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ABSTRACT  
 Named Entity Recognition and Classification (NERC) is a process of identification of proper nouns in the 

text and classification of those nouns into certain predefined categories like person name, location, 

organization, date, and time etc. NERC in Kannada is an essential and challenging task.  The aim of this 

work is to develop a novel model for NERC, based on Multinomial Naïve Bayes (MNB) Classifier. The 

Methodology adopted in this paper is based on feature extraction of training corpus, by using term 

frequency, inverse document frequency and fitting them to a tf-idf-vectorizer. The paper discusses the 

various issues in developing the proposed model. The details of implementation and performance 

evaluation are discussed. The experiments are conducted on a training corpus of size 95,170 tokens and 

test corpus of 5,000 tokens.  It is observed that the model works with Precision, Recall and F1-measure of 

83%, 79% and 81% respectively. 
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1. INTRODUCTION 
India is rich with more than 1,652 mother tongues, out of which 22 are Scheduled Languages 

included in the Constitution of India. Among the 22 Scheduled Languages, Kannada is one of the 

major Dravidian languages of India, spoken predominantly in the state of Karnataka. The 

Karnataka Official Language Act 1963 recognized Kannada as its official language. The native 

speakers of Kannada are roughly 40 million, making it the 33rd most spoken language in the 

world. The language uses forty-nine phonemic letters, and the character set is almost identical to 

that of other Indian languages. Kannada is highly agglutinating and inflected language. It is a free 

word order language with rich heritage and large grammar.  Processing of Kannada language and 

extraction of named entities is challenging.  This language is inflected with three genders 

(masculine, feminine, and neutral) and two numbers (singular and plural). The Noun  is 

inflected by various factors such as case, number and gender. 

 

Natural Language Processing (NLP) has two major tasks: Natural Language Understanding 

(NLU) and Natural Language Generation (NLG) Liddy (2001) [1]. NLU deals with machine 

reading comprehension i.e., the level of understanding of a text or message. NLG is the task of 

generating natural language from a machine representation system such as a knowledge base. 



40 

 

Apart from NLG and NLU, the other tasks to be done in NLP include automatic summarization, 

Information Extraction (IE), Information Retrieval (IR), Named Entity Recognition (NER) etc. In 

NLP, the primary goal of IE and IR is to automatically extract structured information. NER is a 

typical subtask of IE James Allen (2006) [2].  

NERC involves processing of structured and unstructured documents and identifying proper 

names that refer to persons, organizations locations (cities, countries, rivers, etc), date, time etc. 

The aim of NERC is to automatically extract proper names which is useful to address many 

problems such as machine translation, information extraction, information retrieval, question 

answering, and automatic text summarization etc., Kavi N M (2006) [3].  

In this paper, Kannada NERC based on MNB approach is dealt. The results obtained from the 

proposed model are quite encouraging with an average accuracy of 83%.  What follows are the 

details of the proposed research work. Section 2 discusses about the details of existing work and 

challenges in current work. Section 3 deals with Naïve Bayes classifier principles, the technique 

used for NERC. Proposed methodology is dealt in section 4. Section 5 discusses implementation 

details. Finally the results are evaluated and discussed in section 6. 

 

2. EXISTING WORK AND CHALLENGES IS CURRENT WORK 
 

The NLP work was started way back in the 1940s. From 1940 to 1980, NLP systems were based 

on complex sets of hand-made rules. After 1980 NLP took new dimension, with machine learning 

algorithms. There is an enormous amount of data available for languages like English, but for 

Indian languages it is at the initial stage. Recent NLP algorithms are based on statistical machine 

learning. The term Named Entity was introduced in the sixth Message Understanding Conference 

(MUC-6), Gobinda Chowdhury (2003) [4]. The different techniques for addressing the NERC 

problem include: Maximum Entropy Models (Max-Ent) (Jaynes 1957), Hidden Markov Models 

(HMM) (Baum et al. 1966), Support Vector Machines (SVM) (Vapnik et al. 1992), Decision 

Trees (Sekine 1998) and Conditional Random Fields (CRF) (Lafferty et al. 2003) etc.  

 

A lot of NLP work has been done in English, most of the European languages, some of the Asian 

languages like Chinese, Japanese, Korean and other foreign languages like Spanish, Arabic etc. 

NLP research in Indian languages is at the initial stage, as annotated corpora and other lexical 

resources have started appearing recently. In Computational Linguistics, Kannada is lagging far 

behind when compared to other Indian languages. In the following sections we are mentioning, a 

brief survey of research on NERC in Indian languages including Kannada. This is not a 

comprehensive and thorough survey, but is an indication of today’s status in NERC research.  

 

Benajiba et al. (2009) [5] discussed about SVM based Language Independent and Language 

Specific Features to Enhance Arabic NER.  Padmaja et al. (2010) [6] discussed on the first steps 

towards Assamese NER.  Asif Ekbal et al. (2008) [7] developed an NER system in Bengali using 

CRF approach. Ekbal and Shivaji (2008) [8] reported about the development of a NER system for 

Bengali using SVM. Ekbal and Shivaji (2008) [9] discussed about Bengali Named Entity Tagged 

Corpus and its use in NER Systems.  

 

A Lot of work on NERC has been done in English language and here are quoted a few recent 

works. Maksim et al. (2012) [10] build a CRF based system that achieves 91.02% F1-measure on 

the CoNLL 2003 (Sang and Meulder, 2003) dataset and 81.4% F1-measure on the Onto Notes 

version 4 (Hovy et al., 2006) CNN dataset. Mansouri et al. (2008) [11] proposed a robust and 

novel Machine Learning based method called Fuzzy support Vector Machine (FSVM) for NER. 

Nadeau et al. (2006) [12] devised an unsupervised NER by Generating Gazetteers and Resolving 
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Ambiguity. Monica et al. (2009) [13] discussed about the evaluation of Named Entity Extraction 

Systems.  

Sujan et al. (2008) [14] developed system for NER in Hindi using Max-Ent and Transliteration. 

In Li and McCallum (2004) [15] the authors have used CRF with feature induction to the Hindi 

NER task. Sujan et al. (2008) [16] developed a NER system for Hindi using Max-Ent. Sudha and 

Nusrat (2013) [17] experimented, NER using HMM on Hindi, Urdu and Marathi Languages. 

Deepti and Sudha (2013) [18] deviced algorithm for the Detection and Categorization of Named 

Entities in Indian Languages using HMM.  Nusrat et al. (2012) [19] devised algorithm for NER in 

Indian Languages using Gazetteer method and HMM. S. Biswas et al. (2010) [20] developed a 

Two Stage Language Independent NER for Hindi, Oriya, Bengali and Telugu.  Animesh et al. 

(2008) [21] talked about a new approach to recognize named entities for Indian languages. Sujan 

et al. (2008) [22] described a hybrid system that applies Max-Ent, language specific rules and 

gazetteers to the task of NER in Indian languages. Erik and Fien (2003) [23] gave Introduction to 

the CoNLL-2003 Shared Task a Language-Independent NER. Ekbal and Shivaji (2010) [24] 

reported about the development of a language independent NER system for Bengali and Hindi 

using SVM. Ekbal et al. (2008) [25] developed Language Independent NER system for South and 

South East Asian languages, particularly for Bengali, Hindi, Telugu, Oriya and Urdu as part of 

the IJCNLP-08 NER Shared Task1.  

 

Kishorjit et al. (2011) [26] developed a model on CRF Based NER in Manipuri.  Thoudam et al. 

(2009) [27] developed NER for Manipuri using SVM. Sitanath et al. (2010) [28] described a 

hybrid system that applies Max-Ent model with HMM and some linguistic rules to recognize 

Name Entities in Oriya language. Vishal and Gurpreet (2011) [29] explained about the NER 

System for Punjabi language text summarization using a Condition based approach.  Pandian et 

al. (2008) [30] presented the construction of a hybrid, three stage NER for Tamil. Raju et al. 

(2008) [31] described a Max-Ent NER system for Telugu. Vijayanand and Seenivasan (2011) 

[32] devised NER and Transliteration for Telugu. Srikanth and KN Murthy (2008) [33] 

developed NER for Telugu using CRF based Noun Tagger. Praneeth et al. (2008) [34] conducted 

experiments in Telugu NER using CRF.  

 

Shambhavi et al. (2012) [35] developed A Max-Ent model to Kannada Part Of Speech Tagging. 

Ramasamy et al. (2011) [36] proposed and developed a rule based Kannada Morphological 

Analyzer and Generator (MAG) using finite state transducer. Amarappa and Sathyanarayana [37] 

(2013) developed a HMM based system for NERC in Kannada Language.    

 

Based on the survey, it is observed that a lot of work on NERC has been done in English and 

other foreign languages. NERC work in Indian languages is still in its initial stage. As for as 

Indian languages are concerned, some works related to NERC are found in Hindi, Bengali, 

Telugu, Tamil, Oriya, Manipuri, Punjabi, Marathi and Assamese Languages. In Kannada 

Language, some works on Kannada Morphology are reported in [35] [56].  In our earlier work 

[37] we have carried out NERC work in Kannada using HMM on a limited corpus of 10,000 

tokens, however the works on NERC in Kannada are yet to be investigated and implemented. 

This motivated us to take up NERC in Kannada as the proposed Research area. 

 

2.1 Challenges and Issues specific to Kannada language  
Kannada language has no capitalization. It is Brahmi script with high phonetic characteristics that 

could be utilized by NERC system. There is non-availability of large gazetteer, lack of 

standardization and spelling.  There are a number of frequently used words (common nouns), 
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which can also be used as names. There is a lack of annotated data and it is highly agglutinating 

and inflected language.  

3. MULTINOMIAL NAÏVE BAYES (MNB) CLASSIFIER 

 
The Naïve Bayes classifier is a Generative Model of supervised learning algorithms. It is a simple 

probabilistic classifier which is based on Bayes’ theorem with strong and naïve independence 

assumptions between every pair of features. It is one of the most basic classifier used for text 

classification. Moreover, the training time with Naïve Bayes is significantly smaller as opposed to 

alternative methods such as Support Vector Machine (SVM) and Maximum Entropy (Max-Ent) 

classifiers. Naïve Bayes classifier is superior in terms of CPU and memory consumption as 

shown by Huang, J. (2003).  Its performance is very close to SVM and Max-Ent classifiers. 

The Multinomial Naïve Bayes classifier is suitable for classification with discrete features. The 

multinomial distribution normally requires integer feature counts; however, fractional counts such 

as Term Frequency and Inverse Document Frequency (tf-idf) will also work. Multinomial Naïve 

Bayes classifier is based on the Naïve Bayes algorithm.  In order to find the probability for a 

label, this algorithm uses the Bayes rule to express P (label | features) in terms of P (label) and P 

(features | label). The Naïve Bayes classifier requires training data samples in the format: (xi, yi) 

where, xi includes the contextual information of the word/document (the sparse array) and yi, its 

class. Graphical representation of Naïve Bayes decoder is shown in Figure1. Here fi is ith feature 

of vocabulary (vi = xi) and P (fi |yj) = P (xi = vi | yj) is the maximum probability that the input xi 

belongs to the class yj. 
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Figure 1. Graphical Model Of Naïve Bayes Decoding 
 

Given a class variable y and a dependent feature vector x1 through xn, Bayes’ theorem states the 

following relationship of Joint Probability: 
( ,  )  ( ,  )

( )  ( | )  ( )  ( | )

P X Y P Y X

P X P Y X P Y P X Y
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Equation (2) can be alternatively written as: 

1 2

1 2

1 2

( )  ( , ,..., | )
( | , ,..., )  

( , ,..., ) 

j n j

j n

n

P y P x x x y
P y x x x

P x x x


                           (4) 

Using the Naïve independence assumption 1 1 1( | , ,...., , ,..., )  ( | )i j i i n i jP x y x x x x P x y  
 for all i, 

Equation (4) is simplified to:                     
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Since  1 2( , ,..., ) nP x x x
 is constant for given input, we can use the following classification rule: 
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                         (6) 

P (xi | yj ) is the relative frequency of class yj in the training set.
y

is the Maximum probability of 

generating instance xi for the given class yj. 

 

4. PROPOSED WORK AND METHODOLOGY 
The main aim of this work is to develop a Supervised Statistical Machine Learning NERC system 

for Kannada Language based on MNB classifier. NERC involves identification of proper names 

in texts, and classification of those names into a set of pre-defined categories of interest such as: 

Person names (names of people), Organization names (companies, government organizations, 

committees, etc.), Location names (cities, countries etc.), and miscellaneous names (date, time, 

number, percentage, monetary expressions, number expressions and measurement expressions).  

The functional block diagram of the proposed system is as shown in Figure2. NERC in Kannada 

is important, because it gives solution to many applications of  NLP such as web searching, 

scanning a set of documents written in a natural language and populating the database,  building 

of useful dictionaries,  constructing sophisticated word processors for Natural  Languages, 

Information Extraction, Information Retrieval, Data mining, Publishing Books of Names, Places, 

Organizations etc. With the above context, the proposed system is designed. 
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Figure 2.  Named Entity Recognition and Classification (NERC) In Kannada Based On MNB 
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The design of proposed the system and methodology goes as follows: 

1. Corpus creation and usage 

Kannada NERC is very hard without tagged Corpora and hence we manually tagged about 100K 

Kannada words. This Kannada Corpus is used to build the NERC Model.  The manually tagged 

Corpus include: Part of EMILLE (Enabling Minority Language Engineering) corpus, a part of the 

corpus taken from web articles and part of the corpus self typed from Kannada books. The whole 

corpus is divided into two sets: Development-set and Test-set as shown in Figure2. First, select 

the Development-set and then subdivide it into Training-set and development test set (Dev-test-

set). The Training-set is used to train the model, and the Dev-test-set is used to perform error 

analysis. The Test-set serves for the final evaluation of the system. The machine learning used in 

the work is fully supervised MNB.  

Take Training data from the development-set: 

Input (training) data points         : 1 2 3 MX = [X , X , X , ..., X ] ;  

      Or                                          : 11 21 12 22 1M 2MX= array ([[x , x ],   [x , x ], ... [x , x ]])  

Labels (states)                             : 
th

1 2 3 N jY = [y , y , y , ..., y ]  ; y  = j  label
 

 

2. Pre-processing stage  

Here, the tagged text corpus is tokenized into words and tags (labels). The separated words 

are 1 2 3 MX = [w , w , w , ..., w ]  and separated tags (labels) are 1 2 3 NY = [l , l , l , ..., l ] . 
 

3. Training stage for the model 

 From the separated words (X) and tags (Y) in pre-processing stage, extract the 

vocabulary (feature set) and unique labels. Let vocabulary be 1 2 3 kV = [v , v , v , ..., v ] or 

1 2 3 kF = [f , f , f , ..., f ]  and unique labels be 1 2 3 jY = [l , l , l , ..., l ]
 (here M reduces to k and N 

reduces to j) 

 Find raw count of each vocabulary i.e., term frequencies  (tf)  according to their 

label. 

 The term-frequency is a measure of how many times a particular term of V(t), is 

present in the documents d1,d2, . dM.   The term-frequency is defined as a counting 

function:                                                    
                                       ( , ) ( , )

x t
tf t d fr x t


                                                           (8) 

where ( , )fr x t is a simple function, defined as: 

                                        
1,   if  x= t

0,   otherwise( , ) = fr x t
                                (9)

 

The   ( , )tf t d  returns count of t in document d and it can be shown in matrix form: 

                                                     ( )trainD X
M M


                                                    (10) 

 Find inverse document frequency ( )idf t  of training corpus defined by the function  

 :
( | )

d t d
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D




 , so idf is defined as:

 

1
log ( | ) log log

( | ) :
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Here  :d t d is the number of documents where the term t appears; when the 

term-frequency function satisfies ( , ) 0tf t d  . It should be noted that adding 1 into 

the formula above avoids zero division.  
  

 Now to find tf-idf  use the following steps:   

                                ( ) ( , ) ( )tf idf t tf t d idf t                                           (12) 

 Find idf  for each feature present in the feature matrix with the term frequency 

and  idf  weights can be represented by a  vector  as given by  

                          1 2 3( ), ( ), ( ),...., ( )ktrain
idf idf t idf t idf t idf t      (13) 

 tf-idf matrix of training set in un-normalized form: 

Now the tf matrix, 
trainD X

M M


  of equation (10) and the idf matrix 

idftrain
idf M of equation (13) are multiplied to calculate the tf-idf weights. 

(Among M documents i number of documents are taken for training) 

 And then multiply  𝑀𝑖𝑑𝑓 to the term frequency matrix, so the final result can be 

defined as: 
                                              tf idf train idfi ki k k k

M M M  
       

                                   

(14) 

 tf-idf matrix of Training-set in normalized form:  

                                                           

2

tf idf

tf idf

tf idf

M
M

M







                                                

(15) 

 tf-idf vectors are the actual trained parameters of the MNB model (Scikit-learn 

version 0.14 documentation). 
  

4. Validation stage:     

Reserve a fold of the annotated training data for the Dev-test-set. Perform multiple 

evaluations on different Dev-test-sets and combine the scores from those evaluations. 

(http://www.nltk.org/book/ch06.html). Take a fold of the annotated training data as Dev-test-

set from the Development-set and perform the following computations: 

 Pre-processing and tf-idf computation. 

 Compute the probability:  1

arg max
( | ) ( | )

n

i

j i

P X Y P x Y
y Y




 

 as shown in Figure1. 

5. Test(decoding) stage:  

Take test data from the corpus set and do the following computations: 

 Pre-processing and tf-idf computation 

 Compute the probability: 
1

arg max
( | ) ( | )

n

i

j i

P X Y P x Y
y Y




   

 

5. IMPLEMENTATION  
 

The proposed system is designed based on MNB classification as discussed in section 4. The 

proposed model is as shown in Figure2.  The system is programmed using Python 2.7 and 

Sklearn toolkit. The program is executed on windows platform using Intel Core2Duo CPU @3.00 

GHz, a state of the art machine. The following are the various steps of implementation. 
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1. Kannada Baraha editor is used to manually create named entity tagged Kannada corpus in UTF-

8 encoding format.  

2. Twenty-two Named Entities (NEs) tabulated in Table1 are considered. A non-named entity is 

tagged as NONE. 

3. From the tagged corpus, separate words, tags and store in separate lists. For the separated tags 

assign appropriate tag-labels.  

4. Separated words and tag-labels are fed as Training-set to the MNB Model.  In the training 

stage, MNB extracts features from the training corpus, such as vocabulary words, tf matrix, idf 

matrix and tf-idf matrix.   

5. Test-set sequence is given as input to the model. 

6. The features of the Test-set sequence are calculated and compared with the trained features. 

Accordingly each word is tagged with appropriate Named Entities (NEs). 

7. Model performance is evaluated by finding Precession, Recall, and F1-measure.   

8. Evaluated parameters are tabulated and plotted for better comparison. 
 

 

 

Table 1. Named Entity Tag set. 
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The Algorithm Gives The Implementation Procedure Of The MNB Model. 
 

Algorithm:  

1. Import tools for MNB implementation from python libraries. 

2. Read the Development-set of tagged Kannada corpus and divide into N folds (N=10).  

3. Reserve one fold of the tagged data as the Dev-test-set.  

4. Take all other tagged corpus folds for Training, separate words, tags and store in two lists, 

x_train,  y_train_tag_list. Assign label to each tag and store in another list, y_train.  

5. Feature extraction and training of  MNB classifier 

Training data: x_train ,  Y_train  from step5  

 Define vectorizer by the statement  

vectorizer = TfidfVectorizer (min_df=1,  ngram_range =(1,2), stop_words='english', 

strip_accents='unicode', norm='l2') 

 Read system time t0 

 Transform x_train to vectors by using X_train = vectorizer.fit_transform(x_train) 

 Define MNB classifier using clf = MultinomialNB() 

 Train MNB classifier using mnb_classifier = clf.fit (X_train, y_train) 

 Read system time now and determine training time,   

Train_-time = time () - t0 

 Print Feature extraction and Training time of MNB classifier in seconds. 

6. Take reserved fold of the Dev-test-set, separate words, tags and store in two lists, x_test, 

actual_tag_list.  Assign tag labels and store in another list called y_test. 

7. validation of  MNB  model and Feature extraction of  Dev-test-set using  MNB classifier: 

Dev-test-set : x_test    : y_test    from step7  

 Read system time t0 

 Transform x_test to vectors by using X1_test = vectorizer.fit_transform(x_test) 

 Predict labels of X_test by using the statement  mnb_classifier.predict (X1_test) 

 Read system time now and determine testing time,  

Fold_Test_time = time () - t0 
8. Attach predicted tags to the Dev-test-set words and print the resultant tagged sequence. 

9. Find metrics and print evaluation metrics: Accuracy, Precision, Recall, and F1-measure. 

10. Print classification report: individual Precision, Recall, F1_measure and average values. 

11. Repeat steps 4 to 11 for all the N folds of Dev-test-sets, and then combine the scores from 

those evaluations.  This technique is known as cross-validation. 

12. Take Test-set, tokenize and store in a list called x_test, find tags manually and store in a list 

called actual_tag_list and assign tag labels and store in another list called y_test. 

13. Testing of  MNB model and Feature extraction of test data using MNB classifier 

Test data: x_test   : y_test    from step11 

 Read system time t0 

 Transform x_test to vectors by using X1_test = vectorizer.fit_transform(x_test) 

 Predict labels of X_test by using the statement  mnb_classifier.predict (X1_test) 

14. Read system time now and determine testing time,   

Test-time = time () - t0 
15. Attach predicted tags to the Test-set words and print the resultant tagged sequence. 

16. Find metrics: Accuracy, Precision, Recall, and F1-measure. 

17. Print classification report: individual P, R, F1_mes and average values. 

      Plot graphs for the visualization of evaluated results. 
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6. RESULTS AND DISCUSSIONS 
 

The proposed system is designed and implemented as discussed in sections 4 and 5. The system is 

tested using several test cases, containing training corpus of size 95,170 tokens and test corpus of 

5,000 tokens. It is to be noted that the system achieves an average accuracy of 83%.  The details 

of the results obtained are as given below. The system’s performance is measured in terms of 

Precision (P), Recall (R) and F1-measure (F1).  The details of the Corpus created in this work are 

given in section 4. The nature of input Test-set sequence and output tagged sequence are given in 

Table2 and Table3 respectively. The corpus size and program run time is tabulated in Table4. 

Table5 shows the results of 10 fold cross validation where validation fold is of size 9,517 tokens. 

Table 6 Indicates The Final Results Of Test-Set Corpus. Graphical Representation Of MNB 

Results On Test-Set Corpus Is Plotted As In Figure3. 

 
Table 2. Input Test-Set Sequence. 

 
 

Table 3. Output Tagged Sequence. 

 

 
 

Table 4. Corpus size and program Run time. 

 

The training set size for the Model   : 95,170 words 

Total number of samples treated by the classifier  : 95,170  words  

Total number of features extracted by the classifier  : 33,269  (vocabulary words) 

Feature extraction Time (Training of MNB model) :   7.407      sec 

The test set size for the Model                : 5,000  words 

Feature extraction Time for test data               :             2.765      sec 
 

Table 5. Results of 10 Fold Cross Validation. 
 

FOLDS Precision Recall 
F1 - 

score 
Support 

1 0.79       0.78       0.78 9517 

2 0.63       0.62       0.61 9517 

3 0.70       0.67       0.67 9517 

4 0.76       0.74       0.73 9517 

5 0.82       0.81       0.81 9517 

6 0.82       0.82       0.82       9517 

7 0.83 0.83 0.83 9517 

8 0.81 0.81 0.81 9517 
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9 0.83 0.83 0.83 9517 

10 0.87       0.81       0.83 9517 

Average  / Total        78.6 % 77.2% 77.2% 95170 

 
 

 

Table 6. Result of Test Corpus. 

 

     Named 

Entity (NE) 
Tag 

Tag  

label 
Precision Recall F1 - score Support 

Person 

NEP 0 0.62    0.59  0.60        229 

NEPB 13 0.33    0.83       0.48          6 

NEPI 14 0.00    0.00       0.00          0 

NEPE 15 0.38      0.46       0.41         26 

Location  

NEL 1 0.47       0.76       0.58         66 

NELB 16 0.67       0.80       0.73          5 

NELI 17 0.00    0.00       0.00          0 

NELE 18 0.50 0.50       0.50          4 

Organization  

NEO 2 0.25   0.67       0.36          9 

NEOB 19 0.00    0.00       0.00          0 

NEOI 20 0.00    0.00       0.00          0 

NEOE 21 0.00    0.00       0.00          1 

Designation  NED  3 0.39      0.86       0.54     21 

Term  NETE  4 0.25     0.39       0.30         54 

Title-Person  NETP 5 0.42      0.50       0.46         22 

Title-Object  NETO  6 0.44     0.39       0.42         56 

Brand  NEB  7 0.00       0.00       0.00       0 

Measure  NEM  8 0.47      0.59       0.52         56 

Number  NEN  9 0.52       0.39       0.45        116 

Time  NETI  10 0.24      0.48       0.32         23 

Abbreviation  NEA 11 0.05      1.00       0.10          1 

Noun entity NE 12 0.49      0.72       0.58        309 

Not a NE  NONE 22 0.92    0.84       0.88       3996 

Average  / Total        0.83     0.79       0.81       5000 
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Figure 3.  Graphical representation of MNB results on Test Corpus 

 

7. CONCLUSION 
 

Natural Language Processing is an important research area containing challenging issues to be 

investigated. NERC is a class of NLP which is used for extracting named entities from 

unstructured data. In this context this paper focuses on NERC in Kannada Language as it is found 

that little work is done in this area. In this direction, we have conducted a vast survey in the 

related area of NLP and based on the survey we proposed a problem and the methodology that 

has been formulated. Various Modeling techniques are investigated, out of which a design of 

Supervised MNB is done. The results obtained are recorded and evaluated. We developed an 

efficient model and trained on a Corpus consisting of around 95170 words. From this training 

Corpus, some test samples are chosen and fed as input to the MNB. It is interesting to note that 

the model recognizes the named entities with an average F-measure of 81% and 10 fold cross 

validation F-measure of 77.2%.  
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