric for selection is the highest ergodic capacity with an 

allowable maximum SNR loss 
SNR
  on eigenchannels. For 

2

mindom




LSNRSNRSNR
, the dominant 

eigenmode transmission is the only candidate for selection (see Fig. 2).  

 

Figures 3 and 4 illustrate the maximum ergodic capacity achieved via selection, constrained with 

different choices of  
SNR
  for 300 dB in a 33  and a 22  MIMO systems, respectively.  

In general, for larger values of 
SNR
  (larger loss in SNR is allowed), a system with higher 

capacity is expected. As a useful feature, the position of the capacity between upper and lower 

bounds can be controlled by the designer through the choice of 
SNR
 . Some other interesting 

results are: making  use  of  more  than  one  eigenchannel,  the  capacity curves are upper and 

lower bounded by the optimal water-filled capacity using all eigenchannels ( ),min( NML  ) and 

the  one obtained via our approach with 2L  and 
2

min




LSNR
; in a  22   system,   eigenmode 

transmission is  the best for 6
SNR

dB and values of SNR 13~ dB; and in a 33  MIMO 

system, it is  possible  to outperform the water-filled capacity applied to just the two strongest 

eigenchannels for any SNR loss 0
SNR

dB. 
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Figure 3. The maximum ergodic capacity achieved via selection in a 33 MIMO system constrained with 

different choices of 
SNR
   
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Figure 4. The maximum ergodic capacity achieved via selection in a 22 MIMO system constrained with 

different choices of 
SNR
  

 

Simulation results are now presented for a 22  MIMO system in which eigenchannel 1 is 

deployed with independent QAM and eigenchannel 2 is loaded with BPSK. The overall SER 

performance of the system is a measure for comparison among different power allocation 

schemes and one definition is 

 

                              










r

i

r

i

i

i

1

1

eleigenchannoversymbolsdtransmitteof#

eleigenchannoversymbolsdetectedcorrectlyof#
SER                   (19) 

 

The above formulation allows the number of eigenchannels in the summations to be smaller than 
r , and in general, the actual number depends on the type of power allocation scheme used. The 

overall SER results for a 22  system is illustrated in Fig. 5. Also depicted are the SER curves 

associated with each of the eigenchannels when water-filling is used. These reveal how the 

overall SER deteriorates with the weakest eigenchannel. In fact, the full eigen-MIMO water-

filling scheme  has  the  worst  overall  SER performance among other power allocation schemes 

and the dominant eigenmode transmission has the best. This is expected because of the trade-off 

between the capacity and SER performances.  

 

Because of the selection aspect of the presented approach, the SER curves are piece-wise 

discontinuous, and several SER curves for different values of  
SNR
  may lie  together  for  some  

SNR regions. For example, in Fig. 5, the curves tagged with dB6
SNR

, dB5.4
SNR , and 

dB96.3
SNR

 lie on the SER result of dominant eigenmode transmission for low to moderate 

values of SNR. The promising result is that the overall SER performance is better than that of full 

eigen-MIMO water-filling. For example, in a 22  system with dB4
SNR

, the improvement 

over water-filling is almost 3 dB in SNR for moderate to high values of SNR ( dB16~ ). This 

improvement is at the expense of a loss of 1.9 bits per channel use in capacity compared to that of 

water-filling. At low to moderate values of SNR, the advantage is more emphasized – for 

SER~10
-3, 

the equivalent SNR improvement is more than about 15 dB. Here  the  selection  

scheme  chooses  the  dominant eigenmode transmission as the best scheme  
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Figure 5. The overall SER results of a 22 system using different power allocation schemes 

 

among others for dB16~  and dB4
SNR

 and there is only a small loss in capacity (smaller 

than 1 bit per channel use for dB10~ ) relative to that of water-filling. 

 

5. SUMMARY AND CONCLUSIONS  
 

In this paper, the optimal power allocation is formulated for the capacity maximization with the 

total input power constraint and a maximum allowable SNR loss on eigenchannels, 
SNR
 . The 

goal is to find a way to design an eigen-MIMO system that has good reliability, or error 

performance, and high capacity, simultaneously. Comparison of the ergodic capacities from the 

presented optimization with that from water-filling with an appropriate number of deployed 

eigenchannels, and dominant eigenmode transmission, enable selection for optimal capacity for a 

chosen SNR loss, 
SNR
 . One feature of the approach is that the SER performance of the system 

and the position of the capacity between the upper and lower bounds can be controlled by the 

designer through the choice of 
SNR
 . Promising results are presented for the improvement of SER 

performance over than that of full water-filled eigen-MIMO, when using simplified archirectures 

such as a fixed-set of modulations or fixed common modulation across the eigen-channels. Here, 

a design can have a controllable and significantly better uncoded error performance than full 

eigen-MIMO at the expense of a modest loss in capacity. In a practical situation, based on the 

type of modulation (and any coding) used, the designer may translate the desirable SNR 

performance to a desired SER performance in a system, and then assign 
SNR
  according to the 

desired capacity and SER system performances. 
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