
������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

10.5121/ijmit.2010.2203 ��

��������������	
�	�	��
�����
���������	

����
������
�	�
��
	

Jinwei Hu

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

jwhu@hust.edu.cn

ABSTRACT
In distributed environments, access control decisions depend on statements of multiple agents rather than
only one central trusted party. However, existing policy languages put few emphasis on authorization
provenances. The capability of managing these provenances is important and useful in various security
areas such as computer auditing and authorization recycling. Based on our previously proposed logic, we
present several case studies of this logic. By doing this, we show its expressiveness and usefulness in
security arena.

KEYWORDS
Authorization Logic, Authorization Provenance

1. INTRODUCTION
The popularity of Internet has promoted wide applications of distributed systems such as peer-
to-peer systems and grid. These systems feature dynamics, provisionality, lack of complete
information, and decentralization, consequently they introduce more complex authorization
scenarios. It is widely agreed that a declarative and reasonably expressive language with an
unambiguous semantics would be a key to distributed access control. Based on this observation,
major research efforts have applied logics into the design of authorization languages. The set of
policies written in such a language is regarded as a policy base. When a principal requests an
access to resources, the request is translated to a query of the policy base. The access is granted
if the answer to the query is positive and denied otherwise.

One main line of preceding languages depends on Datalog and its variants, such as DL, RT,
Binder, and SecPAL [11, 12, 5, 3]. Generally speaking, these languages achieve a balance
between the expressiveness and computational tractability. However, they hardly capture some
important aspects of distributed authorizations. Consider a delegation “A says B cansay f” in
SecPAL. The delegable fact f can only be an atom here. No rule such as 1 2f f� is allowed to
delegate. Not only may an agent trust others in the truth of facts, it may also depend on others’
judgement about the relation between facts. For example, a bookshop assistant may rely on her
manager about whether a discount could be given to students; that is “Assistant says Manager
cansay discount student� ”. In addition, their reasoning ability is confined to administrators’
positive knowledge about facts. Let F denote the set of facts in a SecPAL policy base. All
authorizations are conditional on the administrator’s knowledge about facts in F, i.e., “Admin
says f”, either derived or directly phrased. However, due to the lack of complete information in
distributed environments, some authorizations have to rely on administrators’ partial knowledge
or their knowledge about others’ knowledge. For instance, the bookshop assistant knows that a
book may be sold only if she knows that the manager knows that the price is fair, but not just if

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 24

she knows that the price is fair; again, the bookshop assistant knows that a student may borrow a
book for a two-day preview if she considers it is possible that the student will return the book.

Another mainstream is to interpret policies using the Kripke structures [2, 6]. In previous works,
belief has been used implicitly or explicitly to facilitate distributed access control. Most logics
for distributed authorizations are centered around “A says f”. Intuitively, the meaning of “A
says f” is that A supports f, i.e., A believes that f is true. Also, in [1] Abadi stated that “In
general, the proof may exploit relations between A and B and other facts known to the reference
monitor”. We argue that partial and nested knowledge besides in addition to pure facts are
crucial to make correct access control decisions. There is already a potential trend to make
beliefs explicit. Gurevich and Neeman remarked that knowledge should be made explicit due to
its importance in authorization languages [7]. Besides, in [6] Garg and Abadi showed that
Kripke semantics leads to several advantages such as comparisons of access control logics.

Since delegations provide a flexible way to evaluate the trustworthiness of a statement in
distributed environments, most current policy languages support delegating capabilities. Briefly,
delegations enable agent A to speak on behalf of agent B with respect to a certain statement, say
ϕ . Delegations can also form a delegation chain with certain length. Generally speaking, we
can assume the agent at the starting point of a delegation chain is in charge of the requested
resources. We refer to the set of agents who issue the delegations appearing in a delegation
chain as a provenance because they actually describe from where beliefs are concluded. We
observe that existing languages do not distinguish between the same conclusions but with
different provenances. Consider the policy base PB {“Alice says Bob cansay deletefile”, “Bob
says deletefile”, “Alice says Charlie cansay deletefile”, “Charlie says deletefile”} written in
SecPAL. Then from this PB, one can conclude “Alice says∞ deletefile”. But it is not clear
whether it is with the help of Bob or of Charlie that PB comes to this conclusion.

There are several reasons why it is crucial to make clear conclusions’ provenances. First, it is
possible to enforce fine-grained constraints on provenance. For example, constraints forbidding
certain provenances appear difficult to be enforced in previous approaches. Second, one may
trust more than one agent in some facts and to different degrees, especially when policies are
specified by multi-authors. And how much trust would suffice depends on the requested
accesses. For instance, the bookshop may delegate the fact that “David is a student” to both the
registrar and the professor Emma. Obviously, the registrar is at least as trustworthy as Emma in
this respect. Emma’s statement that “David is a student” is enough for the bookshop to give a
student discount to David, whereas the registrar’s testimony is needed when David wants to
borrow books. Third, by indicating precisely who executes the delegated authority, we provide a
more useful log if proofs of authorization decisions are included in the log [16], therefore it
would be easier to work out who is responsible for which statements and derivations.

In our previous works [8, 9], we proposed an access control logic DBT based on the classical
KD45 belief framework. DBT extends the BT logic [14] by introducing a new modal operator

iD for each agent i into the underlying distributed authorizations. iDϕ is designed to express
the provenance of ϕ . Thus, DBT integrates the belief, trust, and provenance within a unified
logical framework. In this paper, we present several case studies of this logic, including
examples for subjective attributes and incomplete information. By doing this, we show its
expressiveness and usefulness in security arena.

The rest of the paper is organized as follows. The background is introduced in Section 2. The
motivation of authorization provenance is illustrated in a case study in Section 3, followed by a
case study of subjective attributes in Section 4 and discussions of policies with incomplete
information in Section 5. Finally, we conclude in Section 6.

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 25

2. BACKGROUND: THE LOGIC DBT

Consider a finite set of agents AG = {1, · · · ,N}. We have three types of modal operators for
each agent i: iB , iD , and i

jT . iBϕ means that agent i believes ϕ or that i says ϕ ; and i
jT ϕ reads

that agent i trusts agent j on or that i delegates ϕ to j. iDϕ means that “due to agent i, ϕ holds”
or that i causes that ϕ holds. A subset AE of AG is called an agent expression. Given an
AE�AG, we also define an operator AED based on iD for each i�AE. AED ϕ means that the set
AE of agents together cause ϕ . Let Prop be a set of primitive propositions. The set of well-
formed formulas is inductively defined as follows:

:: | | | | | | | i
i i AE jp B D D Tϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= ¬ ∧ �

Readers are referred to [8, 9] for details.

3. THE USAGE OF OPERATOR DAE

The most distinguished feature of DBT is the introduction of the operator AED . We now show
the intuition of AED through examples.

Suppose that a company manages two resources: computers and printers. This company lets two
security administrators, SA1 and SA2, specify policies for accessing computers and printers,
respectively. SA1 specifies that a clerk acknowledged by the human resources, HR, may be
allowed to access printers. But SA2 thinks Manager’s attestation is enough for a clerk to use
computers. Putting together, the company’s policy base may be as follows.

Suppose that Manager issues to Alice a credential (5) which says Manager believes Alice is a
clerk. If interpreting by some existing logics such as BT in [14], from (3) and (5), one can
derive that Company believes that Alice is a clerk. As a result, Alice may log onto a computer
because of (4); but from (2), Alice may also use printers. The latter authorization departs from
the policies in that SA1’s intention on accesses to printers is not enforced; it also violates the
principle of least of privilege.

A possible solution to handle this difficulty is to rename the attribute “clerk(Alice)” in (1) and
(2) as “HR-clerk(Alice)”, and that in (3) and (4) as “Manager-clerk(Alice)”, respectively. Then
Manager only says that he/she believes Manager-clerk(Alice), which derives that Company
believes Manager-clerk(Alice) together with the renamed (3), but not that Company believes
HR-clerk(Alice) with the renamed (1). But this solution is ad hoc and highly dependent on
implementation, and complicates the analysis of policy bases.

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 26

Alternatively, one may attempt to assemble Company’s policy base instead as follows:

This policy base may derive improper conclusions, however. We can assume that the statement
(6) is from Company; that is Company bases its belief on others’ beliefs. However, from (6) it
follows that

(8) is HR’s assertion. As a result, Company can derive HR’s belief from its own belief. If, for
some reasons, Company forbids Alice from using printers by issuing ()CompanyB access printers¬ .

Then, one may deduce ()HRB clerk Alice¬ ; that is, HR does not believe clerk(Alice). Agents
should not derive others’ belief simply from their own belief. Interestingly, some recent works
on policy languages [3, 7] avoid this form of policies as well.

Our solution is to replace (2) and (4) with the following rules.

From (5), it follows that Manager causes Company to believe that clerk(Alice), which, together
with (10), implies that Company believes that Alice can access computers. However, with (5),
one can not derive that HR causes Company to believe that clerk(Alice).

The essential reason of this violation is that there are multiple trust sources inherently for some
attributes. For example, the local party may trust both school’s Registrar and Professor to say
student(Bob). This is not exclusive to multi-author policy bases, though. On the other hand, to
achieve availability and resilience, the local party may intentionally delegate the identification
of attributes to more than one party.

Despite agents may be delegated with the identification of the same attribute, they differ in the
extent to which Local may trust them about the attribute. For example, credentials about an
attribute student(Bob) from both school’s Registrar and Professor may be trusted by Local, but
to different extents and for different purposes. Owing to the difference of importance and
sensitiveness among resources, the local party may consider credentials from different trustees
as sufficient for accesses to resources to be granted, even though these credentials support the
same attribute. However, when putting together in one policy base, it is likely that these policies
affect each other. The introduction of “due to” can alleviate this influence, and enable the local
party to safely base authorizations on the same set of attributes.

4. SUBJECTIVE ATTRIBUTES

Subjective attributes are specially demanded in some distributed systems, such as peer-to-peer
networks and electronic commerce systems. In these systems, agents may express opinions
about other agents’ behaviors. Looking from different perspectives, agents may view one
happening in totally different ways, or even in conflicted ways. For example, Alice may regard
Cathy a good peer because of uploading some files, whereas Bob could think of this behavior
offending. However, it is not something right or wrong, but simply subjective. Thus,

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 27

authorization logic should be able to accommodate this divergence so that policies about
subjective attributes are amendable to formal analysis. For better explanation, we illustrate this
by an example.

To support subjective attributes, policy bases should satisfy two requirements. On one hand,
trustees should have discretion to judge the truth and falsity of an attribute. For example, if
Alice puts trust on Bob about whether or not goodPeer(David), Bob should be free to say that he
believes goodPeer(David) or the opposite. On the other hand, Local should respect the
divergence of viewpoints among trustees. Assuming that Alice also trusts Cathy about
goodPeer(David), if Bob and Cathy have opposite opinions about goodPeer(David), Alice
should treat this case as normal but not conflicted.

Consider a group of four peers in a peer-to-peer network, Alice, Bob, Cathy, and David. Alice
has a policy base which controls the accesses to her shared directories. Alice trusts both Bob
and Cathy to tell whether or not David is a good peer. When both of them consider David as
good, Alice permits accesses to dir; but if only one of them thinks so, only access to subdir1 or
subdir2 is allowed.

Let ()goodPeer Davidϕ = and let ()0 ,canAccess David dirϕ = , ()1 , 1canAccess David subdirϕ = ,

and ()2 , 2canAccess David subdirϕ = . Using DBT, we may specify policies as follows:

Previous policy languages rarely support subjective attributes. To meet the first requirement,
Alice’s policy base should contain both ()Alice

BobT goodPeer David and ()Alice
BobT goodPeer David¬ .

However, most Datalog-based policy languages trade off the ability to delegate negative
attributes for other advantages like computational tractability one one hand; on the other hand,
some access control logics forbid delegating both ()goodPeer David and ()goodPeer David¬ to
the same agent [6]. Without this capability, agents are not able to express their subjective
judgements. More importantly, supposing that Alice makes the delegations in (11) and (12), and
that both ()BobB goodPeer David and ()CathyB goodPeer David¬ reside in Alice’s policy base,

existing access control logics would deduce conflicts. In spite of the possibility of agents lying,
it is natural for agents to have different (or even opposite) viewpoints for subjective attributes.

Since Local lacks of complete information, it depends on other agents’ statements. Here, Alice
believes ()goodPeer David because of Bob, whereas Cathy also causes Alice to believe

()goodPeer David¬ . The point is that Alice has two ways to collect information. When
objective attributes are involved, it is reasonable to conclude policy bases conflicted in this case
and employ some conflict resolving mechanisms. However, as far as subjective attributes are
concerned, it is more acceptable to let the local party put different weights on how information
is aggregated.

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 28

In the DBT representation above, the semantics allows Alice to delegate both ()goodPeer David

and ()goodPeer David¬ to Bob. We use the operator iD to denote the subjective judgements as

in (13), (14) and (15). For example, when both ()BobB goodPeer David and

()CathyB goodPeer David¬ are in Alice’s policy base, (11) and (12) derive

()Bob AliceD B goodPeer David and ()Cathy AliceD B goodPeer David¬ , respectively. Thus, it follows

from (14) that Alice believes that David can access subdir1.

5. POLICIES WITH INCOMPLETE INFORMATION

There are some attributes whose member would be denied access explicitly because their
accessing may incur great loss to Local. For example, an airport, denoted as Local, would forbid
terrorists to board. We refer to requesters bearing these attributes as adversaries. The problem is
that, an adversary would withhold some credentials to evade explicit denials, and adversary
authorities would not inform Local of adversaries. No terrorist, of course, would reveal this
attribute and terrorist organizations would not inform the airport.

The airport depends on its Scrutiny Unit (SU) to identify potential terrorists. With existing
policy languages, one tempting solution is to include ()Local

SUT terrorist X or (and)

()Local
SUT terrorist X¬ in the policy base. However, we argue that it is unreasonable for Scrutiny

Unit to be able to say a passenger is or not. Because, in most cases, Scrutiny Unit may only
discover some clues showing that a passenger is possibly a terrorist. That is, Scrutiny Unit
generally only suspects someone. Neither ()SUB terrorist X nor ()SUB terrorist X¬ captures the
meaning of “suspect”.

In DBT, the airport’s policy bases may consist of the following formulas.

From (16) and (17), Local delegates to Scrutiny Unit whether or not Local should consider a
passenger as a potential terrorist; and by (18) and (19), Local explicitly denies or permits
passengers to board, respectively, according to Scrutiny Unit’s statements. If a passenger
obtains a certificate from Scrutiny Unit like (20), the airport allows him/her to board; But if
anyone get a certificate (21), he/she would be denied to board, whether or not he/she submit the
certificate.

Obviously, there may be both false positives and false negatives; Scrutiny Unit may issue (21)
to a non-terrorist and (20) to a real terrorist. Since no complete information is available, it is
unavoidable. But the rate depends on the trusted agent and the requested resources. Besides, as
for false negative, other techniques, such as audit and intrusion detection alarm, may be
deployed, which is beyond the scope of this work.

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 29

6. CONCLUDING REMARKS

We illustrated DBT is able to capture provenance-aware scenarios. This expressiveness is the
original motivation of DBT and is the most important feature. Existing access control logics put
few emphases on authorization provenances. As mentioned in Section 1, existing logics can be
grouped into the modal logic based and the Datalog based frameworks. For the first group, since
they are interpreted in the same framework as DBT, it seems feasible to extend these logics to
express provenance or to build a new logic on them. Take the logic ABLP [2] for instance.
ABLP works around two operators: “says” and “speakfor”. Since formulas constructed using
these two operators are interpreted by Kripke structures, we may define operators for
provenances and impose some reasonable relations among modalities. The other collection
based on Datalog includes Delegation Logic (DL) [11], SecPAL [3], and RT [13], ect.. This
group features in tradeoff between reasonable expressiveness and tractability. Nevertheless,
none of these policy languages focuses on what the operator iD is designed to capture. It also
appears difficult to incorporate the notion of authorization provenances into these logics.
Because specific translation rules between these logics and Datalog may have to be redesigned;
another requirement on these rules is that the resulted semantics should bring about rational
connections among agents’ statements, authorizations, and provenances. Still, a notion of proof
tree is used in literature. SD3 [10] produces a proof tree along with the answer to each query to
see if the proof is correct. RT0 [13] forms delegation chains for a policy base, but its focus is on
how to store and retrieve credentials in a distribute way. Neither of them can answer if a
conclusion with a specific provenance holds.

As future work, we are planning to integrate authorization provenances into auditing and
recycling, and invest how well quantitatively provenances benefit these functions through
experiment evaluation.

REFERENCES
[1] M. Abadi. Access control in a core calculus of dependency. In ICFP ’06: Proceedings of the eleventh

ACM SIGPLAN international conference on Functional programming, pages 263–273, New
York, NY, USA, 2006. ACM.

[2] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin. A calculus for access control in
distributed systems. ACM Trans. Program. Lang. Syst., 15:706–734, 1993.

[3] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics of a decentralized authorization
language. In CSF, pages 3–15, 2007.

[4] J. Crampton, W. Leung, and K. Beznosov. The secondary and approximate authorization model and
its application to bell-lapadula policies. In SACMAT, pages 111–120, 2006.

[5] J. DeTreville. Binder, a logic-based security language. In IEEE Symposium on Security and Privacy,
pages 105–113, 2002.

[6] D. Garg and M. Abadi. A modal deconstruction of access control logics. In Foundations of Software
Science and Computation Structures, pages 216–230, 2008.

[7] Y. Gurevich and I. Neeman. Distributed-knowledge authorization language. In 21st IEEE Computer
Security Foundations Symposium, pages 149–162, 2008.

[8] J. Hu, Y. Zhang, R. Li, and Z. Lu. Managing authorization provenance: A modal logic based
approach. In Proceedings of 21st International Conference on Tools with Artificial Intelligence,
Newark, New Jersey, USA, November 2-5 2009.

������������	
������	
�

��������
��
��������
������	���
��������
��	���
�����
���
����

 30

[9] J. Hu, Y. Zhang, R. Li, and Z. Lu. A logic for authorization. In 5th ACM Symposium on Information,
Computer and Communications Security (ASIACCS2010), page to appear, Beijing, China, April
13-16 2010.

[10] T. Jim. SD3: A trust management system with certified evaluation. In IEEE Symposium on Security
and Privacy, pages 106–115, 2001.

[11] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to distributed
authorization. ACM Trans. Inf. Syst. Secur., 6(1):128–171, 2003.

[12] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust management framework.
In IEEE Symposium on Security and Privacy, pages 114–130, 2002.

[13] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust
management. Journal of Computer Security, 11(1):35–86, Feb. 2003.

[14] C.-J. Liau. Belief, information acquisition, and trust in multi-agent systems - a modal logic
formulation. Artificial Intelligence, 149:31–60, 2003.

[15] Z. Mao, N. Li, H. Chen, and X. Jiang. Trojan horse resistant discretionary access control. In ACM
symposium on access control models and technologies, 2009.

[16] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. In 22nd IEEE
Computer Security Foundations Symposium, pages 177–191, 2008.

[17] Q.Wang, N. Li, and H. Chen. On the security of delegation in access control systems. In European
Symposium on Research in Computer Security, pages 317–332, 2008.

[18] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu. Authorization recycling in rbac systems. In
SACMAT, 2008.

Authors

Jinwei Hu is a PhD student in Huazhong University of Science and Technology.

