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Abstract

Reliability modeling is the most important discipline of reliable engineering. The main purpose of this
paper is to provide a methodology for discussing the vague environment. Actually we discuss on Bayesian
system reliability and availability analysis on the vague environment based on Exponential distribution
under squared error symmetric and precautionary asymmetric loss functions. In order to apply the
Bayesian approach, model parameters are assumed to be vague random variables with vague prior
distributions. This approach will be used to create the vague Bayes estimate of system reliability and
availability by introducing and applying a theorem called “Resolution Identity”” for vague sets. For this
purpose, the original problem is transformed into a nonlinear programming problem which is then divided
up into eight subproblems to simplify computations. Finally, the results obtained for the subproblems can
be used to determine the membership functions of the vague Bayes estimate of system reliability. Finally,
the sub problems can be solved by using any commercial optimizers, e.g. GAMSor LINGO.

Keywords: Bayes point estimators, Vague environment, Nonlinear programming; System reliability,
System availability, Exponential distribution, Precautionary loss function.

1. Introduction

In the rea world there are vaguely specified data values in many applications, such as sensor
information. Fuzzy set theory has been proposed to handle such vagueness by generalizing the
notion of membership in a set. Essentially, in afuzzy set each element is associated with a point-
value selected from the unit interval [0,1], which is termed the grade of membership in the set. A
vague set, as well as an Intuitionistic fuzzy set, is a further generdization of a fuzzy set. Instead
of using point-based membership as in fuzzy sets, interval-based membership isused in a vague
set.Gau and Buehrer (1993) define vague sets. These sets are used by Shyi-Ming Chen and Jiann-
Mean Tan (1994). Once the vague (intuitionistic fuzzy) set theory have been introduced, a
number of authors investigated the reliability analysis in vague environments. Chen (2003)
presented a method to analyze system reliability using the vague set theory, where the reliabilities
of system components are represented by vague sets. Kumar et a. (2006) developed a method for
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analyzing system reliability by using interval-valued vague sets, and applied it for the reliability
anaysis of a Marine Power Plant.

Complex systems may have both kinds of uncertainty. Researchers have stated that probability
theory can be used in concert with fuzzy set theory for the modeling ofcomplex systems Zadeh
(1995), Barrett and Woodall (1997), Ross, Booker, and Parkinson (2003), and Singpurwalla and
Booker (2004). Bayesian datistics provide a natural framework combining random and
nonrandom uncertainty so fuzzy Bayesian methods are developed for the solutions of the
reliability problems. Sellers and Singpurwalla (2008) addressed the reliability of multistate
systems with imprecise state classification. On the other hand, Gholizadeh, Shirazi, Gildeh, and
Deiri (2010), Gholizadeh, Shirazi, and Gildeh (2010), Gorkemli and Ulusoy (2010), Huang, Zuo,
and Sun (2006), Taheri and Zarei (2011), Viertl (2009), and Wu (2004, 2006) addressed the
problem of imprecise data (approximately recorded failure time durations and number of failures)
in religbility studies.

Fuzzy Bayesian reliability method developed by Wu (2004, 2006).Taheri and Zarei (2011)
modeled and evaluated Bayesian system reliability considering the vague environment. Our
modeling approach is a generalization of Wu (2004, 2006) and Taheri and Zarel (2011).

Vague environment is introduced in Section 2. Vague point estimator is represented in Section 3.
In Section 4, the reliability and availability analysis via vague Bayesian method under squared
error and precautionary loss functions for series system, paralel system and k-out-of-n system
have been discussed isillustrated on an example. The computational procedures and examples are
provided in order to clarify the theory discussed in this paper, and to give a possible insight for
applying the vague set to Bayesian system reliability and availability. Conclusions and future
extensions of thiswork are given in Section 6.

2. Vague environment

Definition 1.A vague set IV in a universe of discourse U is characterized by a true membership
function, ty , and afase membership function, f , asfollows: ty U - [01], fy U - [0,1],
and ty(u) + fip(w) < 1, where ty(u) isalower bound on the grade of membership of u derived
from the evidence for u, and f(u) is alower bound on the grade of membership of the negation
of u derived from the evidence against u.

Suppose U = {uy, u,, ... u,}. A vague set ¥ of the universe of discourse U can be represented by
V=3 ltyp), 1 - fpu)l/u;, where 0 < t(u))<1—f(w)) <1l and 1 <i<n. In other
words, the grade of membership of u; is bounded to a subinterval [t(w;), 1 — fy(u)of [0, 1].
Thus, vague sets are a generalization of Fuzzy sets, since the grade of membership uj(u) of v in
Definition 1 may be inexact in avague set. We now depict avague setin Fig. 1.
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Fig. 1.Membership Functions of avague set.

Definition 2.The complement of avague set V is denoted by V' and is defined by
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tyr(w) = fp(w),
1—fypr(u) =1— fpr(u).

Definition 3.A vague set V, is contained in another vague set V5, V, Vg, if and only if,

ti;A(u) = th(u),
1-fp,) =1 fy,w.

Definition 4.Two vague sets V, and V are equa, written as V, = Vg, if and only if, ¥, Vp
and VB VA: that is

ty, (W) = ty, (W),
1-fp,() =1-fyp, (.

Definition 5.Let Pt?,fﬁ be a vague set of U. Then, we define a; -cuts and o -cuts of V' as the
crisp sets of U given by

w={u tyW)=a} a [01]
Vap={u 1-fp) =zar}, a [0,1]

Definition 6.Let V;, ;, beavaguesetof U R.Wesay that V isconvex f for al uy,u, U
and 1in[0,1],
ty (Auy + (1 — Duz) = min(ty (wy), tp(u,)),
1-fpQu; +(1—Duy) = min(l — fr(u), 1= fp(up)).

Definition 7.A vague set ;. of R with continuous membership functions ty and fy is called
avague number if and only if l"fatand Vaf, foral a;,ar (0,1], arebounded closed intervals; i.e.

0, = [V, 7

pr "y

5 — [pL pu
Vay = [V“f’ Vay
We denote the class of al vague numbersby V(R).

Definition 8.Thevague number i?t.@f.ﬁ iscalled atriangular vague number, if

u-a .
— @ =uUu=<a
w(a, — ay)

ty(u) = as;—u
v () — Az =SU=dj3
w(a; — ay)
0 otherwise
u—aq

[ g <u<a,

as —aq

1— Fluw) = a'.}_u
fr(w) a<u<as

a3 _(12
0 otherwise
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Wherew  [1, o). We denote such avague number by V = (a,, ay, as, w)r .

Proposition 1.(Taheri and Zarei (2011); Resolution Identity for Vague Sets) Let 17:?,, fy bea

vague set of U. Then

ty(w) = sup a..ly, (u) O<sa, <1,
(193 ,1

= su 1 O<ar<1,
fr(u) = o [Eﬂaf Vcrf(u) ar

Where, I(.) isdenoted for the indicator function.

3. Vague point estimator

With according to Taheri and Zarei (2011), Let X: @ — V(R).be avague valued function. Then,
X is caled to be a vague random variable if th)?gt,)?gf and X, for al 0= a0 <1, are
(ordinary) random variables. Too, Let X be a vague random variable whose distribution depends
on a vague parameter §. So, it could be said that §é£§g£,§éf and gé‘} are the parameters of
distributions of (crisp) random variables XX ch,XL and )?gf, respectively. Our purpose is to
estimate & based on a Bayes approach. According to this approach, 8 is considered as a vague
random variable so that the crisp random variables 6,05, BL and 6'” have some distributions

with parameters (k... G ()l - (i) (maf,....(zm)af‘ (N
respectively.

Concerning Definition 7, we can find the Bayes point estimator ffor each 6 [1‘;‘!‘3[!,(;76‘;'l .
Consider

= |min{ inf Gﬁ,, inf B‘B}max{ s"up Bﬁ, s“up Bﬁ }| h)]

ap<frsl ap<fr<

Then, V,, contains al of the Bayes point estimators for each 6 [9.; 95{1]. The same argument
can beestabllshed for 8 IBQ},, JrJ.
The vague Bayes point estimator for the vague parameter 6 is defined to be a vague number
gt-.;,, £ Where

tg(u) = sup at.h (u), 0<sa; =1, (2

fz(w) = Su[p af L (u) O<ar=<1 (3
af

4. Vague Bayesian system reliability and availability

In the Bayesian approach to system reliability, some prior distributions are assigned to the
components of the system. Then, the posterior distribution of each component’s reliability can be
found using the Bayes theorem. We can derive, therefore, the posterior distribution of the system
reliability from the posterior distribution of each component reliability. The key point in this
approach is that system reliability can be expressed as a product of independentrandom variables
which corresponds to either component reliability (for series system) or to component
unreliability (for parallel systems). To this end, we need to use the method of Méellin integral
transform [2] described below.
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4.1 Méllin transfor mation

Definition 9. [2] Let X be a non-negative random variable with pdf f (x). The Mellin transform
of f ,with respect to the complex parameter, is defined by

M(f 5 w) =[x f()d(x)  (4)
Such atransform exists ifjooo x% 1| £ (x)|d(x)is bounded for someu > 0.

Remark1. Based on the above definition, the inverse Mellin transform of M(f ; u) is given by
a+ico

f©)=J ", x “M(f w)du,
where ¢ — ico and ¢ + ico are complex vaues|[2].

Remark 2. Itis convenient to regard the Mellin transform as the moments of X, i.e.
M(f; uw) = E(X47Y).

Theorem 1. [25] LetX;,...,Xibe independent random variables with pdf’sfi,..., fx
respectively. Letg, (y) bethe pdf o’ the random variable Y = [15_, X;. Then

M(gic; W) =TT M(fi; W) (5)

With the help of Theorem1, we can obtain the posterior distribution of the system reliability from
the posterior distribution of the component reliabilities. On the other hand, the Bayes estimator of
the system reliability, under the squared error loss function, is the mean of the posterior
distribution [21], so that we can use Eq. (4), for uw = 2, to obtain the Bayes estimator of the
system reliability.

4.2 Bayesian approach to system reliability

The fuzzy Bayesian interval estimate of reliability is calculated using the method proposed by Wu
(2006). Let random variable T;; be thejth failure time of the ith componentsand ¢;; be the
redization of this random variable,j = 1,2,...,m;, i = 1,2,...,k. It is assumed that Tj;,
j =1,2,...,my, are independent and identically distributed exponential random variables with
parameterd;. A;is unknown; therefore, a gamma distribution with parameters 8;; and 8;; is
assigned as prior distribution to quantify the uncertainty in A;. From previous experience we
know the parameters of the prior distribution 8;;and 6;,.They can be interpreted as 6;; numbers
of failures that occur in the duration 8;,for componenti since the expected value of
gammadistribution is6;178;,. On the total operating time of Vi’(vi = Z}":"l tl-;-) ,mfailures are
observed for the component i. Since the gamma distribution is a conjugate prior distribution for
the exponential sampling distribution, the posterior distribution of 2; is agamma distribution with
parameters (8;; + m;)and (0, + v;). Reliability of the componentsi for the duration t is
r(t ) = e % and it is monotonicaly decreasing function of 2;, so there is aone-to-one
relationship between A; and r;. Therefore the unique inverse is A; = —Inr;~t so the distribution
of r; can be determined fromthedistribution of 4; as
di;

Fo0 =0 (5[] = 0 (2 ()

Wheref (r;) is either prior or posterior distribution of r; and g(4;) is corresponding prior or
posterior distribution of A; (Martz and Waller,1991). Assigning a gamma (8,4, 8;;) prior
distribution to r; corresponds to assigning a Negative-Log-Gamma (8,4, 6;2~t ) priordistribution
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tor;. Given the data, the posterior distribution of 7is a Negative-Log-Gamma (m; +
811, (Vi + 9;2)"1& ) distribution.

Series system

Consider aseries system consisting of & independent components. The system reliability is
R = 1, R;.So from Eq. (5), the Méllin transform of the 7 (r|m;, v;)of system reliability is given
by

mi+86i;+1
VI+8{'2 ) i 11
vi+9£2+(u—1)ti

Mg (r{my, i) ul = T ( (6)

Under asquared error loss function, the Bayes point estimate of the system reliability r isgiven as
- - +05; \Tit0i1
7 = E[RIm,v] = Mmg(rim;, vi);u = 2] = [T, (S ) 7)

vi+3i2+t

The Bayes point estimate of the system reliability r under a precautionary lossfunction is:

mi+8iy

1 1

5 = (E[R2m v])2 = (MImg(rimy v)iu = 3D7 = M, (F572) © (8)

Now, suppose in a complex system the number of failures and failure times may be recorded
imprecisely due to equipment and human errors. For such cases this imprecision also should be
guantified in the calculations. Here vague set theory is used to quantify the uncertainty of
imprecision. Failure rate, A;, reliability,r;, and failure timest;;, are taken as vague random
variables. It is assumed that prior distribution parameters are known from the previous experience
s0 those 6;;and 8;,are taken as vague number (the parameter 8;; can be interpreted as the
‘pseudo’ number of and failures in a lifetime test of durationf;, ‘pseudo’ time units).the Bayes
point estimates of (%)%, , (7)Y, , (7o) , and (Fs)gfunder a squared error loss function are given
by

i )L mp - L
(Q)L _ Tk ( vk, +(012)5, )m;+(9n1)nt o [ ERCap); r 6k,
= i=\ G ot ¢ e =
e E (v()“t+(812)at+c E?l(f(if))af+(9;'z)ﬁr+t

)mr+(9i1)ﬁt

mi+(8;1)5,

m; . AU u mi+(9i1)gr_
=\U DY, +(0:2)Y : 24 (Eap),, +0i)a,
(Do, = Mies (57 Somss) = Hi&l( “ ©

U U My e U
V), +(8:2)7,+t Zjci(Eap) o+ (i), +t

mi+(9i1)ﬁf

rg. AL i (f L
)mu+(911)af K z;ti(t(iﬂ)af + (852)%{;-

k L L
=~ L (vi)af + (GEZ)Rf
(TS) = n( L L . L
“ A \Wda, t+ (Bi2)a, +t i=1 Z}t‘l(f(u))af + (012G, +t

K i+(0i)f
U WY, + 0, \" Y
el

o L I\da, + Bia, +t

. u mi+(9n)gf
Z;-il(t(i,f))af + (6i2)a,

K
- l_[ m; gz \U U
i=1 Z;:l(f(ij))af + (0i2)a, +t

(10)

the Bayes point estimates of (Fp)fJr . (Fp)z I [fp); and (fp)zf under a precautionary loss
t t
function are given by
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£ v
r'al-:‘ m+(8; e
™ (£ +(9..0L 2 { smife W oo g —
=\L ¥ Lj=a\fp) e, anl . Lj=y .r'_u';-)'..,*""an:-::
(5);{ =g, (e 1F (Bt o2 :(%)Gr =%, L E—— (11
=t _1"_|,.j.)|='+.3;:-=‘+.1'. Zjes .r'.l.'fv'zl*’"al!-:g"‘*r
e a”";i' i+ :
My IJ . \I-‘- (8:a)k 2 omy I:" \IL: ] 3
=k 5 Lj=i\fanl, *oaley any . "‘,n:x.r;u.'--a,--' @ag
(8). =Tk, —L—f—, (@) =T | — a2)
f I = (Ean) ¢ 8; \, +2t ) \E;='-| ':'JI"'c,""sﬁ-‘{:“‘-‘

Respectively, for all & 0[0,1]. According to the discussionsin Section 3, let

= |min{ inf 5; inf ﬂﬁ}max{ sup 6 G, sup 6f U

arsfes1 Y apsfst ar<frsl

The above intervals contain all of the Bayes estimators for each r [, 7y, |. The same intervals
can be established for r Iﬁ,{}, Fa“}J’ But, for a < g have

And so

Therefore, I, and 1, (can berewritten as
2 = il ey

Vay = [?:‘;;’T‘If](m)

Now, using Proposition 1, the truth membership function and the false membership function of
the vague Bayes estimate of #; denoted by 7, are defined as follows

tz(r) = sup ae I, (r) O<a;=1 (15)
¢€[0,1]
r)= Sup r), O0<ar<1 16
fr() afeni:?u f- af() f (16)
Parallel systems

For a paralel system consisting of k independent components, the system reliability isR =1 —
¥_,(1 — r)where ris the component reliability of the ith component. Equivaently, the
ystemunreliability g is the product of component unrdiabilitiesq; = 1 — r;, i.e,q =
¥_, q;.The Bayes point estimate of system unreliability is given by
_ v + 6 mi+6ix
E[QIm, ] | 115 Qilmi.vil —D[l (e e) ]

And
mi+eu

v; + 6; V; + 6; m‘+e”]
F[Qzlm v :1 lE[Qizlmi_,Vi]_l lll Z(W;T-lz]i't] +(Wzi|'22t)
i= i=1

i=1

31



International Journal on Soft Computing ( 1JSC) Val.3, No.1, February 2012
The Bayes point estimate of the system reliability r under a squared error loss function is given
by
. ) mi+6;
= E[RIm,v] = E[(1 - Q)lm,v] = 1 = E[QIm,v] = 1~ [l [1 = (F522) ™| (7)

Vi+8ia+t
The Bayes point estimate of the system reliability r under a precautionary loss function is given
by
7, = (E[R?*Im,v])= = (E[(1 - Q2mv): = (E[1 - 2Q + Q2jm,v])3

(-2 - () e e 2R ) e

‘I +9‘2+t \. 4-9, +t vi+8;+1t

Under the vague assumptions as described above, the Bayes point estimates of _’(ﬁ?)iP (7L .
(%)% ; and (7)Y . under a squared error loss function are given by

L r ‘i i 5 m=+[5=:)i‘=1 u r ¢ vt e8aY m;+(8; )g 1
F) =1-TIk, |1 - (e e ) =1-TI%, |1 - ==—“r
(), =1-TIE, ll (f.-.-gh;ta % —:] J? (), = 1- T Il (tv‘_\g‘»,ts,-zng “t J (19)
e+ () me+(8,)Y
vk, + (825, ’”‘ v+ (8,08, T
(7 ‘} =1- Il - (i\',)‘a_,+'ﬁ;:)’a -t (r,) =1- 1- _\,}”,+_E;-,J¢,+r) 20)

Under the vague assumptions as described above, the Bayes point estimates of (f‘*p)z i (fi,);:T i
t L
(7 ) and (7 ) under a precautionary loss function are given by
k m+(8;1)k,

oy vk, + (62)6,
7), =(1~2! Ill'((vs)-’a +(9i2)f% +t |

b | =

+(6i2)a +(0:)%
_2( Wk + Odl, " ( ok, + @)k, O
Wk, + (6i2)G, +t v)g, + (0:2)G, + 2t

mi+(8i1)4,

k
(rg)u ( 1—2] ||1- ( e, + (62)e,
Play gy Ve, + (8, + t
:

|} (21)

. Y . sin
|1 _ 2( (Vi)gt + (giz)gt m(+(9n)rxt ( (Vl')gt + (9i2)gt m‘+(9”)“t
)&, + (0:2)g, +t Vg, + (Or2da, + 2t
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L
my+(6y2)g,

) ( (g, + (6:)%, )
(\-[)g‘ + (ei:)g,‘ +t

L vk, + (85, ™ O (v, + (6% e+ (Badly]\ 2
-_— ———e
* l:l 1 '((1-,);‘ + (913)"&! + r) ((1 1)"' +(6;2 )L_, - 2:)
. x Y, + (8¢, \™ %
= U _ _ _ @y leiay
(r"")rz:_(l ZBII ((\'g)?.-,*'(ﬂi:)i-,*f)
s i
+ﬁ o D, + 6, )"" (& )2, + 6%, )“’ L
i=1 (vida, + Bz, + ¢, vz, + (Biz, + 2¢ )

Respectively, for all a [0,1] the membership function of the vague Bayes point estimate of
system reliability r is defined by the same way as discussed above.

k-out-of-m system

For a k-out-of-m system consisting of m independent and identical components, the system
reliability is given by

r=y (Ma-nm
i=1

That 7 is the reliability of the (common) component. The Bayes point estimate of system
reliability r isthe mean E[R|s, v] under the squared error loss function, and is given by

il 1

a=elRls)= ) () [ 7 a-nmalsy
- 0

j=k

+6 5+6;
= S0 () () ()™ @
The Bayes point estimate of system reliability r at timet, under a squared |oss function, given by
1 s . o V8, 548472
f = EIRIsVD: = [EL S il e () OO () @

ti+tj+ti+v+o,

Under the vague assumptions as described above, the Bayes point estimates of (7%)5, , (7)Y, ,
(7))L and(rs)a , under asquared error loss function are given by

S e O o)
=k 1= ]+ Vg, + (92)5::
O z O it )™
e =& J k tl+tj+ v, + (Bz)gt
m . A L L s+(011&
0= 22O rom)
Jj=k I=0 ay 2 ayg
%)) —im_j(—ly(m) (m-f)( Vay + (82)a, )Msj)gf (26)
e PNk J\a+e+vE + (8,
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Under the vague assumptions as described above, the Bayes point estimates of (7 ) , (7 )

i ) and (7 ) under a precautionary |oss function are given by

m m 2m—(i+j) L s+()%,

@ =52 > OO )

1=0

u s+(01)f,

®) = Z ) (-1)! (T) M j) (Zm (i +J) v ia;:+(z;?%t- o @7)

m m . = ; L L S+(€ )é
@ =2 > (N e y
A AT A . j k l Mti+rj+rz+vgf+(€2){;r)
5+(31)gf

SNESE: Y U+ (6,)]
@22 2 OO e rey) @

Respectively, for all a  [0,1] the membership function of the vague Bayes point estimate of
system reliability r is defined by the same way as discussed above.

4.3 Bayesian approach to system availability
Martz and Waller, (1991) presented the method to cal cul ate the availability of a repairable system

__ EX)  _
A_E‘(X)+E‘(Y)_p+2 (29)

That X isthefaluretimeand Y isthe repair time. Assume X and Y are independent variables and
have exponential distributions with parameters A and p respectively. Separate gamma
distributions are assigned as prior distributions to A and y. To determine the availability of the
system, the parameters of exponentia distribution should be estimated. Vague Bayesian
estimations under the squared error loss function by use Wu (2004) are given by

2 \L s+(8; )at s U S+(91)“t
(As)at (), +(62)%, (’15)% ©F +06)7 (30)

2L s+(01)G s U s+(0)Y

—f f
(As)af ®F +©6%, (’ls)a ; OF 67 (31)

Vague Bayesian estimations under the precautionary loss function are given by

(

1
\E ]
p)L [l I(s+(91) s+(91)“f+1 | i B I(ﬁ(sl)af s+(91)af+1 | 33
a

1 (©k,+Ok,) (©Y+©)Y,)

B | =
B | =

>—'-‘>

s \L s+(00)k,)(s+(0)k,
(), -[peese]. ”

)U (\+(81)a[)(§+(91)gg+1)
(%, +62)%,)" P

(®©Y,+©8,)°

M| =

>—'(>
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8,and@, are the prior distribution parameters of A; they are assumed to be known from previous
experience.For the parameter of repair time distribution, vague Bayes point estimators under the
sguared error loss function are given in (34) and (35)

paY > n+(y1)k, 2 \U _ n+r),
(*“S)a: O +02k,’ (”S)crc B mg;(mgt@“)
n+(r)k n+(y)¥
= et = i 35
(.u-s) f (t)a}—"'(yz)ar (Jus) f (t)af+(}’2)ﬂf ( )
Vague Bayesian estimations under the precautionary loss function are given by
1 1
5 (n+ (k) (n+ (), +1) | 2 U _ |+ E) (Y1) [
(), = { DRI (g,) = |00k (36)
t (O +k,)’ ¢ (O +@2Y,)
1 1
L (o ) (i 4) |2 U | (o) (nr o 1) |2 a7
(Jup)af_ ( L }L )2 ] (.‘up) - ( U U')z ( )
(tjuf+(YZ.uf (t)af+(YZ}u,r

y1andy, are the prior distribution parameters of u; they are assumed to be known from previous
experience.

Vague Bayes point estimators under the squared error loss function of availability interval
= \L s~ U ;=L - U .
bounds(1115)art,(111,,.)art,(zcls)ar,r and (As)a, are given by

n+(yyk, n+(y1)d,
( 3 )L . (05, +(r2)k, ( 3 )U 4, +r2)G, 38)
¥y n+(r)k, s+, '\ Vgm0, s+(0)Y,
Ok +)k,  ©F,+025, (OF A+, | 5+,
n+ (i, ()i,
s AL ()G + (12 2 \U (i, +(r2)a,
(As) = L L ,(AS) = 7] [7] (39)
oy ﬂ+(}"1.)af 5+(91)a!— ap n"’{h)af 5+(91)“f
®%+(2k * oL +(0)k ®Y +r)f oy +(02)4
i “f af “f ar ar hid i i

Vague Bayes point estimators under the precautionary loss function of availability interval
bounds(4,)” . (4,)" ,(Ap)z and (ﬁp)” are given by
t t

(n+[yl)ét)(n+(y1) +1)

N ((r)a,+(mat
(4),, =
a

g [{mm) ﬂ+(}’1)a£+1] [s+(91) S+(91)rx;+')]
(O +02k,) (E)i}zﬂez]

=
2

[{mimgt)[m(h)aﬁ 1)]
(mgﬁ(mgt)z

(40)

=

“ [{m(mat ﬂ"‘(h)ar"‘l] [s+(01) )(s+ (0 )ut+1J]
(Of+02Y,) (B8, +©02)4
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R |

[(?H (h)‘&;)(n+(h)ﬁr+l]]

(t +{}"2)af

s \L G
(4:), =
p
T [k )( n+(m A [(s+ k) (5@ )nfﬂ)
(% +(mc5r (r)aﬁ(ea

L

|i(n+{}’1)af)(ﬂ+[}’l)af+1)‘
2
. \U (0% +024,)
(Ap)af = rl ’
(n+@0f)(n+ 0¥ +1) :
(8 +0¢,)

41

B

I(s+(ul)gf)(s+wl)gr+1)‘

((thf+(9;:)gr)2

The availability of a series system consisting of k independent components can be calculated
with Eq. (42) (Martz and Waller, 1991)

A= |_| (.u i+ ) (42)
Inserting the vague Bayesian estimates of failure and repair ratesinto (42), vague Bayesian
availability equations of a series system under squared error loss functions are given in (43) and

(44) respectively

(&), =, L) ,(ﬁs):t = ks L) (43)

t (ﬁst)aﬁ(‘lst (ESE)ar+(AS"):r
s L (Risi); N (Bsi),y
A) =na|—L).(A) =N —L 44
( )af |-[ 1 ((ﬁg)if{—(js,)af ( )a}— 1 (ﬁsi]gf-}(isi):f ( )

Vague Bayesian availability equations of a series system under precautionary loss functions are
given by

(ﬂpl s U (ﬁpi)u i
= “ A) =T, | ——t— | (45
( (#m (*’)ar =1 (f‘”")gﬁg”")«: (45)
= (»“pr) s (ﬁpf)g
/T AAp) =T| == (46)
) (] ) el =\

Respectively, for all « 0[0,]. According to the discussionsin Section 3, let

Vo, = |min{ inf 6 mf Gﬁ}max{ sup Gﬁ, sup BB}I

ap=fp=1 ap=fe=1

The above intervals contain al of the Bayes estimators for each A [AL,,AY,|. The same
intervals can be established for A lAaf,Ang. But. for a < 8 have

:I‘.‘-ilr;
=R

AU iU
B’ B>
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And so

7L — FU U U
AL < AV < AY < AY.

Therefore, 1, and V, scan berewritten as
Ve, = |4, AT, (47)
v, =%, 2] @
Now, using Proposition 1, the truth membership function and the false membership function of
the vague Bayes estimate of A, denoted by 4, are defined as follows

tz(4) = aﬂfp ]at I- (A) O<sa,=<1 (49)
f;(A) = sup ar.l (A) Osa; =1 (50)
ar€[0,1]

The availability of a parallel system consnstl ng of k independent components can be calculated
with Egs. (51)- (53) (Martz and Waller, 1991)

Unavailability of system = A=1-4 (51)
K
=163
k
=3[

In the same way, inserting the vague Bayesian estimates of failure and repair rate into (50),
Vague Bayesian availability equations of a parallel system under squared error loss functions
are givenin (53) and (54) respectively

). G,

a si s 4 U si

(A) =1-Ma| 2 ), (&) =1-T | =t | (54
@ (ﬁsi)c‘(r*'(Isi)at e (ﬁSi)at+(ISi)“t

(A:' )L —1 (isi)zf (A:, )U 1 |_|_k (jsi):r (55)
° ar L ! (ﬁsi]ir*'(ﬁs:‘.);f , ’ ar - A (ﬁsi]gf*'(isi):f

Vague Bayesian availability equations of a parallel system under precautionary loss functions are
given by

2 yL (i]\?f)L s U (Epf)u
=1-0k, | ———2—|.(A =1- i'(: —t 56
(Ap)a; r[a—l ((ﬁpi);£+[ip");r> ( p)at M 1 ((ﬁpf)z +[im')::r) (56)

)(52)

Pl

t

L ()., .\ (ipr)u
A =1t (), =1 () (57
( P)af : ({ﬁpi}uf+(1pf)uf) ( p)af M ((#pd ( 1) r) (57)

Respectively, for all a [0,1] the membership function of the vague Bayes point estimate of
system availability A is defined by the same way as discussed above.
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For a k-out-of-m system consisting of m independent and identical components, the system
availability is given by

A=3LAQ-AH™T  (s8)

=) ) =

Vague Bayesian availability equations of a k-out-of-m system under squared error loss functions

isgiven by
Yy e } \J 7 v y m=J
2oL m (B, '.X) = (el M)
(&), = T (rm +Ca). ) (rm () ) }(d) ) (f"r G, )(rﬁ )G ‘”) } 0

r vy £ : A e
oL B, ()., @, (*a),,
A =Fm. =T —= — =T 61
( :)a-' EJ-\ (_(E::),_,“‘__ﬁ::)m) (.(E::L_,‘__ﬁ:‘) ) (r#;:: “'Ma:l ) (Iﬁa]“,“'l__’la:]m ( )

Vague Bayesian availability equations of a paralld system under precautionary loss functions are

given by
; " o \J 7 |_'f==‘_." \ m=j L ’ p \J 7 |§! v \ m=J
f‘J“ T B ‘;_ = T ,(J‘lp)L =Z"= fﬂ‘}ar ] ) T (62)
Ifﬁw:}ﬂ"aﬂ:‘a:_ '-El'!}g(*(.iﬂﬂ}nr. G ‘ (& -}¢1+r‘1§} IE,_]“H_A,,}“

. {Q ) L J I’iﬂ‘l r" JU \J 7 [1,:)”  m=J
(i) =S| e (A oy | Sl 2
% Bedey+(or),, | \ Gede, +u., m. JertCed,, ) \ e, (),

4 Computational procedures and example

we need to apply some computational techniques for evaluating the truth and false membership
degrees of the vague Bayes point estimate as presented in Eq. (2) and Eq. (3) will be provided.
From Eq. (1), we adopt the following notations

(‘48) Dy

(%), =2

c

(63)

Vo, = [g(az), h(ap)] = [min{gi(a;), g2(a)} max{hi(a;), ho(a;)}] (64)

Vo, = [9(ar), h(ar)] = [min{g1(ar), g2(ar )}, max{hy (ar), ha(ar)}]  (65)

Where

g1(a;) = inf gk o g2(a) = inf 9:‘ hi(a;) = sup 6,6: hy(a;) = sup 9:3’

ap=fi=1 apsf=1 ar=fir=1 ar=fes1
gl(a’f) = " L??f<1 6!‘3}‘ gz(a)‘) = . Lrﬁ’lfﬁl 68 ) hl(af) e Sup 93 y hz(ﬂff) == af{%{llg %

From Eg. (1), the truth and fal se membership functions of the vague Bayes estimate (’3, are given
by

t5(r) = sup aply, (r) = sup{a;: g(a) Sr<h(a), 0<a <1} (66)
ar [01]

fz() = sup a- Iy, () = sup{ag: g(as) <r <h(as), 0<ar<1} (67)
ﬂ‘f .,

Therefore, needs to be solved the following type of nonlinear programming problem
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max a, max ar
subject tomin{g;(a;), gz (@)} <r  subject tomin{g,(ar), g2(as)} <7
maJC{hl (at),hz(at)} =r max{hl(af), hz ([I,r)} =r

O<a <1 O<a, <1
Now, the following eight sub-problems have been considered

Ir:maxa, fprmax ag

subject to g,(a;) < r subject to g, (E,f) =r
hylae)zr hl(a‘f)Zr
0£a, £1 0<a <1
Ilrmax e, Hg:maxay

subject to g,(a,) < r subject to gi(a}«] =r
hylag) zr h;(af) =r
0£a, =1 0<e, =1
Ill;:maxa, Hlzimax ag

subject to g,(a,) = r subject to g:(a}«) =r
hylag) zr hl(af)Zr
0£a, =1 0<ea, <1
IVy :max a, Ve max ag

subject to g,(a,) < r subject to g, (rz,;) £r
hyla) =7 h;(af)Zr
0<a, <1 0<a, =1

Let and Zjy,, be the objective values of subproblems I — IV, and Z;, Zj;,, Zjy;, and Zj, be the
objective values of subproblems I — IV, respectively. Assume that,

Zy = max{Z;_, Zj1. Zi1iy, Ziv, Jand Zp = max{Z;,, Zfi., Ziu Ziv, ). Let Zgr and Zgpbethe
objective values of the original problems with optimal solution a;° and a;° respectively (in fact
oL = il a}” = Zr)- In according to Wu (2004), we have Z; = Zyrand Z; = Zyp, S0 t0
obtain the objective value Zj and Zx of the original nonlinear programming problems, it will be
enough to just solve the eight sub-problems I — IV and Ig — V.

Example 5.1. We consider a series-parallel system consisting of three independent components
that have Exponential distributions, that structure as shown in Fig. 1.

©
o "
©
Fig. 2. The series-paralld system

The follow data show that the failure times and repair times are assumed as vague numbers, since
the failure times and repair times cannot be recorded precisely due to human errors, machine errors,
or some unexpected situations. The simulated failure times and repair times are presented in Table
1. For example component 1, the first failure time and repair time are around 20 and 15 h,
respectively.the second failure time and repair time are around30 and 20h. There are the same
explanations for components 2 and 3. The prior distribution parameters (pseudo) of the failure rate
and repair rate are presented in Table 2.
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Table I: Fauure and repair omes

Comy 1 Comp 2 Comy 3
Failure times . o —
20 50 45
2 30 35 £
Repair times
1 is 3 0
2 20 i is

Table 2: Prior distribution parameters of failure rate and repair rate

Component 1 Component. Component 3
Failure rate parameters (8.8 (E. 140} {g 120) (§. 180}
Repairrate P =
3.55 Y 5.85
parameters(yy, ¥z ) (3.55) (%.70) ( )

Where3,4,5, 6,8,10, 15, 20, 25, 30, 35, 45and50are vague numbers with the following
membership functions

u—1 u—1
4 l1<su<s3 T l1<=su<s3
s =4{5", -z ={c%,
— 3<u=sbh 3<u<sbsb
4 2
u—2 u—2
7 2=su<4 5 2=su<4
G ={g2, 1-faw =442,
4<u=<6 —— 4d<u<6b6
4 2
u—3 u—3
T 3=su<5b 2 3=su<5
t‘s‘(u)z{?_u :1_f'§(u)={7_u
7 S5<u<s7’ > S5<u=s7
= 4<us<é = 4zus<s
=44 s 1=fslu) =42
k) {'% 6<uss’ ftw) == 6<usxs
ue u=e ,
r5(u) =1,.5, sEuss » 1= ) =42, fxuss
: 8<u=10 T=3<“51°
= 5zu=10 = 5=uz10
e P 10<u=15 "’ R F= 10<usgis
& 10gu <15 & 10=us<g1s
o) =) 2 10cu=1s 1=f50 =) e 10<u=s1s
e u=1ls - -
i“ 15<u <20 aas 15<u=<20
tslu) = 4,32, o 1-fglul=4,
= 20<u =25 — 20<u=25
= L:’ 20 <u <25 = 20<u <25
= = 25cu=30’ faud= 25<u=30
= 52y <30 25<u <30
tslu) = 1,22, » 1=falu)=1,
2= 30<u=25 E2 30¢us25
0= == 305u=35 - fofd= = 30=u=35
= 2 gscus40’ faw= = 35cux40
2 40sus4s = 40sus4s
talu) =422, » 1=falu) =432,
= 45<us=50 = #5<us=s0
] . uma
.y 4554 =50 1—rat=] B 452u=<50

= 50cus5s ] £ s0cusss

Now, we want to obtain the vague Bayesian system reliability and availability. First of al, note

that the a,-cuts and as-cuts of the vague numbers3 4, 5, 6 , 8,10 , 15 , 20, 25,
35, 45and50 are

=



International Journal on Soft Computing ( 1JSC) Val.3, No.1, February 2012

3., =[1+4a.5-4a). 3., =[1+ 2055 - 24
f, =2+ 4a.6-4a) &, =[2+ 2056 - 2]
S, = [3+ 44,7~ 4arl, 5q, = [3+ 2477 - 2]
6o, = [4+ 4.8 —4a;). 8y, = [4+ 2078 — 24
8;, =[6+4a,10 - 4a;], ‘,Jr: [6+ 2a7, 10 — 2]
"ﬁ . =[5+ 10a;.15 - 10a,]. =[5+ Say. 15 — 5ay]
=[10 + 10a;.20 — 10]. = [10 + Say, 20 — 5ay]
=[15 + 10@;.25 — 10]. [15 + 5a7,25 — 5ay]
[20 + 10e,.30 — 10e,). : [20 + 57,30 — 5a]
[25 +10a,,35 — 10a,], 3 [25 + 5ay. 35 — 5a7]
[30 + 10¢;,40 - 10a]. [30 + Sy, 40 — 5ay]
[40 + 10, 50 — 10a], [40 + 547,50 — 5]
[45 + 10a,,55 — 10&,], 5 [45 + 54,55 = 5ay]

K

B

""l‘"‘l"“n'o! Bu k=l "‘E
o?&l&u‘d Lﬁ.'\c‘,‘i Gic

The vague Bayes point estimates of reliability under dlfferent loss functions of rat, Fat, rafand rﬂE/r

are obtained asfollows (for al a;, ay [0, 1])

| (15+10a,) + (25+ 10a,) + 140  [*FO* L (1. (45+10a) + (30 +10a,) +120 EHEMa)
Ol 10a;) + (25 + 10a,) + 140 + 3! 1= (45 + 10a,) + (30 + 10a,) + 120 + 30
(1 (40 + 10a,) + (30 + 10a,) + 180 )2*(6*““*’|
"~ (40 + 10a;) + (30 + 10a,) + 180 + 30
B+4a; 5+4ay 8+4a;
_ 180+ 200 30 |0 |
220+ 20a, 525+ 20, 280+ 20a;)
)’ (25 — 10a,) + (35 — 10a,) + 140 l“(g“*“f’ B
a (25 — 10a,) + (35 — 10a,) + 140 + 30
2+(7—4ay)

(55 — 10a;) + (40 — 10a,) + 120

~ S (55—10a[)+(40—10a[)+120+30)

[ (50 — 10a,) + (40 — 10a,) + 180 2*““‘4“”|
(50 — 10a,) + (40 — 10a,) + 180 + 30

_ 220 — 201:!110_4“‘ i ( 30 T 9-doy 30 12—4a
B I250 — 20, 245 — 20at) (300 = 20at)

2+(a+2ay) |
I |1

G) = (15 + 5a¢) + (25 + 5a;) + 140
"Jar = (15 + 5a;) + (25 + 5a,) + 140 + 30

~ ( (45 + 5a;) + (30 + 5a;) + 120 ]“(3”“”
(45 + 5a;) + (30 + 5a;) + 120 + 30

(40 +5a;) + (30 + 5¢) + 180\ T 1180 4 1002 30 )5*2“f ( 30 )““"f
(40 + 50) + (30 + 50;) + 180 + 30 - [22(} + Zl)ar] - (225 + 100y 280 + 100

¢ ) [ (25 - 5a;) + (35 — 5a;) + 140 l”{”‘z"‘f ) |[1
(25 — 5a;) + (35 — 5a;) + 140 + 30

fRlis

24(7-2ay)

)

(1 (55 —5a;) + (40 —5a;) + 120
(55 —5ay) + (40 —5a,) + 120 + 30
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(50 = 10af) + (40 il 10af) +180 2+(10-2ay) |

(50— 10ay) + (40 — 10a;) + 180 + 30 ] |
220 10a, 10-2ay ~ 30 9-2ay 30 12-2a;
=Iz55= 10a; 1785 10a; ) (350 — 10ay J |

And

G4y S4dmy B4dmp

180+ 20a,) PTI )
(220 + 20a, ) { [225 + 20a
.

( 30 )
280 + 20a,

“l1-2 105 + 200(()5““‘ (195 + ZUa()“”'“‘] [ | {250 + 20a()ﬂ”“‘ (250 + 20(1,)3*“*]];
225+ 20a, 255 + 20a, 280 + 20a, 310 + 20a,
~|(220- 20a;) fo-ta PR 30 )‘H“r( 30 )”-‘“r
T (220 + 20az) 245 — 20a, 300 — 20a,
12| 215 — 20%)0—4% (215 - zoar)‘?“'“e] [ | 270 — 20a()‘2“"‘* (2?{1 - ZDrxt)“"‘“‘]}%
245 — 20a, 275 — 20a, 300 — 20a, 330 — 20a,

(),

_ [(180 + 10a,))""* Lo 5”“1‘[ 3
ar  |(220 + 10a,) 225+ 10af) 280 + 10af)

Ty 195 + 10a,\****f (195 + 10a,\**** Lo (?50+ 10 S+2er 1250 + 10, \" ||
225 + 10a; 255 + 10a; "~ “\280 + 10a, 310 + 10a,

()., =

(220 - 10a,))" 1-2(- 0 "‘Z“f[ 30 e
(220 + 10a;) 245 — 10(1;-) 300— 10a,)

215 — 10a,\ "% (215 — 10a,\" ¥ 270 — 10a,\"** (270 — 10a,\ ¥ :
-2 245 — 10af) (2?5 - 10af) 1-2 (300 - 10ccf) (330 - lOaJ,-)
The vague Bayes point estimates of availability under different loss functions of Aat, @y AL sand
A,xf are obtained asfollows (for al a;, af [0, 1])

2+(1+40,)
(EJL =l (104 10ay}+(154 10, ) +55 | -
L Z+( 1+, ) 2+(2+da,)
(10+ 100 )+ {15410 )+55  (15+100)+{25+100,)+140
24+(3+4m,) 2+(6+4a)
l (45 + 100 )+ (304 10, ) +120 [ (b L0ag )4 (304 10, b+ 160 | }
2+ (3+da,) 2+(2+da,) 2+(64+da,) 2+(3+da,)

(454100, )+{304 10a, )4 120 [zu+1ua(}+(5+1na(]+?u] (40410 )+ (304 10a, )+180 (154100, )+({104+10a,)+85

I+d; S+du; B+du,
_ l (804—20«,) l[l _ l (195+zua,) ] l (zsmzncr,) H
Ay 6+, 544y A4y By S+,
(8u+zun,) + (1Eu+zua,) (1“5+20ﬁr) H (95+zna,) (zsuunar) i (1m+znar)

l 2+{5—4a,)

{20= 10 )+ (2510, )+55 | {1 _
24+(5—daty) 2+(B—da,)
(20-100, ) +(25-10a 455 (25-10a,)+{35-10a,)+140

®), =

t

(55— 10¢r, }+{ 40— 10, }+120 (50— 100, )+{40- 100, ) +180 | }
24 (7—daty) 2+(6-day) 24+(7—daty) 24 (G-t )
(55-100 )+ {40-10a, 14120 (30-10a,)+{15-10ae)+70 | L(55-10a }+(40-10a,)4180  (30-10a,)+(15-10a3+70

l 2+(7—4ay) 2+(10—4ay)

T4, _9—day 1‘2 -m!
_ l (wo—maj l[i _l zu—zum " zm zUar, “
T—dixy 10—dux, 9=ty By 12— mt [=Th
(lnn—znar) i (znn—zna() (21"—20&r H"—zna:r 270 zna, nn znar)
2+(1+2a7)
2yl _ [10+5ay)+[15+5a5)+55
(&), =l |- a-

2+[142ay) . 2+(2+2ay)
{10+5ap)+(1545ap)+55  [15+5ap)+[25+5a;)+140 |
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2+(3+2a5) 2+(6+2ay)
(454 5az)+(3045a;)+120 (a40+5ap)+(304+5a ) +180
I 24 (3+2as) 24(242ay) ‘ 24 (6+2ay) 24(3+2as)
[#5+5a, ) +[304 100, 4120 * (2045ay )+{5+5a)+70 | | (40+5a,)+(3045a;)4180 * (1545, )+(104 5w )+85 ] )

:[( ) )Hl_l( (J:fli,) Il (zi*f:;i,) ]}

3+2ay +( 642y 5+2rx; 4+zn’l, E+2nf 5+zn’l,
B0+ 10, 180410, 195+11Jo’|, 95+1na; 25u+1|mr‘r 110+1ua;
2+({5-2a5)
i u | (20-5ay)+(25-5ay)+55 | (1
. = * e
( “Ja; 2+(5-2ay) Z+(8-2ay)
(20-5ap)+(25-5ay)+55 * [25-5ap)+[35-5a;)+140 |
L ) )
55-5ap ) +(40-5ay)+120 50-5ap ) +(40-5ap)+180
| £ f £ f
2+(7-2ay) 2+(6-2ay) 2+(7-2ay) N 2+4(6-2ay)
(55-5ay)+(40-5 1 +120 (305, )+(15-5u )+70 | | (55-5e,)+(s0-5a ) +180  (30-5e,)+(15-5e ) +70

( T=2ay ) ( 9=2ay ) ( 12-2«,-)
100~ 100y 1 215- m«,— 270-10ay,

- 7-2ay )+( 10-2ay 9-2ay B-2ay 12- znf 9—2::; )
100-10a;, 200-10a; 215—1Dar 115 lr.lrxr 270 1nar, 130—10«;
And
1
[(BMR.][HMJF
% \L (80+20a,)?
(EJ‘) i E - B
@y [[344m][4+4m}}z [f6+-trx¢][?+4rxt]};
(B0+20a,)? U (180+20a,)?
1 1
{{5+w¢][6+4<n}}¥ {(3-‘-1—;{;)[‘)*—4«;)}?
1 (195 +20e,)? (250420, )2

1 1 1 1
{[5+4u[](b+4a[)}3+ {(1+4a()[5+4m]}7 {(8+4a;](9+1—ag)}; + {(SH«[)(&Hu{)]?
(1954200, )2 (95+20a,)? (250+20a,)? ) (110420a, )2 )
1
[(7-4%)(9—4::()]3
P . E
(ﬁp) iy lw‘o 200, )? |+
g [[?—4“;][!1—4(1,)]? [(m—m,)(n—ua[]]i
(100-200,)? U (200-20a,)%

1 1
{(q-wﬂ{tn-m,)]? [(lz—da’()(lz—da(]}E
1— (215— 200, ) (270—20r,)%
1 i B 1
{to-mra{w-m,ni + {{s-mllw—m,l}a {[12—40’(][1.3—4“(]]; + {{9-4@][10-4«,]15
(215-20a,)* ) (115-20a,)? (z70-20a,)* ) (130-20a,)® )
1
[[]+2rxf){d+zo’!)}5
(A0+10a,)’ A

(&), =
P ay ;(3+2a,,}f4+zn;)f L ((6+2a,)(7 +2a )]s
l {sn+1na,]z 1 [nrm+|nrr!}1 J

{{5+zgf][5+m }]5 {(mz“r)[gnnf)f

(1')5+10af} [350"1“'1’}

I{5+‘au;){6+2:q]]z " 1’[4+2u;](5+2ar){ ﬂs+2ulr){9+2ﬂlr)] + ]’(5+‘Zu;][6+2:q]]%
(195+10a)" R +10a;)’ \ (250+10a,)° (110+10a,)" J
[[?—2“:’](8—2“:’)1%

&) - “Gao0-10m,)
) = 1 T|*
T @y [[7—2;;,}(8—%&11 n [(IO—Zuf){‘ll—Zuf)]z

l 100-10a : 200-10a B
f f

[(9—2« Wio-2a )}% {fu—m J{13-2a ]}i l

(215-10ay) (270-10ay)

1

((9—2;:,)(10—2«,}}%+{(e—2u,)[9—2u,)}2 {(12—2«,](13—2«,]]% [(9—2«,}(10—2::,]]%
l (215-10a,)° l (115-10a)° Ipiti (270-10a; )" | (130-10a;)"

Therefore, we just need to solve subproblems! I and [Iz.We use the method provided in Section
8 10

5 to solve these problems. For a; = 0.5yields (?"s);s = (%) [1 (23305) (%) ] =

0.21687 = (%), .i..t;(0.21687) = 05. on

the other hand, o = 1 yields (f), = 0.21687 = (%), . i.e. 1 — £:(0.21687) = 1. Since
Vo = [0.27851,0.29998], we arejust interested in considering the system reliability » V. By
applying the Supplemental Procedure Wu (2004), we have, for r V.
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(i) if r < 0.21687, then we solve the following problem, using a suitable software

(LINGO):
t:(r)
= max{at €[0,1]: g(a;) = gy(a;) = (ﬁ):r
180 + 20a,1° 4 30 S+day 30 B+dar
=550+ ZOH,] [1 - (zzs ¥ zoa,) (zm} ¥ 20(1,) ] <ri
1= fi(r)

= max{:'xj.f € [0, 1]:5"(”,f) = gl(af} = (?:5)::;

180+10af]“‘“°‘f[ ( 30 )5‘““( 30 )*‘”-"f

= — - <
|220 + 200, 225 + 100 280 + 100; <t

(i) if r > 0.21687, then we solve the following problem:

ti(r) = max iaf €[0,1]: g(a,) = gi(a) = (ﬁ)

L
[

180 + 20a, )t 30 S+4a 30 f+day .
=520+ 20.::{] = (225 + ZUr:r() (230 + ZUa{) zr
—\l_ [180 + 20a,*t4 30 S 30 Pt
— Fir) = € [t : - _ (= = 1— ] ] o=
1= fi(r) rrmx{ﬂf [0,1): g(er) = 9:(ar) (?l)rrj {2204_ zoﬂr] (225 ¥ 20&,) (EH{} T 20:{,) =7}

Therefore we now can obtain the membership degree for any given Bayes point estimate r of
vague system reliability #'by evaluating the above formulas.

Above conclusion is defined by the same way for system availability.

6. Conclusion

We developed Bayesian approach to system reliability analysis in the vague environment, Taheri
and Zarel (2011), for system availability under different loss function based on Exponential
distribution. In order to evauate the truth and false membership degrees of the vague Bayes
estimate, a nonlinear programming problem was solved. The vague Bayesian approach to system
reliability and availability is a generdized version of the fuzzy Bayesian reliability and
availability, and it is aso an extension of the conventional Bayesian system reliability and
availability.

For future research, distributions other than exponentia distribution can be used for failure and
repair times of system. In addition to vague data in the analysis, vague multi state reli- reliability
can be considered.
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