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ABSTRACT 

 
In this paper, the use of new auditory-based features derived from cochlear filters, have been proposed for 

classification of unvoiced fricatives. Classification attempts have been made to classify sibilant (i.e., /s/, 

/sh/) vs. non-sibilants (i.e., /f/, /th/) as well as for fricatives within each sub-category (i.e., intra-sibilants 

and intra-non-sibilants). Our experimental results indicate that proposed feature set, viz., Cochlear Filter-

based Cepstral Coefficients (CFCC) performs better for individual fricative classification (i.e., a jump of 

3.41 % in average classification accuracy and a fall of 6.59 % in EER) in clean conditions than the state-

of-the-art feature set, viz., Mel Frequency Cepstral Coefficients (MFCC). Furthermore, under signal 

degradation conditions (i.e., by additive white noise) classification accuracy using proposed feature set 

drops much slowly (i.e., from 86.73 % in clean conditions to 77.46 % at SNR of 5 dB) than by using MFCC 

(i.e., from 82.18 % in clean conditions to 46.93 % at SNR of 5 dB). 
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1. INTRODUCTION 

 
Classification of appropriate short regions of speech signal into different phoneme classes (e.g., 

fricatives vs. plosives) based on its acoustic characteristics is an interesting and challenging 

research problem. In this paper, we present an effective feature set for classification of one 

particular class of phonemes, viz., unvoiced fricatives. Fricative sounds are very unique class of 

phonemes in the sense that for fricatives, the sound source occurs at the point of constriction in 

the vocal tract rather than at the glottis. There are two types of fricatives, viz., voiced and 

unvoiced (having different speech production mechanisms). For example, in case of voiced 

fricatives, noisy characteristics caused by the constriction in the vocal tract are accompanied by 

vibrations of vocal folds, thereby imparting some periodicity into the produced sound. However, 

during the production of unvoiced fricatives, vocal folds are relaxed and not vibrating. This lack  
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of periodicity results in relatively more random waveform pattern. Furthermore, voiceless 

fricatives being noise-like, having highly turbulent source, are dynamic, relatively short and weak 

(i.e., having low energy) making classification even more difficult, especially, due to severe 

masking of fricative sounds by noise (i.e., under signal degradation conditions. 

 

Since production of unvoiced fricatives is governed by source (e.g., frication noise originating 

from constriction in vocal tract) - filter (i.e., oral cavity) model theory [1, 2], they may be 

distinguished depending on location of constriction in oral cavity.  This constriction at different 

locations accounts for distinct acoustical characteristics. To reliably predict the characteristics of 

fricative sounds, two approaches could be considered, viz., modeling the production mechanism 

of fricatives [3] or modeling response of human ear corresponding to the acoustical characteristics 

of each fricative class [4,5]. Our study focuses on second approach. To that effect, we propose use 

of cochlear filters to model response of human ear. Since among the various acoustic cues (e.g., 

amplitude, spectral, durational and transitional characteristics) used previously, spectral cues were 

found to be the most efficient; we have used spectral information as a basis of classification of 

four unvoiced fricatives, viz., /f/, /th/, /s/ and /sh/. 

 

The rest of the paper is organized as follows: Section 2 gives brief discussion of relevant literature 

that deals with the earlier attempts to classify fricative sounds using various acoustic features. 

Section 3 discusses the details of proposed feature set and gives the comparison between Fourier 

transform and auditory transform and its significance for unvoiced fricative classification. Section 

4 describes the experimental setup which is followed by the comparison of classification results 

using proposed and baseline features under various experimental evaluation factors (e.g., cross-

validation, dimension of feature vector, number of sub-band filters and signal degradation 

conditions) in  Section 5. Finally, Section 6 concludes the paper along with future research 

directions. 

 

2. LITERATURE REVIEW  
 
The earlier studies in the area of fricative sound classification used Root Mean Square (RMS) 

amplitude of fricative sound as an acoustic cue to distinguish between sibilants and non-sibilants 

[7, 8].  

 

Study reported in [9] used duration of fricative noise as a perceptual cue to distinguish between 

sibilants and non-sibilants as they found that sibilants are on an average 33 ms longer than non-

sibilants. However, the approach had several issues such as durational features often vary with 

speaking rate and contextual complexity. In an different experiment, it was also found that 

listeners identify fricative sound using only the initial fraction of utterance contrary to the earlier 

conclusion reported in [9] that absolute fricative noise duration can be used as a perceptual cue 

[10]. Instead relative duration (i.e., duration of fricative relative to entire word duration) was 

proposed in further studies [11]. This study found significant difference among all the places of 

articulation for fricative using relative duration as a cue, however, with the exception of unvoiced 

non-sibilants. 

 

Various spectral features have been investigated and used for a long time since the hypothesis 

presented in [12], that spectrum of fricatives is governed by size and shape of resonance chamber 

in front of constriction point. Work presented in [13] supported this finding when the spectral 

characteristics of front (near-flat spectrum), middle (spectral peak around 3.5 kHz) and back 

(spectral peak around 1.5 kHz) unvoiced fricatives were examined. Though the locations of 

spectral peaks are influenced by speaker differences [14] and age differences among speakers 

[15], it was consistently observed in many studies that the spectral peaks of sibilants always lie 

between 1-6 kHz range while non-sibilants show almost flat spectrum extending beyond 8 kHz.  
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Previous studies depict that various acoustic cues have been found effective for distinguishing 

between sibilant and non-sibilant class as a whole and between fricatives within sibilant class. 

However, analyzing the characteristics of fricatives within non-sibilant class has proved less 

conclusive resulting in poor classification accuracy. In this paper, we propose an auditory-based 

approach, for relatively better analysis and distinction of non-sibilant sounds in both clean and 

noisy environments by using cochlear filters (which resemble impulse response of human cochlea 

to any sound event). As human ear could distinguish between fricative sounds better than any 

other classification system (both in clean and noisy conditions), spectral cues derived from 

application of cochlear filters have been used for distinction between all four unvoiced fricatives 

(i.e., /f/, /th/, /s/ and /sh/). Results have also been reported for classification of sibilant vs. non-

sibilant sounds and for fricatives within each subcategory (i.e., /f/ vs. /th/ and /s/ vs. /sh/). 

 

3. COCHLEAR FILTER-BASED CEPSTRAL COEFFICIENTS 

(CFCC)      
 
CFCC features (derived from auditory transform) have been proposed first time in [4] for speaker 

recognition application. Auditory transform is basically a wavelet transform, however, the mother 

wavelet (i.e., ( )tψ ) is chosen in such a manner that the cochlear filters (whose impulse response 

corresponds to dilated version of mother wavelet) emulate the cochlear filters present in cochlea 

of human ear. Cochlear filters are responsible for perception of sound by human auditory system 

and would thus be expected to include properties of robustness under noisy or signal degradation 

conditions (i.e., may be better than most of the other artificial speech recognition or classification 

systems in noisy environments). The auditory transform is implemented as a bank of sub-band 

filters where each sub-band filter corresponds to the cochlear filter present along the basilar 

membrane (BM) in cochlea of human ear. These cochlear filters have been found to have a 

bandwidth that varies with their central frequencies. In particular, the bandwidth of these filters 

increases with increasing central frequency (i.e.,
c

f ) and has almost constant quality factor 

(i.e., Q ). These filters thus provide a range of analysis window durations and bandwidth for 

analyzing speech signal so that rapidly varying signal components are analyzed with shorter 

window duration than slowly varying components preserving the time-frequency resolution in 

both cases. Fig. 1 shows block diagram for implementation of CFCC [4, 5]. 

 

 
Input  

Speech 
Signal        
 

                                                                                                                                                                               

Fig. 1. Auditory-based feature extraction technique, viz., Cochlear Filter based Cepstral Coefficients 

(CFCC) [4,5]. 

 

We have chosen logarithmic nonlinearity instead of cubic root nonlinearity used in earlier 

studies [4,5] as it resulted in better classification, i.e., 

 

                                                                                ( , ) ln( ( , )).y i j S i j=
                                                            

(1)  

where S(i,j ) is the nerve spike density, obtained from hair cell output for each sub-band with 

duration for nerve density count taken as 12 ms (i.e., =12 ms), calculated with window shift 

duration of 5ms. 
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3.1. Details of cochlear filters 

 
Fig. 2 shows the frequency response of cochlear filters used in proposed feature set. Filters have 

been placed according to Mel scale and central frequencies of filters are calculated according to, 

                                                                                                 

Fig. 2.  Frequency response of 13 cochlear filters placed along Mel-scale with α=2 and β=0.45 . 

 

                                             
1127 ln(1 ),

700

lin
mel

f
f = +                                                 (2) 

 

where 
mel

f  is central frequency along Mel scale and 
lin

f  is corresponding central frequency along 

linear scale (i.e., in Hz). Filters are placed uniformly along Mel scale so the distribution appears 

exponential along linear scale. Parameters α  and β
 which decide filter shape have been 

optimized as 2 and 0.45, respectively, (for database used in present work).     

   

Though 13 cochlear filters have been used in our work (for the reasons described in Section 5.3), 

we experimented with number of sub-band filters to find the minimum number of cochlear filters 

required to capture the distinctive spectral characteristics of the unvoiced fricatives. Six filters 

have been found to be significant in our analysis (giving classification accuracy of 84.07 %). Fig. 

3 shows the frequency responses of these significant filters. Corresponding impulse responses 

have been shown in Fig. 4. It is noted that as central frequency of filters increases, bandwidth also 

increases maintaining a near-constant Q factor of 2.15 (as shown in Table 1). Furthermore, higher 

frequency components are analyzed with larger time resolution (shorter analysis window 

durations) while higher frequency resolution is used for analyzing lower frequency components. 

As shown in Fig. 4, frequency components near 13.1 kHz are analyzed with window of 

approximately 0.561 ms duration1 while window of approximately 11.4 ms is used for analyzing 

frequency components near 451 Hz. This is known as constant Q-filtering and this is what 

happens in Basilar membrane of human cochlea during speech perception                                                                                   
 

                                                 
1
 Only half part of the analysis window has been displaced in Fig.4, since the window is symmetric. 
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Fig. 3. Frequency response of six cochlear filters found significant for unvoiced fricative classification. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Impulse response of six cochlear filters found significant for unvoiced fricative classification with 

central frequencies (a) 451 Hz, (b) 1191 Hz, (c) 2408 Hz, (d) 4408 Hz, (e) 7696 Hz, and (f) 13.1 kHz. 

 

    

 

Cochlear 

filter 

Index 

Center 

frequency(Hz) 

-3dB 

Bandwidth( B ) 

(Hz) 

Quality factor  

(
c

f B  ) 

 

1 451  210 2.1476 

2 1191  550 2.1654 

3 2408  1120 2.1500 

4 4408  2050 2.1502 

5 7696  3580 2.1497 

6 13100 6450 2.04 

Table  1 : Central frequencies of cochlear filters found significant  for unvoiced 

fricative  classification 
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3.2. Short-time Fourier transform vs. Auditory transform: 

 
Short-time Fourier transform (STFT) is the most widely used technique for analyzing the 

frequency-domain characteristics of localized regions of speech signal. Though efficient, it uses 

fixed length window for signal analysis resulting in constant time-frequency resolution and hence 

improving resolution in time-domain will result in degradation of resolution frequency-domain 

(i.e., Heisenberg’s uncertainity principle in signal processing framework [16]). In addition, 

several optimized algorithms used in evaluating STFT via Fast Fourier Transform (FFT), add to 

the computational noise, by increasing computational speed at the expense of slight compromise 

in accuracy. This might seriously affect spectral cues in case of non-sibilants as they have weak 

resonances (i.e., formants) in their spectrum. Fig. 5-Fig.8 gives the comparison between the 

spectrum derived from auditory transform and traditional Fourier transform. Each spectrum is 

averaged from initial, middle and end regions of fricative sounds for each fricative class such that 

it represents the overall average spectral characteristics for that class. Hamming window with 

window duration of 12 ms with frame rate of 5 ms has been used for FFT-based computation of 

Fourier transform while auditory transform is computed using 13 cochlear filters of variable 

length by the procedure described in [17]. Fourier transform spectrum is affected by regular 

spikes because of the fixed window duration for all frequency bands (as seen in the Fig. 5 in the 

form of periodic spikes in spectrum, as shown in Fig. 5-Fig.8). On the other hand, spectrogram 

generated from auditory transform provides flexible time-scale resolution by employing variable 

length filters and hence it is free from these spikes and also preserves information about formant 

frequencies [4, 5]. From Fig. 7 and FIg. 8, it is also clear that sibilants show spectral peaks around 

5 kHz while such energy concentration at particular frequency is absent in non-sibilants and they 

tend to have near-flat spectrum (which is shown Fig. 5 and Fig.6). The reason for this could be 

explained from speech production mechanism. In particular, during production of sibilant sounds, 

point of constriction lies near alveolar ridge resulting in considerable length of front cavity, 

(created between point of constriction and lips) which in turn is responsible for spectral filtering 

of the turbulant sound produced from the constriction introducing resonances into the spectrum 

while such spectral filtering is almost absent in case of labiodental (/f/) and interdental (/th/) non-

sibilants as point of constriction itself lies at lips in the former case while between upper and 

lower teeth in later ([18], [19]). 
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 3.3. Noise  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Noise suppression capability of CFCC 

  

 

  
 

 

 

 
 

 

 

 

 
 
 

 

 

 

 
 
Fig. 8 (a) Waveform for fricative sound /sh/ and  corresponding 

spectrum using (b) Fourier transform and (c) auditory transform.. 

Fig.. 5 (a) Waveform for fricative sound /f/ (i.e., non-

sibilant)  and corresponding spectrum using (b) Fourier 

transform (c) auditory transform. 

Fig.. 6 (a) Waveform for fricative sound /th/ / (i.e., non-

sibilant) and corresponding spectrum using (b) Fourier 

transform (c) auditory transform.. 

Fig.. 7 (a) Waveform for fricative sound /s/  (i.e., 

sibilant) and corresponding spectrum using (b) 

Fourier transform and (c) auditory transform.. 

(b) 

(c) . 
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The Mel scale filterbank has triangular shaped sub-band filters which are not smooth at the vertex 

of each triangle [20]. On the other hand, from Fig. 3, it is evident that cochlear filters have bell-

shaped frequency response and hence are relatively much more smoother than the Mel filters. 

This smoothness of the cochlear filters may help in suppressing the noise.   

 

Robustness of CFCC features could also be explained from similarity of auditory transform with 

signal processing abstraction of cochlea in human ear. In noisy acoustic environment, human 

listeners perform robustly. In particular, human hearing system is robust to the noise because of 

amplification mechanism in auditory transform to take care of mechanical vibrations of eardrum 

at the threshold of hearing (i.e., 
5 22 10 /N m−× ) [21]. To support this observation, study reported 

in [22] claims that two or more rows of outer hair cells (OHC)  in the cochlea are pumping fluid 

which accelerates the process of detecting sub-band energies in speech sound. In addition, those 

OHC might be setting up their own vortex to act as the amplifier [21]. The sub-band-based 

processing and energy detection comes from the original studies reported in [23]. Study in [23] is 

based on belief that human ear is a frequency analyzer, except for detection of transient sounds. In 

this context, CFCC employs continuous-time wavelet transform (CWT) which has mother 

wavelet ( )tψ  to aid for noise suppression and to detect the transitional sounds such as fricatives. 

This is analyzed below.  

we have eq. (3)  from [4],                                

                                                         ( ) 0;t dtψ
+∞

−∞

=∫
                                                                    

(3)   

                                         ( ) ( )00 .
t t

t dt t t dtψ ψ
+∞ +∞

=−∞ =−∞

= =∫ ∫                                               (4) 

This means that ( )tψ  has one vanishing moment  and it will suppress polynomial of degree zero 

[16].  Let ( )f t be the clean speech signal, ( )w t  be the additive white noise signal, then the 

noisy speech signal, ( )x t  , is given by 

                                                    ( ) ( ) ( ).x t f t w t= +                                                      (5) 

Taking wavelet transform on both sides and using linearity property of CWT, we get,                                                          

( , ) ( , ) ( , ),Wx a b Wf a b Ww a b= +                        (6) 

where ( ) ( ) ( )* *

, ,

1
( , ) ,a b a b

t t

t b
Wf a b f t t dt f f t dt

aa
ψ ψ ψ

+∞ +∞

=−∞ =−∞

− 
= = =  

 
∫ ∫  and the 

symbol ,  denotes the inner product operation and ( , )Wf a b means CWT of signal ( )f t . 

Hence, eq. (6)  becomes,  

                                               
, , ,

, , , ,
a b a b a b

x f wψ ψ ψ∴ = +                                     (7) 

                                           , , ,, , , ,a b a b a bx f wψ ψ ψ∴ = +

 

                                            

, , ,, , , .
a b a b a b

x f wψ ψ ψ⇒ ≤ +

                            

(8) 
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It is well known that the Taylor formula relates the differentiability of a signal ( )f t to local 

polynomial approximation. Let us assume that signal ( )w t  is m  times differentiable in 

[ ], .v h v h− +  If ( )vP t is Taylor polynomial in the neighborhood of point v , then  

                                         
( ) ( ) ( ) ,v vw t P t tε= +

                                                             
(9) 

where the approximation error ( )v tε  is refined by non-integer exponent α  (called as Lipchitz 

exponent or Holder exponent in mathematical literature) . In particular, there exists 0K > such 

that 

                                       ( ) ( ) ( ), .
v v

t t w t P t K t v
α

ε∀ ∈ = − = −�
                              

(10) 

Let mother wavelet ( )tψ  has n  vanishing moments and signal ( ) ( )2w t L∈ �
 
(i.e., Hilbert 

space of finite energy signals) has non-integer Lipchitz exponent α .  In this case, we have 

following two theorems [chapter 6, pp. 169-171, 24], [25].  

 

Theorem 1: If the signal ( ) ( )2
w t L∈ � is uniformly Lipchitz nα ≤  over the closed interval 

[ ]1 2,b b  then there exists 0K >  such that  

                    ( ) [ ]
1

2
1 2 ,, , , , .

a b
a b b b w Ka

α

ψ
+

+∀ ∈ × ≤�
                                   

(11) 

 

Theorem 2 (JAFFARD) : If the signal ( ) ( )2w t L∈ � is Lipchitz nα ≤   at a point v ,  then 

there exists 0K >  such that  

                  ( )
1

2
,

, , , 1 ,
a b

b v
a b w Ka

a

α
α

ψ
+

+
 −

∀ ∈ × ≤ +  
 

� �
                     

(12)
 

where a  and b are scale and translation paramters in the definition of CWT. It should be noted 

that converse is also true for both the above theorems.  Since in present case, from eq. (4), we 

have  1n =  which implies that 1.α ≤ Above two theorems gives a guarrantee that the wavelet 

transform of noise signal will decay faster as the scale parameter goes to zero (i.e., the at the fine 

scales). On the other hand, for larger values of scale parameter, it does not  introduce any 

constraint. In particular,  due to Cauchy-Schwartz inequality, we have 

                                             , ,, .a b a bw w wψ ψ ψ≤ =
                                   

(13) 

Since due to normalization of mother wavelet, , 1a bψ ψ= = [chapter 4, 24],  we have, 

                                      
,, .a bw wψ ≤

                                                                      
(14) 

Hence, the wavelet transform of noise signal is bounded by w ,  at larger scale parameter.  From 

eq.(8) and eq. (11), we have, 

 

 

 

Similarly, eq.(8) and eq. (11), we have 

1 2

1 1

2 2
, 1 2, .a bx K a K a

α α

ψ
+ +

≤ +
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1 2

1 2

1 1

2 2
, 1 2

, 1 1 ,
a b

b v b v
x K a K a

a a

α α
α α

ψ
+ +   − −

≤ + + +      
   

 

        (15) 

where  
1 2, 0K K > and 

1α  and 
2α  are the Lipchitz exponents of clean speech signal and additive 

white noise, respectively. Since, wavelet transform of noise signal will decay, it is evident from 

eq. (14) and eq. (15) that additive noise is suppressed in wavelet-domain. Since, CFCC inherently 

employs CWT representation to  mimic cochlear filters in human hear, it is expected that CFCC 

will have noise suppression capability. This is also demonstrated with experimental results for 

unvoiced fricative classification under noisy conditions in Section 5.4.  

 

4. EXPERIMENTAL SETUP  

 
4.1.Database used in this study 

 
Preparation of sufficient training and testing data for each fricative involves extracting fricatives 

sounds from continuous speech in different contexts (of speech recordings) from different 

speakers. All the fricatives have been manually extracted (using Audacity software [26]) from 

CHAINS database [27] of continuous speech in solo reading style (recorded using a Neumann 

U87 condenser microphone). The database is publicly available having 4 extracts (viz., rainbow 

text, members of the body text, north wind text and Cinderella text), a set of 24 sentences having 

text material corresponding to TIMIT database and a set of other 9 CSLU's Speaker Identification 

Corpus sentences.  

 

Table 2 summarizes the details (such as number of speakers and contexts of fricative sounds) of 

the dataset for each fricative sound used in this work. Words for segmenting fricative samples are 

collected such that samples consist of variety of contexts. Column 5 in Table 2 gives this 

contextual information (i.e., underlined region in a word indicates the location of fricative sound).  

 
Table 2. Training and testing data extraction for each unvoiced fricative class 

 

  # of 

samples 

# of Speakers 

(Male+Female) 

Context associated with training and testing 

samples 

 

 

/f/ 208 5  (1 M + 4 F) for, of, affirmative, find, enough, fire, fish 

frantically, fortune, frightened, fairy, forgot, fifth, 

if, fires, off, beautiful, form, refused, few, fell, 

from, food, roof,  centrifuge and Jeff 

 /th/ 143 21 (11 M + 10 F) Thought, teeth, North, tooth, think, throughout, 

everything, path, something and mouth 

 /s/ 305 6  (2 M + 4 F) sun, sunlight, say, looks, support, must, necessary, 

receive, dance, sing, small, surface, cost, sloppy, 

appearance, same, atmosphere, escape, sermon, 

subdued, task, rescue, ask, suit, saw, system, loss 

and centrifuge 

 /sh/ 254 14 (4 M + 10 F) wash ,under-wash ,discussion ,condition, shine, 

share, shape, shelter, shotguns, action, Trish and 

she 

 Total 910 23 (10 M + 13 F)  

 

 

 

 

 

  
 N

o
n
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 S
ib
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M-Male, F-Female 
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4.1. Front end analysis 

 
To evaluate the relative performance of the proposed feature set, state-of-the-art feature set, viz., 

MFCC is used as the baseline feature set. Front end analysis involves computation of both CFCC 

and MFCC features from corresponding spectra. Spectral analysis is done using Discrete Fourier 

Transform (DFT) up to 22.05 kHz (corresponding to sampling frequency of 44.1 kHz) as it was 

observed previously that spectral information of non-sibilants extend above 10 kHz [28]. Frame 

size of 12 ms along with Hamming window and frame rate of 5 ms is used for computation of 

MFCC features while CFCC features are computed as described in Section 3 . Though such small 

window size of 12 ms reduces the resolution in frequency-domain in case of MFCC, we observed 

that temporal development of fricative sounds can be better modeled using larger number of 

feature vectors per fricative sound (i.e., small window size) thereby increasing time resolution, 

especially for non-sibilant /th/ which has average duration as small as 71.86 ms (computed over 

143 samples used in this study). Cepstral Mean Subtraction (CMS) is performed after MFCC and 

CFCC computation to take care of variations in recording devices and transmission channels. 

Furthermore, use of CMS also resulted in considerable increase in % classification accuracy. 

 

4.3 Hidden Markov Model (HMM)  
 

In this work, HMM is used as a pattern classifier since it preserves the temporal development of 

the fricative utterance which is often important in perception of fricative sounds. On the other 

hand, temporal variation is irrelevant in other widely used techniques such as discriminatively-

trained pattern classifier, viz., support vector machines (SVMs) in which classification is done 

independently for each frame in an utterance [31]. HMM evaluates the probability of an utterance 

being particular fricative sound based on observation and transition probabilities of observed 

sequence . A 3-state continuous density HMM has been employed for modeling of each fricative 

class. 

 

4.4 Performance measures  

 
To facilitate the performance comparison between proposed and baseline feature sets, three 

performance measures, viz., classification accuracy, % Equal Error Rate (EER) and minimum 

Detection Cost Function (DCF) have been employed. % classification accuracy is defined as,  %  

 

Classification Accuracy = c

t

# of test samples correctly identified (N )
100.

Total # of test samples (N )
×                 (16) 

 

 Error is a measure of misclassification probability. Classification error could be due to failure of 

a classifier to detect a true test sample or due to acceptance of false test sample. We have used 

Detection Error Trade-off (DET) curve for analyzing the error rates which gives the trade-offs 

between missed detection rate (i.e., miss probability) and false acceptance rate (i.e., false alarm 

probability) [32]. Two performance measures, viz., % Equal Error Rate (EER) and minimum 

Detection Cost Function (DCF) have been employed for quantifying the error associated with 

classification task. % EER corresponds to an optimal classification threshold at which both the 

errors (i.e., false acceptance and missed detection) are equal while DCF calculates the minimum 

cost associated with the errors by penalizing each error according to its relative significance. DCF 

is given by,
  

 

                          DCF =            
missC * * * * ,miss true fa fa falseP P C P P+                                    (17)  
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where 
miss

P  and 
faP  are missed detection and false alarm probabilities while 

missC and 
faC are 

costs associated with them. 
true

P  and 
falseP  denote prior probabilities of true and false samples, 

respectively, which in turn depends upon number of genuine and imposter trials performed. We 

have employed equal penalties to both the errors (i.e., 
missC  = faC = 1) for evaluating DCF. We 

have also reported 95 % confidence intervals of classification accuracy to quote statistical 

significance of our experimental results. Confidence intervals have been estimated by parametric 

techniques [33]. 
 

5. EXPERIMENTAL RESULTS  

 
In this section, experiments are performed to evaluate the proposed feature set for various 

experimental evaluation factors such as cross-validation, effect of feature dimension, number of 

sub-band filters and robustness against signal degradations. The details of these experiments and 

analysis of results are presented in next sub-sections. 

                                                                      

5.1. Fricative Classification using CFCC and MFCC  

 
Using 13-dimensional feature vector (for both CFCC and MFCC feature sets),following three 

classification tasks are performed on 2-fold cross-validated data. 

 

1. Modeling sibilants and non-sibilants as different classes, 

2. Modeling fricatives within sibilants and non-sibilants as different classes (e.g.,/s/ vs. /sh/ 

and /f/ vs. /th/), 

3. Modeling each kind of fricative sound as a different class. 

 

Table 3 shows the overall classification results for above classification tasks followed by 

individual class analysis depicted via confusion matrices (shown in Table 4 -Table11). 

Corresponding DET curves have been shown in Fig. 9, Fig. 10 and Fig. 11, respectively. 

Following observations could be made from the results. 

 

a. CFCC features perform consistently superior to baseline feature set (i.e., MFCC) in all 

three classification tasks  as mentioned above(Table 3 to Table 11). 

b. CFCC improves the overall % classification accuracy of sibilant vs. non-sibilant 

classification (i.e.,92.01 %, as shown in Table 3) by improving the rate of identifying 

genuine non-sibilant samples (i.e.,90.15 %, as shown in Table 5) while genuine sibilant 

samples have been identified equally well using both MFCC and CFCC feature sets (Table 

4 and Table 5). DET curve (shown in Fig. 9) indicates that CFCC performs better than 

MFCC at all the operating points of the curve (i.e., by varying classification threshold) 

reducing % EER by6.37%. 

c. Classification within sibilant class is much more accurate than within non-sibilant class in 

case of both feature sets (i.e., MFCC and CFCC). Furthermore, classification accuracy 

within sibilant class is almost same for both features, while % EER has been significantly 

reduced in case of CFCC (by 5.37 %) suggesting that overlapping score distribution of 

genuine and imposter test samples in case of MFCC has been considerably reduced by 

using proposed CFCC (Table 3, Table 8 and Table 9, Fig. 10(b)). 

d. Though classification accuracy within non-sibilant class has been improved in case of 

CFCC (because of better identification of genuine /th/ test samples), the % EER is much 

higher in case of both features (Table 3, Table 6 and Table 7, Fig. 10(a)). 

e. Individual classification analysis of all fricatives also shows the effectiveness of proposed 

feature set to better identify genuine /th/ test samples than MFCC resulting in overall 
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superior performance (Table 3, Table 10 and Table11). DET curve (shown in Fig. 11) also 

depicts the superiority of CFCC which performs better than MFCC for most of the 

operating points of the DET curve (of varying classification threshold) reducing % EER by 

6.59 %.  

 

 

 Average % classification 

accuracy 

% EER Minimum DCF 

     Feature set  

                � 
Task  � 

MFCC CFCC 

 

 

MFCC CFCC MFCC CFCC 

Sibilants vs. 

Non-sibilants 

89.44 

[86.62, 92.26] 
92.01 

[89.52, 94.5] 

27.91 

 
21.54 

 

0.2780 

 
0.2121 

 

/f/ vs. /th/ 

(i.e., within              

non-sibilant class) 

76.42 

[70.15, 82.69] 
83.18 

[77.66, 88.7] 

31.77 

 
25.52 

 

 

0.3151 

 
0.2782 

 

/s/ vs. /sh/ 

(i.e.,within sibilant 

class) 

96.45 

[94.28, 98.62] 
97.55 

[95.74,99.36

] 

21.14 

 
15.77 

 

0.13 

 
0.10 

 

All four 

fricatives 

(i.e.,/f/,/s/,/sh/,/t

h/) 

85.73 

[82.52,88.94] 

89.14 

[86.29 92] 

26.37 

 

19.78 

 

0.2148 

 

0.1549 

 

 

To summarize, sibilants are classified accurately by using both feature sets, MFCC and CFCC. 

Interestingly, within non-sibilants, /f/ is classified equally well in both feature sets, however, 

classification accuracy of /th/ is much higher in case of CFCC as compared to the MFCC. The 

reason for this could be large spectral variation in /th/ sound. /f/ sound is found to occupy weak 

spectral resonances around 1.5 kHz and 8.5 kHz. However, such energy concentration is not 

observed consistently with all the /th/ test samples. On the other hand, spectral distribution of /th/ 

sound is highly variable (especially above 8 kHz) across different speakers and contexts. As 

CFCC incorporates cochlear filters and several processes involved in auditory perception of 

sound  (eg.,  neural firings, nerve spike density, etc.), the spectral variability in /th/ sound may 

bebetter modelled (as it happens in human auditory system) by CFCC resulting in considerable 

increase in classification accuracy of /th/ as compared to MFCC.     

   

 

 

           Identified 

                       � 
Actual� 

 

Non-

sibilants  

 

Sibilants  

Non-sibilants  83.68 16.32 

Sibilants  6.96 93.05 

             Identified        

 

Actual� 

Non- 

Sibilants 

 

Sibilants 

Non-sibilants 90.15 9.85 

Sibilants 6.82 93.18 

Table 4: Confusion matrix showing % 

classification accuracy for sibilant vs. non-

sibilant classification using MFCC features 

Table 5: Confusion matrix showing % 

classification accuracy for sibilant vs. non-sibilant 

classification using CFCC features 

Table 3: Comparison of classification results using CFCC and MFCC 
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Fig.9. DET curves for sibilant vs. non-sibilant classification using baseline and proposed feature sets. 

 

 

 

 

 

 

(a)                                                                        (b) 

Fig.10. DET curves for classification using baseline (MFCC) and proposed (CFCC) feature sets (a) 

within non-sibilant class (i.e., /f/ vs. /th/) (b) within sibilant class (i.e., /s/ vs. /sh/). 

 

 

 

Identified   

        � 
Actual� 

 

/f/ 

 

/th/ 

/f/ 85.34 14.66 

/th/ 36.46 63.54 

     Identified 

                � 
Actual� 

 

/f/ 

 

/th/ 

/f/ 86.11 13.89 

/th/ 21.04 78.96 

Table 6: Confusion matrix showing %  

classification accuracy of classification within 

non-sibilants using MFCC 

 

Table 7:  Confusion matrix showing % 

classification accuracy of classification 

within non-sibilants using CFCC 
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Fig.11 DET curves for unvoiced fricative classification (for four classes, viz., /f/, /th/, /s/ and /sh/) using 

MFCC and CFCC. 

 

              

Identified 

� 
Actual   � 

 

/s/ 

 

/sh/ 

/s/ 95.66 4.34 

/sh/ 2.60 97.40 

             

Identified 

� 
Actual   � 

 

/s/ 

 

/sh/ 

/s/ 96.64 3.36 

/sh/ 1.34 98.66 

 Identified 

�                 

Actual� 

 

/f/ 

 

/th/ 

 

/s/ 

 

/sh/ 

/f/ 84.95 7.64 3.8 2.64 

/th/ 24.49 56.49 10.56 7.04 

/s/ 2.39 2.98 92.69 1.94 

/sh/ 2.28 1.41 1.69 94.60 

 Identified 

� 

Actual� 

 

/f/ 

 

/th/ 

 

/s/ 

 

/sh/ 

/f/ 82.83 15.19 1.9 1.15 

/th/ 22.63 72.50 2.48 0.98 

/s/ 0.625 1.8 95.77 1.81 

/sh/ 1.62 0.82 1.73 95.83 

Table 11:  Confusion matrix showing % 

classification accuracy of unvoiced fricative 

classification using CFCC 

 

Table 10:  Confusion matrix showing % 

classification accuracy of unvoiced fricative 

classification using MFCC 

 

Table 8:  Confusion matrix showing % 

classification accuracy of classification 

within sibilants using MFCC 

Table 9:  Confusion matrix showing % 

classification accuracy of classification 

within sibilants using CFCC 
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5.2. Analysis of data independency via 4-fold cross-validation  

 
Classification results should not be data-dependent(i.e., specific to particular set of training and 

testing samples)rather should be consistent for any dataset as long as datasets are valid (i.e., 

represent samples from respective classes).In this paper, this is ensured by evaluating 

classification results using 4-fold cross-validation analysis. Data for each fricative class is 

randomly divided into 4 sets (as shown in Table 12) and each dataset is used for testing at a time 

while remaining datasets are used for training. Four such trials have been performed and 

corresponding experimental results for individual fricative classification are shown in Table 13 

and Fig. 12.  Table 13 shows the overall classification results for each fold while results for each 

fricative (averaged over all these 4 folds datasets) have been shown in Fig. 12.  

 

CFCC proves to be a better front-end feature set for classification as training and testing datasets 

are varied in each of 4 folds (as shown in Table 13). It is also clear that both % EER and 

minimum DCF have been reduced in 4-fold cross-validation analysis with slight reduction in 

accuracy as well compared to 2-fold cross-validation analysis performed in Section 5.1 (as shown 

in Table 3). One of the possible reasons for this difference in results could be the trade-off 

involved between number of training and testing samples. Only half of the total samples have 

been used for training in 2-fold cross-validation analysis whereas 75 % of total samples are used 

for training in case of 4-fold cross-validation leading to better estimation of HMM parameters. 

 

 

 

Fold number 

 

Fold-1 

 

Fold-2 

 

Fold-3 

 

Fold-4 

 

Average 

        Feature 

set → 

Results  ↓   

 

MFCC 

 

CFC

C 

 

MFCC 

 

CFCC 

 

MFCC 

 

CFCC 

 

MFCC 

 

CFCC 

 

MFCC 

 

CFCC 

%  

classification 

accuracy 

 

84.11 

 

87 

 

83.67 

 

89.13 

 

85.93 

 

90.28 

 

87.58 

 

85.65 

 

85.32 

 

88.01 

 

% EER 

 

24.64 

 

18.0

7 

 

27.75 

 

18.94 

 

24.86 

 

16.75 

 

26.60 

 

19.60 

 

25.96 

 

18.34 

 

Minimum 

DCF 

 

0.1937 
 

0.14

8 

 

0.209 
 

0.141 

 

0.2050 
 

0.141 

 

0.196 
 

0.151 

 

0.2010 
 

0.145 

 Table 12.  Division of database into four sets via 4-fold cross-validation 

 # of test 

samples in 

Dataset 1 

# of test 

samples 

in 

Dataset 2 

# of test 

samples in 

Dataset 3 

# of test 

samples in 

Dataset 4 

Total # of 

samples 

/f/ 52 52 52 52 208 

/th/ 36 35 36 36 143 

/s/ 77 76 76 76 305 

/sh/ 63 64 63 64 254 

 

 

Table 13. % classification accuracy for different training and testing sets (using 4-fold 

cross-validation) using CFCC and MFCC for classification of /f/,/th/, /s/ and /sh/ 
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Fig. 12. 4-fold averaged classification accuracy for individual fricative class for classification of /f/, /th/, /s/ 

and /sh/ using CFCC. 

 
However, this is accompanied by less conclusive classification analysis as testing samples have 

been reduced. Averaged individual fricative class accuracy (as shown in Fig. 12) shows 

significant difference in accuracy of non-sibilant, /th/ using CFCC and MFCC features (i.e.,74.53 

% for CFCC, 54.53 % for MFCC) confirming dataset independence of experimental results 

reported in Section 5.1.  
 

5.3. Effect of number of sub-band filters and feature dimensions 

 
Both proposed (CFCC) and baseline (MFCC) features are evaluated by applying different number 

of sub-band filters on corresponding spectral information to estimate optimum number of Mel and 

cochlear filters required to capture distinct acoustic characteristics of each class. In wavelet 

analysis, there is always a trade-off between number of sub-band filters used and associated 

computational complexity. As more number of filters tend to provide more resolution (both in 

time and frequency-domain), it is intuitive that this number should be chosen based on a 

particular application (i.e., minimum number providing sufficient temporal and spectral details). 

Initially, we varied the number of sub-band filters used to estimate feature vector along with 

dimensions of feature set. In particular, if number of sub-band filters used is N then dimension of 

feature vector is also kept as N.  Fig. 13 (a) shows the plot of % classification accuracy vs.  

number of sub-band filters (with  fixed feature dimension) whereas Fig. 13(b) shows the plot of  

% classification accuracy vs.  dimension of feature vector (with  fixed number of sub-band filters) 

.  

 

(a)                                                                 (b) 

Fig. 13 (a) % classification accuracy with variation in number of filters employed and with fixed dimension 

of feature vector for classification of /f/, /th, /s/ and /sh/, (b) % classification accuracy by varying feature 

dimension and with fixed number of filters for classification of   /f/, /th/, /s/ and /sh/. 



International Journal on Natural Language Computing (IJNLC) Vol. 3, No.4, August 2014 

38 

Feature dimension of 13 (with 13 cochlear  sub-band filters) is found to be optimum for both 

CFCC and MFCC features as both features show near -maximum classification accuracy in (i.e., 

89.14 % for CFCC, 85.73 % for MFCC when number of filters are varied by keeping fixed 

dimension of feature vector). Hence, all the other experiments reported in this work have been 

performed using 13-dimensional feature vectors for both CFCC and MFCC. In the next 

experiment, we fixed the number of sub-band filters and reduced the number of cepstral 

coefficients (i.e., feature dimension) from 13 in order to examine how many cepstral coefficients 

are vital. Fig. 13 (b) shows the results obtained as feature dimensions are varied alone (i.e., with 

fixed number of sub-band filters). It is observed that employing only 6 cepstral coefficients of 

CFCC results in considerable classification accuracy in both the experiments (i.e., 86.48 % when 

6 filters are employed, and 86.77 % when number of filters are fixed to 13) followed by rapid fall 

in accuracy on reducing the feature dimension further. Therefore, it can be concluded that these 6 

cochlear filters provide enough spectral resolution for capturing the distinctive spectral 

characteristics of given unvoiced fricatives. Impulse and frequency responses of these 6 cochlear 

filters have been discussed in Section 3 (as shown in Fig. 3 and Fig. 4, respectively). 

 

5.4. Robustness under signal degradation conditions 

 
To study the robustness of the proposed feature set under noisy conditions, testing samples of 

fricative sounds were added with white noise at various SNR levels, while training is performed 

with clean fricative samples. White noise samples are obtained from NOISEX-92 database [29] 

(having sampling frequency of 19.98 kHz). These noise samples have been up-sampled to 44.1 

kHz such that up-sampled white noise contains all the frequencies up to 22.05 kHz. Analysis is 

performed on these test samples using both MFCC and CFCC features starting from clean 

conditions and at varying SNR levels from 15 dB to -5 dB in steps of 5 dB. Fig. 14 shows the 

performance of both features under various SNR levels. Though overall classification accuracy 

decreases in case of both features, the decrease is much steeper with MFCC features, as accuracy 

falls to 46.93 % at SNR of 5 dB while CFCC accuracy still remains at 77.46 %. Similar behavior 

has been observed in % EER as well since % EER has been considerably increased with SNR 

degradation in case of MFCC (i.e., 26.37 % EER in clean conditions to 40.49 % EER at SNR of 5 

dB) while this increase is less steeper in CFCC (i.e., 19.78 % EER in clean conditions to 26.85 % 

EER at SNR of 5 dB). 

 

                                          
                                      (a)                                                                    (b) 
Fig. 14.  (a) Degradation of average classification accuracies in presence of additive white noise using 

baseline (MFCC) and proposed (CFCC) feature sets, (b) increase in classification error in presence of 

white noise using baseline (MFCC) and proposed (CFCC) feature sets. 
 

As discussed in Section 3.3, the robustness of CFCC is due to the fact that 

 

1. CFCC employs smooth bell-shaped cochear filters as opposed to triangular-shaped Mel 

filters,  
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2. CFCC is designed to mimic human auditory processing which has inherent noise 

suppression mechanism to take care of mechanical vibration of eardrum at the threshold 

of hearing, 

3. CFCC employs CWT which has mother wavelet to aid the noise suppression in wavelet-

domain.  

Decreasing SNR levels beyond 5 dB SNR results in rapid fall of accuracies in case of both feature 

domains as fricative sounds are almost masked by added white noise and front end features no 

longer reflect distinct acoustic characteristics in presence of such high noise.  

 

6 SUMMARY AND CONCLUSIONS   
 
Application of recently developed auditory-based cochlear filters for identifying spectral cues in 

unvoiced class of fricatives has been proposed. Study was motivated by need to develop effective 

acoustic cues using auditory transform pertaining to the similarity of auditory transform with 

human cochlear response thereby distinguishing effectively between fricative sounds. Our 

experimental results indicate that proposed CFCC features outperform MFCC features both in 

clean and noisy conditions. One of the possible limitations of this study could be classification is 

solely dependent on spectral characteristics of manually segmented fricative sounds. Including 

contextual information may result in better classification since proposed feature set, viz., CFCC 

itself depends on human auditory system and contextual information greatly helps in perceiving 

fricative utterances in case of human listeners[30].  Global optimization of HMM parameters is 

another issue as Baum-Welch re-estimation algorithm guarantees only local optimization.  

 

Auditory transform-based CFCC features present an alternative to state-of-the-art front end 

features (viz., MFCC) used for robust phoneme classification. Our future research will be directed 

towards extending our present study to application of proposed robust feature (i.e., CFCC) in 

phoneme identification task.  

 

REFERENCES:    
 

[1] Fant, G., Acoustic Theory of Speech Production, Mouton, The Hague, 1960. 

[2] Stevens, K.N., Acoustic Phonetics (Current Studies in Linguistics), M.I.T. Press, 1999. 

[3] J. D. Markel and A. H. Gray Jr., Linear Prediction of Speech, Springer-Verlag, 1976. 

[4] Q. Li, An auditory-based transform for audio signal processing, Proc. IEEE Workshop App. Signal 

Process. Audio Acoust., New Paltz, NY, pp. 181–184, Oct. 2009.  

[5] Qi Li, An auditory-based feature extraction algorithm for robust speaker identification under 

mismatched conditions, IEEE Trans. on Audio, Speech and Lang. Process., vol. 19, no. 6, pp.1791-

1801, Aug. 2011.         

[6] McCasland, G. P., Noise intensity and spectrtuirt cues for spoken fricatives, J. Acoust. Soc. Am. 

Suppl. vol. 165, pp.S78–S79, 1979. 

[7] Behrens, S. and S. E. Blumstein, Acoustic characteristics of English voiceless fricatives: a descriptive 

analysis, J. Phonetics, vol. 16, no.3, pp. 295–298, 1988. 

[8] Stevens, K. N., Evidence for the role of acoustic boundaries in the perception of speech sounds, J. 

Acoust. Soc. Am., vol. 69, no. S1, pp. S116-S116, 1981. 

[9] Behrens, S. and S. E. Blumstein, On the role of the amplitude of the fricative noise in the perception 

of place of articulation in voiceless fricative consonants, J. Acoust. Soc. Am., vol. 84, no. 3, pp. 861–

867, 1988. 

[10] Jongman, A., Duration of fricative noise required for identification of English fricatives, J. Acoust. 

Soc. Am., vol. 85, no. 4, pp. 1718–1725, 1989. 



International Journal on Natural Language Computing (IJNLC) Vol. 3, No.4, August 2014 

40 

[11] Jongman, A., R. Wayland, and S. Wong, Acoustic characteristics of English fricatives, J. Acoust. Soc. 

Am., vol. 108, no.3, pp. 1252–1263, 2000. 

[12] Hughes, G. W. and M. Halle, Spectral properties of fricative consonants, J. Acoust. Soc. Am., vol. 28, 

no.2, pp. 303–310, 1956. 

[13] Strevens, P., Spectra of fricative noise in human speech, Lang. Speech, vol. 3, no.1,       pp. 32–49, 

1960. 

[14] Pentz, A., H. R. Gilbert, and P. Zawadzki, Spectral properties of fricative consonants in children, J. 

Acoust. Soc. Am., vol. 66, no. 6, pp. 1891–1893, 1979. 

[15] Nissen, S., An accoustic analysis of voiceless obstruents produced by adults and typically developing 

children, Ph. D. Thesis, Ohio State University, Columbus, OH, 2003. 

[16] S. Mallat, A Wavelet Tour of Signal Processing, 3rd Ed., New York: Academic, 2007.  

[17] Qi Li, An auditory-based transform for audio signal processing, IEEE workshop on applications of 

signal processing to audio and acoustics – WASPAA, pp. 181-184, 2009. 

[18] J.L. Flanagan, Speech Analysis, Synthesis and Perception, 2nd Ed., Springer-Verlag, New York, 

1972. 

[19] R.K. Potter, G.A. Kopp, and H.C. Green, Visible Speech, D.Van Nostrand Co., New York, 1947. 

Republished by Dover Publications, Inc., 1966. 

[20] S. Davis and P. Mermelstein, Comparison of parametric representations for monosyllabic word 

recognition in continuously spoken sentences, IEEE Trans. on Acoustics, Speech and Signal Process., 

vol. 28, no 4,  pp. 357-366, Aug. 1980. 

[21] H. M. Teager and S. M. Teager, Evidence for nonlinear production mechanisms in the vocal tract, in 

Speech Production and Speech Modeling, Norwell, MA: Kluwer, vol. 55, pp. 241–261, 1989.  

[22] Brownell, W. E., Bader, C. R., Bertrand, D. and Ribaupierre, Y. d. , Evoked Mechanical Responses of 

Isolated Cochlear Outer Hair Cells, Science, vol. 227, pp. 194-196, 1985. 

[23] Helmholtz, H. L. F. v. On the Sensations of Tone, Dover Publications, Inc., New York, NY, 1954. 

[24] S. Mallat, A Wavelet Tour of Signal Processing, 3rd Ed., New York: Academic, 2007.  

[25] Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients. Publications 

Mathematiques, vol. 35, pp. 155168, 1991. 

[26] Audacity software: Available Online: http://audacity.sourceforge.net/ {Last accessed : July 22,  

2013}.  

[27] CHAINS Corpus: Available online: http://chains.ucd.ie/ftpaccess.php .{Last accessed : July 22,2013}. 

[28] Marija Tabain and Catherine Watson, A study on classification of fricatives,6th Australian 

International conference on Speech science and technology, Adelaide, pp. 623-628, Dec.1996 

[29] White Noise Source: NOISEX-92 database , Available online : 

http://spib.rice.edu/spib/data/signals/noise/white.html {Last Accessed : July 22, 2013}. 

[30] Brian C. J. Moore, An Introduction to the Psychology of Hearing, Academic Press, 4th Ed., 1997.     

[31] Frid,A., Lavner,Y., Acoustic-phonetic analysis of fricatives for classification using SVM based 

algorithm, 26th  IEEE Convention of Electrical and Electronics Engineers in Israel (IEEEI'10), 

pp.751-755, 2010. 

[32] A.F. Martin, G. Doddington, T. Kamm, M. Ordowski and M. Przybocki, The DET curve in 

assessment of detection error performance, Proc. EUROSPEECH’97, Rhodes Greece, vol.4, pp.1899-

1903, Sept. 1997.   

[33] Bolle R.M., Pankanti S., Ratha N.K., Evaluation techniques for biometrics-based authentication 

systems (FRR), Proc. 15th  International Conference on Pattern Recognition , vol.2, pp.831-837, 

2000.  


