

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

61

UNL-ization of Numbers and Ordinals in Punjabi

with IAN

Vaibhav Agarwal
1
 and Parteek Kumar

2

1
M.E (S.E), Thapar University, Patiala, Punjab, India

vaibhavagg123@gmail.com
2
Assistant Professor, CSED, Thapar University, Patiala, Punjab, India

parteek.bhatia@gmail.com

ABSTRACT

In the field of Natural Language Processing, Universal Networking Language (UNL) has been an area of

immense interest among researchers during last couple of years. Universal Networking Language (UNL)

is an artificial Language used for representing information in a natural-language-independent format.

This paper presents UNL-ization of Punjabi sentences with the help of different examples, containing

numbers and ordinals written in words, using IAN (Interactive Analyzer) tool. In UNL approach, UNL-

ization is a process of converting natural language resource to UNL and NL-ization, is a process of

generating a natural language resource out of a UNL graph. IAN processes input sentences with the help

of TRules and Dictionary entries. The proposed system performs the UNL-ization of up to fourteen digit

number and ordinals, written in words in Punjabi language, with the help of 104 dictionary entries and

67 TRules. The system is tested on a sample of 150 random Punjabi Numbers and Ordinals, written in

words, and its F-Measure comes out to be 1.000 (on a scale of 0 to 1).

KEYWORDS

UNL, IAN, UNL-ization, Punjabi NLP

1. INTRODUCTION

The Universal Networking Language (UNL) is a non-speaking artificial language for

representing, describing, summarizing, and storing information in a natural-language-

independent format. In UNL approach, there are two basic different movements viz. UNL-

ization and NL-ization. UNL-ization is the process of mapping / representing / analysing of the

information conveyed by natural language utterances into UNL; NL-ization, conversely, is the

process of realizing/manifesting/generating a natural language document out of a UNL graph.

Both processes are totally independent. The UNL representation has been an interpretation

rather than a translation of a given text. UNL has been exploited for several other

different tasks in natural language processing, such as summarization, multilingual document

generation, text simplification, semantic reasoning, and information retrieval. Sérasset and

Boitet have viewed UNL as the future ‘html of the linguistic content’ [1]. Multilingual

information processing through UNL had been proposed by Dave and Bhattacharyya et al. [2].

Currently, the main goal of UNL-ization process has been to convert the given information text

into the intermediate language, i.e., UNL. UNL represents knowledge with use of relations,

attributes and universal words. Universal Words form vocabulary of UNL. These words

correspond to nodes that are interlinked by relations or modified by attributes in a UNL

graph. The concepts of UWs are divided into four categories, namely, nominal concepts,

adjective concepts, verbal concepts, and adverbial concepts. A UW is a character string (an

DOI : 10.5121/ijnlc.2013.2307

mailto:vaibhavagg123@gmail.com
mailto:parteek.bhatia@gmail.com

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

62

English language word) followed by a list of constraints. Attributes are annotations made to

nodes of UNL graph. Attributes denote the circumstances under which these nodes (or

hypernodes) are used. In the UNL framework, relations describe semantic functions between

two UWs. The set of relations is defined in the UNL specifications. The relations between the

two nodes is of the form: rel_name(node1,+att1;node2,+att2); here rel_name is the name of

the relation , node1 and node2 are the two nodes between which the relations hold and att1 ,

att2 are attributes which are added to nodes1 and nodes2, respectively.

2. RELATED WORK

Earlier Enconversion was performed with the help of ‘EnCo’ tool provided by the UNDL

foundation to accomplish the task [3]. Martins et al. (1997) have proposed a prototype system

for converting Brazilian Portuguese into UNL and DeConverting UNL expressions into

Brazilian Portuguese with ‘EnCo’ and ‘DeCo’ tools, respectively [4]. Their system consists of

three important sub-modules, namely, the lexical, the syntactic and the semantic modules.

Martins et al. (2005) have noted that the ‘EnCo’ and Universal Parser tools provided by UNDL

foundation require inputs from a human expert who is seldom available and as such their

performance is not quite adequate [5]. They have proposed the ‘HERMETO’ system which

converts English and Brazilian Portuguese into UNL. This system has an interface with

debugging and editing facilities along with its high level syntactic and semantic grammar that

make it more user friendly. Mohanty et al. (2005) have used Semantically Relatable Sequence

(SRS) based approach for developing a UNL based MT system [6]. They have analyzed the

source language using semantic graphs and used these graphs to generate target language text.

Enconversion system for converting Punjabi language to UNL have been developed by Kumar

and Sharma [7]. Dey and Bhattacharyya have presented the computational analysis of complex

case structure of Bengali for a UNL based MT System [8]. They provided the details of the rule

theory of ‘EnCo’ and ‘DeCo’ tools which are driven by analysis rules and generation rules

respectively for Bengali language. These rules are based on case structure of ‘kaaraks’ used in

the Bengali language. Earlier the encoding tool used by UNDL foundation was ‘EnCo’. ‘EnCo’

was a desktop application and the rules were categorized into five types, namely, left

composition rules (+), right composition rules (-), left modification rules (<), right modification

rules (>) and attribute changing rules (:) [7]. These rules were very complex. Graphical user

interface of ‘EnCo’ was not very user friendly. Now, UNL-ization is done by using IAN tool, in

which node concatenation, node deletion and all other node operations can be done with the

help of simple syntax. In IAN various resources like dictionaries, rulesets and corpus can be

shared with other users. Now, since IAN is a web based application, IAN of every language can

be integrated on centralised server and thus, interconversion and other benefits like information

extraction can be availed irrespective of any language and geographic barrier.

3. IAN Framework

IAN performs three movements over the input file that are segmentation, i.e., the division of

input document into a series of processing units (sentences), that are processed one at a time;

tokenization, i.e., identification of the tokens (lexical items) of each sentence of input

document; and transformation, i.e., application of transformation rules of the grammar over each

tokenized sentence in order to represent it as a UNL graph. IAN has six tabs; these are,

Welcome, NL Input, Dictionaries, T-Rules, D-Rules, and IAN console. In NL input tab user has

to provide the natural language document to be UNL-ized. In Dictionaries tab, NL-UNL

dictionary is to be provided by the user. The dictionary must be provided according to the UNL

dictionary specifications. User may have several different dictionaries, and could be loaded to

process the same corpus, but they must be loaded in the correct order (because the order of the

entries in the dictionary matter for tokenization). In T-Rules tab user has to provide the NL-

UNL transformation grammar i.e., the grammar to be used to process the natural language

input. In D-Rules tab user provides the NL-UNL disambiguation grammar. DRules are used to

http://www.unlweb.net/wiki/Segmentation
http://www.unlweb.net/wiki/Tokenization
http://www.unlweb.net/wiki/Transformation
http://www.unlweb.net/wiki/UNL_Dictionary_Specs
http://www.unlweb.net/wiki/Tokenization
http://www.unlweb.net/wiki/index.php?title=Transformation_grammar&action=edit&redlink=1
http://www.unlweb.net/wiki/Disambiguation_grammar

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

63

control the tokenization and improve the results of the transformation grammar. In IAN console

tab user gets the results. The IAN console brings the list of sentences appearing in the NL input,

which could be processed one at a time, or can be processed in a range.

4. Implementation

In this paper, UNL-ization of numbers and ordinals, written in words in Punjabi language, has

been explained with the help of different examples. The features of Punjabi language regarding

Numbers and Ordinals has been presented in next sub section. The subsequent sub sections

explains the UNL-ization process with the help of different Example sentences.

4.1. Features of Punjabi Language Regarding Numbers and Ordinals

Any single digit and two digit number written in Punjabi language in the form of words cannot

be generated with any TRule because they have no repeating pattern. For example, consider the

Punjabi words ਵੀਹ vīh ‘twenty’, ਇੱਕੀ ikkī ‘twentyone’, ਅਠਾਈ aṭhāī ‘twentyeight’, with their

English equivalent as twenty, twenty one, twenty eight, respectively, have ‘twenty’ as the

repeating pattern. Therefore, with the help of TRules these can be converted to UNL, without

having any dictionary entry, if written in English language. Therefore, entries for single digit

and double digit numbers, written in words in Punjabi language, needs to be done in the

dictionary and all other numbers up to fourteen digits can be generated with the help of those

dictionary entries and sixty seven TRules.

4.2. UNL-ization of Numbers

UNL represents the numbers in figures, written in the form of words. The dictionary entry of

every single digit and double digit number like ਇਕ ik ‘one’, ਦੋ dō ‘two’, ਚਾਰ cār ‘four’, ਿਗਆਰ�

giārāṃ ‘eleven’ , ਪੰਦਰ� pandrāṃ ‘fifteen’ etc. are made into the dictionary with

their respective attributes as shown below in the examples. While using rule based approach the

sequences of rule is very important because the rules are fired in sequence as per matching. For

example TRule 29 will be fired before TRule 34 irrespective of the fact that the nodes matching

the criteria of TRule 34 are before the nodes matching the criteria of TRule 29 in the given input

string. The UNL-ization process for number has been illustrated with the help of a simple

example sentence (1).

Example 1: ਇਕ ਸੌ ਬਾਈ ...(1)

ik sau bāī

one hundred twentytwo

After the tokenization of example sentence given in (1) with IAN tool, five lexical items are

identified as shown in (2).

[ਇਕ]{}"1"(LEX=U,POS=CDN,DIGIT,NUM=SNG)< pan,0,0>;

[ਸੌ]{-1}"ਸੌ"(TEMP)<xxx,0,0>;

[ਬਾਈ]{}"22"(LEX=U,POS=CDN,DOUBLE,NUM=PLR)<pan,0,0>;

Two blank spaces are also identified as :-

[]{}" "(BLK)<pan,0,0>; ...(2)

Here, LEX represents lexical category, U represents numeral, POS represents part-of-speech,

CDN represents cardinal, NUM represents number whose value could be either SNG for singular

or PLR for plural, BLK is the attribute given to the blank space, TEMP represents temporary

entry, ‘DIGIT’ indicates single digit number like ਇਕ ik ‘one’, ਦੋ dō ‘two’, ਚਾਰ cār ‘four’ etc.

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

64

while ‘DOUBLE’ indicates two digit number like ਿਗਆਰ� giārāṃ ‘eleven’, ਪੰਦਰ� pandrāṃ

‘fifteen’ etc. In <pan,0,0> ‘pan’ refers to the three-character language code for Punjabi

according to ISO 639-3. First ‘0’ represents the frequency of Natural Language Word (NLW)

in natural texts. It can range from0 (less frequent) to 255 (most frequent). The second ‘0’

refers to the priority of the NLW, used in case of NL-ization. It can range from 0 to 255. The

process of UNL-ization of example sentence (1) has been illustrated in Table 1. Here,

transliteration of each Punjabi word is shown only in Action Taken column.

Table 1. UNL-ization process for example sentence (1)

Sno TRule fired Description Action Taken

1 (%a,BLK):= ; Here, %a refers to blank node [] having

attribute ‘BLK’. This rule is fired twice

consecutively and it removes all the blank

spaces.

Original nodes :

[ਇਕ][][ਸੌ][][ਬਾਈ]

[ik][][sau][][bāī]

[one][][hundred][][twentyt

wo]

Resultant nodes:

[ਇਕ][ਸੌ][ਬਾਈ]

[ik][sau][bāī]

[one][hundred][twentytwo]

 2 ({DIGIT|DOUB

LE},%a)("ਸੌ")(

%b,{DIGIT|DO

UBLE}):=(%a,

+HUNDRED)(

%b);

Here, node [ਸੌ] [sau] [hundred] has been

deleted and attribute HUNDRED has been

given to previous node [ਇਕ] [ik] [one].

Original nodes :

[ਇਕ][ਸੌ][ਬਾਈ]

[ik][sau][bāī]

[one][hundred][twentytwo]

Resultant nodes :

[ਇਕ][ਬਾਈ]

[ik][bāī]

[one][twentytwo]

 3 ({SHEAD|CHE

AD|^BLK},%a)

(DIGIT,HUND

RED,%x)(DOU

BLE,%y):=(%a,

ATT9)(%x

&%y,-

HUNDRED, -

DIGIT,-

DOUBLE,+000

);

Here, SHEAD and CHEAD means sentence

head and scope head, respectively and ‘^’ is

used as negation means logical NOT. This

rule concatenates nodes [ਇਕ] [ik] [one] and

[ਬਾਈ] [bāī] [twentytwo] to form a single

node [ਇਕਬਾਈ] [ikbāī][onetwentytwo] as

shown in the action taken column. All

attributes are removed from final node and

attribute 000 is added to it, to indicate, that

it is a three digit number.

Original nodes:

[ਇਕ][ਬਾਈ]

[ik][bāī]

[one][twentytwo]

Resultant nodes:

[ਇਕਬਾਈ]

[ikbāī]

[onetwentytwo]

Now, ਇਕ ik ‘one’ and ਬਾਈ

bāī’ ‘twentytwo’ are

replaced by their universal

words ‘1’ and ‘22’,

respectively, and the final

output 122 is generated by

IAN as shown in (3).

The UNL generated is given in (3).

{org}

ਇਕ ਸੌ ਬਾਈ

{/org}

{unl}

[w]122:08[/w]

{/unl} ...(3)

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

65

Here, ‘:08’ is the scope internally generated by the IAN tool. UNL-ization of numbers has been

explained with the help of another complex example sentence (4).

Example 2: ਦੋ ਕਰੋੜ ਵੀਹ ਲੱਖ ਇੱਕੀ ...(4)

dō karōṛ vīh lakkh ikkī

two crore twenty lakh twentyone

After tokenization of example sentence given in (4) with IAN tool nine lexical items are

identified as given in (5).

[ਦੋ]{-1}"2"(LEX=U,POS=CDN,NUM=PLR,DIG IT)<pa n,0,0>;

[ਕਰੋੜ]{-1}"ਕਰੋੜ"(TEMP)<xxx,0,0>;

[ਵੀਹ]{}"20"(LEX=U,POS=CDN,DOUBLE,NUM=PLR)<pan,0,0>;

[ਲੱਖ]{-1}"ਲੱਖ"(TEMP)<xxx,0,0>;

[ਇੱਕੀ]{}"21"(LEX=U,POS=CDN,DOUBLE,NUM=PLR)<pan,0,0>;

Four blank spaces are also identified as :-

[]{}""(BLK)<pan,0,0>; ...(5)

The process of UNL-ization of example sentence (4) is given in Table 2.

Table 2. UNL-ization process for example sentence (4)

Sno TRule fired Description Action Taken

1 (%a,BLK):=; This Rule is fired four times to

delete all four blank nodes as

shown in Action taken

column.

Original nodes :

[ਦੋ][][ਕਰੋੜ][][ਵੀਹ][][ਲੱਖ][][ਇੱਕੀ]

[dō][][karōṛ][][vīh][][lakkh][][ikkī

]

[two][][crore][][twenty][][lakh][][t

wentyone]

Resultant nodes :

[ਦੋ][ਕਰੋੜ][ਵੀਹ][ਲੱਖ][ਇੱਕੀ]

[dō][karōṛ][vīh][lakkh][ikkī]

[two][crore][twenty][lakh][twentyo

ne]

2 ({DIGIT|DOUBLE|

TRIPLE},%a)("ਲੱਖ"

)(%b,{DIGIT|DOUB

LE|000|0000|00000}

):=(%a,+LAKH)(

%b);

Here, %a refers to node [ਵੀਹ]

[vīh][twenty] having

attribute DOUBLE and %b

refers to node [ਇੱਕੀ]

[ikkī][twe ntyone] having

attribute DOUBLE. This rule

deletes node [ਲੱਖ] [lakkh]

[lakh] and gives attribute

LAKH to the node %a.

Original nodes :

[ਦੋ][ਕਰੋੜ][ਵੀਹ][ਲੱਖ][ਇੱਕੀ]

[dō][karōṛ][vīh][lakkh][ikkī]

[two][crore][twenty][lakh][twentyo

ne]

Resultant nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][ਇੱਕੀ]

[dō][karōṛ][vīh][ikkī]

[two][crore][twenty][twentyone]

3 ({SHEAD|CHEAD|^

BLK},%z)({DIGIT|

DOUBLE|TRIPLE},

LAKH,%x)({000|DI

GIT|DOUBLE|STA

Here, %x refers to node [ਵੀਹ]

[vīh][twenty] having attribute

DOUBLE and LAKH, and %y

Original nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][ਇੱਕੀ]

[dō][karōṛ][vīh][ikkī]

[two][crore][twenty][twentyone]

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

66

IL|CTAIL},^TEMP1

,^00000,%y

):=(%z)(%x)([[00]],[

00],"00",THOUSAN

D,DOUBLE,LAKH

_THOUSAND,%q)(

%y);

refers to node [ਇੱਕੀ]

[ikkī][twentyone]. This rule

adds a node [00] between %x

and %y. It also attaches the

attributes THOUSAND,

DOUBLE, LAKH_THO

USAND to this newly created

node.

Resultant nodes:

[ਦੋ][ਕਰੋੜ] [ਵੀਹ][00][ਇੱਕੀ]

[dō][karōṛ][vīh][00][ikkī]

[two][crore][twenty][00][twentyone

]

4 ({SHEAD|CHEAD|^

BLK},%z){

DOUBLE|LAKH_T

HOUSAND},

THOUSAND,%x)({

DIGIT|DOUBLE|ST

AIL|CTAIL},%y):=(

%z)(%x)([[0]],[0],"0

",HUNDRED,DIGIT

)(%y);

Here, %x refers to node [00]

which is preceded by a non-

blank node being referred as

%z and %y refers to node

[ਇੱਕੀ] [ikkī] [twentyone]

having ‘DOUBLE’ attribute.

A new node [0] is added

between %x and %y. It also

attaches attributes

‘HUNDRED’ and ‘DIGIT’.

Original nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][00][ਇੱਕੀ]

[dō][karōṛ][vīh][00][ikkī]

[two][crore][twenty][00][twentyone

]

Resultant nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][00][0][ਇੱਕੀ]

[dō][karōṛ][vīh][00][0][ikkī]

[two][crore][twenty][00][0][twenty

one]

5 ({SHEAD|CHEAD|^

BLK},%z)(DIGIT,H

UNDRED,%x)(DO

UBLE,%y):=(%z,A

TT 1)(%x&%y,-HU

NDRED,-DIGIT, -

DOUBLE,+000) ;

Here, %x refers to node [0]

and %y refers to the node

[ਇੱਕੀ] [ikkī] [twentyone]. This

rule concatenates %x and %y

to form the node [0ਇੱਕੀ]

[0ikkī][0twentyone]. The

attribute ‘000’ is given to it

and existing attributes DIGIT,

DOUBLE, and HUNDRED

are removed.

Original nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][00][0][ਇੱਕੀ]

[dō][karōṛ][vīh][00][0][ikkī]

[two][crore][twenty][00][0][twenty

one]

Resultant nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][00][0ਇੱਕੀ]

[dō][karōṛ][vīh][00][0ikkī]

[two][crore][twenty][00][0twentyon

e]

6 (LAKH_THOUSAN

D,THOUSAND,%x)

(000,%y)({CTAIL|S

TAIL},%z):=(%x&

%y,-THOUSAND, -

000,-DIGIT,DO

UBLE,-LAKH_T

HOUSAND,+00000

)(%z);

Here, nodes [00] and [0ਇੱਕੀ]

[0ikkī] [0twenty one] are

concatenated to

form a new node [000ਇੱਕੀ]

[000ikkī] [000twentyone].

This new node is given the

attribute 00000. The attributes

000, THOUSAND, DIGIT,

DOUBLE and

LAKH_THOUSAND are

removed from it.

Original nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][00][0ਇੱਕੀ]

[dō][karōṛ][vīh][00][0ikkī]

[two][crore][twenty][00][0twentyon

e]

Resultant nodes :

[ਦੋ][ਕਰੋੜ][ਵੀਹ][000ਇੱਕੀ]

[dō][karōṛ][vīh][000ikkī]

[two][crore][twenty][000twentyone]

7 (DOUBLE,LAKH,%

x)(00000,%y)({

CTAIL|STAI

L},%z):=(%x&%y,-

LAKH,-DIGI T,-

DOUBLE,-00

000,+0000000)(%z);

This rule concatenates nodes

[ਵੀਹ] [vīh] [twenty] and

[000ਇੱਕੀ]

[000ikkī][000twentyone] to

form a single node which is a

7 digit number as indicated by

adding the attribute

‘0000000’. The attributes

LAKH, DIGIT, DOUBLE

and 00000 are removed.

Original nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ][000ਇੱਕੀ]

[dō][karōṛ][vīh][000ikkī]

[two][crore][twenty][000twentyone]

Resultant nodes :

[ਦੋ][ਕਰੋੜ][ਵੀਹ000ਇੱਕੀ]

[dō][karōṛ][vīh000ikkī]

[two][crore][twenty000twentyone]

8 ({DIGIT|DOUBLE|

TRIPLE},%a)("ਕਰੋੜ
Here, %a refers to node [ਦੋ]

[dō] [two]. This rule deletes

Original nodes:

[ਦੋ][ਕਰੋੜ][ਵੀਹ000ਇੱਕੀ]

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

67

"):=(%a,+CRORE); the node [ਕਰੋੜ]

[crore][karōr] and gives the

attribute CRORE to node %a.

[dō][karōṛ][vīh000ikkī]

[two][crore][twenty000twentyone]

Resultant nodes:

[ਦੋ][ਵੀਹ000ਇੱਕੀ]

[dō][vīh000ikkī]

[two][twenty000twentyone]

9 (DIGIT,CRORE,^A

RAB_CRORE,%a)(

0000000,%b):=(%a

&%b,-00 00000,-

CRORE,-

DIGIT,+00000000);

This rule concatenates nodes

[ਦੋ] [dō][two] and

[ਵੀਹ000ਇੱਕੀ] [vīh000ikkī]

[twenty000twentyone] and

gives the attribute 00000000

to this concatenated node

while removes all other

attributes.

Original nodes:

[ਦੋ][ਵੀਹ000ਇੱਕੀ]

[dō][vīh000ikkī]

[two][twenty000twentyone]

Resultant nodes:

[ਦੋਵੀਹ000ਇੱਕੀ]

[dōvīh000ikkī]

[twotwenty000twentyone]

Now ‘ਦੋ’ ‘dō’ ‘two’, ‘ਵੀਹ’ ‘vīh’

‘twenty’ and ‘ਇੱਕੀ’ ‘ikkī’ ‘twentyone’

are replaced by their universal words

and the final output 22000021 is

generated by IAN as shown in (6).

The UNL generated is given in (6).

{org}

ਦੋ ਕਰੋੜ ਵੀਹ ਲੱਖ ਇੱਕੀ

{/org}

{unl}

[w] 22000021:0F [/w]

{/unl} ...(6)

Here ‘:0F’ is the scope internally generated by the IAN tool.

4.3. UNL-ization of Ordinals

Ordinals numbers in Punjabi language contains ਲ� lāṃ / ਵ� vāṃ / ਥਾ thā / ਜਾ jā

as suffix as in ਪਿਹਲ� pahilāṃ ‘first’, ਇੱਕੀਵ� ikkīvāṃ ‘twenty first’, ਚੌਥਾ cauthā ‘fourth’, ਤੀਜਾ

tījā ‘third’, respectively. In UNL ordinals are represented in figures and attribute “@ordinal” is

given to it to retain its semantics. During UNL-ization of ordinals, all rules fired will be

same, with the only difference that after deleting blank spaces, a new rule as given in (7) will

be fired. This rule will add “@ordinal” attribute to the corresponding node having suffixes

ਲ� lāṃ / ਵ� vāṃ / ਥਾ thā / ਜਾ jā.

TRule:-({DIGIT|DOUBLE|CDN},%x)("ਵ�"|"ਲ�"|"ਥਾ"|"ਜਾ"):=(%x,ORD,att=@ordinal); ...(7)

This rule gives an attribute “@ordinal” to node having any one of the attributes DIGIT,

DOUBLE, or CDN (being referred as %x) preceding any one of the nodes [ਵ�] / [ਲ�] / [ਥਾ] / [ਜਾ].

The UNL-ization process for ordinals has been illustrated with the help of a simple example

sentence (8).

Example 3: ਇਕ ਸੌ ਬਾਈਵ� ...(8)

ik sau bāīvāṃ

one hundred twenty second

After tokenization of example sentence (8) with IAN tool, five lexical items are identified as

already given in (2) and it produce an additional lexical item as shown in (9).

[ਵ�]{-1}"ਵ�"(TEMP)<xxx,0,0>; ...(9)

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

68

This lexical item help in firing of rule given in (7) to attach the attribute “@ordinal”. The UNL

of example sentence (8) is given in (10).

{org}

ਇਕ ਸੌ ਬਾਈਵ�

{/org}

{unl}

[w] 122:09.@ordinal [/w]

{/unl} ...(10)

Here, ‘:09’ is the scope internally generated by the IAN tool.

5. Results and Discussions

With the help of sixty seven TRules and one hundred and four dictionary entries all integer

numbers and ordinals up to fourteen digits, written in words in Punjabi language, can be

successfully UNL-ized using IAN tool. One hundred and fifty random sentences written in

words, in Punjabi language, were successfully UNL-ized. Their F-Measure comes out to be

1.000 as shown in Figure 1. F-Measure is calculated with the help of online tool developed by

UNDL foundation available at UNL-arium [9].

Figure 1. F-Measure of Punjabi Numbers and Ordinals

International Journal on Natural Language Computing (IJNLC) Vol. 2, No.3, June 2013

69

6. Conclusion and Future

In the field of Natural Language Processing, UNL has been viewed as the future ‘html of the

linguistic content’ [1]. IAN tool is very effective for conversion of natural language sentences to

UNL. It involves the process of UNL-ization with the help of NL-UNL dictionary and TRules.

The proposed system is able to generate UNL for fourteen digit Punjabi numbers and ordinals

written in words with the help of one hundred and four dictionary entries and sixty seven

TRules.

In future, the work can be extended for converting numbers and ordinals of any size, floating

point numbers, and mixed fractions to UNL. UNL-ization of all the major part-of-speech like

nouns, adjectives, prepositions, determiners, conjunctions, verbs, etc. can further be carried out

with IAN tool. Since UNL captures semantics of a given natural language resource, semantic

based searching system can be developed.

REFERENCES

[1] G. Sérasset, C. Boitet, C 2000, “UNL as the future "html of the linguistic content" & the reuse

of existing NLP components in UNL-related applications with the example of a UNL French

deconverter”, Proc. Int. Conf. on Computational Linguistics, Saarbruecken, Germany, 2000, pp

768-774.

[2] S. Dave, J. Parikh, P. Bhattacharyya 2001, “Interlingua based English Hindi machine translation

and language divergence”, J. of Machine Translation (JMT), volume 16:(4), 2001, pp 251-304.

[3] UNDL Foundation, “http://www.undl.org”, December, 2012.

[4] R.T. Martins, L.H.M Rino, O.N. Osvaldo, R. Hasegawa, M.G.V. Nunes 1997, “Specification of

the UNL-Portuguese enconverter-deconverter prototype”, São Carlos: ICMSC-USP, 1997, pp 1-

10.

[5] R.T. Martins, R. Hasegawa, M. Graças, V. Nunes 2005, “Hermeto: A NL–UNL Enconverting

Environment”, Universal Network Language: Advances in Theory and Applications, Ed(s)

Cardenas J, Gelbukh A, Tovar E, México, Research on Computing Science: 2005, pp 254-260.

[6] R. Mohanty, A. Dutta, P. Bhattacharyya 2005, “Semantically relatable sets: building blocks for

 representing semantics”, Proc. 10th MT Summit, Phuket, 17 May 2005, pp 1-8.

[7] P. Kumar, R.K. Sharma,“Punjabi to UNL EnConversion System”, Springer: Sadhna, Academy

Proceedings in Engineering Sciences, volume 37:(2), April 2012, pp 299–318.

[8] Dey, K., Bhattacharyya, P 2005, “Universal Networking Language based analysis and

generation of Bengali case structure constructs” , Universal Network Language: Advances in

Theory and Applications, Ed(s) Cardenas J, Gelbukh A, Tovar E, México, Research on

Computing Science, 2005, pp 215-229.

 [9] UNL-arium,“http://www.unlweb.net/unlarium/index.php?lang=pa”, May 2013.

Authors

Vaibhav Agarwal was born in Bareilly, Uttar Pradesh, India, in 1988. He received

his B.Tech degree in Computer Science engineering from U.I.E.T, Kurukshetra

University, in 2010. Currently he is a postgraduate student of Software engineering

from Thapar University. His interest is focused on Natural Language Processing.

E-mail: vaibhavagg123@gmail.com

Parteek Kumar is currently working as an Assistant Professor in Computer Science

and Engineering Department, Thapar University. His specialization is in the fields of

Machine Translation and Database Management system.

E-mail: parteek.bhatia@gmail.com

