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Abstract

Reliability modeling is the most important discipline of reliable engineering. The main purpose of this
paper is to provide a methodology for discussing the vague environment. Actually we discuss on Bayesian
system reliability and availability analysis on the vague environment based on Exponential distribution
under squared error symmetric and precautionary asymmetric loss functions. In order to apply the
Bayesian approach, model parameters are assumed to be vague random variables with vague prior
distributions. This approach will be used to create the vague Bayes estimate of system reliability and
availability by introducing and applying a theorem called “Resolution Identity” for vague sets. For this
purpose, the original problem is transformed into a nonlinear programming problem which is then divided
up into eight subproblems to simplify computations. Finally, the results obtained for the subproblems can
be used to determine the membership functions of the vague Bayes estimate of system reliability. Finally,
the sub problems can be solved by using any commercial optimizers, e.g. GAMS or LINGO.

Keywords: Bayes point estimators, Vague environment, Nonlinear programming; System reliability,
System availability, Exponential distribution, Precautionary loss function.

1. Introduction

In the real world there are vaguely specified data values in many applications, such as sensor
information. Fuzzy set theory has been proposed to handle such vagueness by generalizing the
notion of membership in a set. Essentially, in a fuzzy set each element is associated with a point-
value selected from the unit interval [0,1], which is termed the grade of membership in the set. A
vague set, as well as an Intuitionistic fuzzy set, is a further generalization of a fuzzy set. Instead
of using point-based membership as in fuzzy sets, interval-based membership isused in a vague
set.Gau and Buehrer (1993) define vague sets. These sets are used by Shyi-Ming Chen and Jiann-
Mean Tan (1994). Once the vague (intuitionistic fuzzy) set theory have been introduced, a
number of authors investigated the reliability analysis in vague environments. Chen (2003)
presented a method to analyze system reliability using the vague set theory, where the reliabilities
of system components are represented by vague sets. Kumar et al. (2006) developed a method for
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analyzing system reliability by using interval-valued vague sets, and applied it for the reliability
analysis of a Marine Power Plant.

Complex systems may have both kinds of uncertainty. Researchers have stated that probability
theory can be used in concert with fuzzy set theory for the modeling ofcomplex systems Zadeh
(1995), Barrett and Woodall (1997), Ross, Booker, and Parkinson (2003), and Singpurwalla and
Booker (2004). Bayesian statistics provide a natural framework combining random and
nonrandom uncertainty so fuzzy Bayesian methods are developed for the solutions of the
reliability problems. Sellers and Singpurwalla (2008) addressed the reliability of multistate
systems with imprecise state classification. On the other hand, Gholizadeh, Shirazi, Gildeh, and
Deiri (2010), Gholizadeh, Shirazi, and Gildeh (2010), Görkemli and Ulusoy (2010),  Huang, Zuo,
and Sun (2006), Taheri and Zarei (2011), Viertl (2009), and Wu (2004, 2006) addressed the
problem of imprecise data (approximately recorded failure time durations and number of failures)
in reliability studies.

Fuzzy Bayesian reliability method developed by Wu (2004, 2006).Taheri and Zarei (2011)
modeled and evaluated Bayesian system reliability considering the vague environment. Our
modeling approach is a generalization of Wu (2004, 2006) and Taheri and Zarei (2011).

Vague environment is introduced in Section 2. Vague point estimator is represented in Section 3.
In Section 4, the reliability and availability analysis via vague Bayesian method under squared
error and precautionary loss functions for series system, parallel system and k-out-of-n system
have been discussed is illustrated on an example. The computational procedures and examples are
provided in order to clarify the theory discussed in this paper, and to give a possible insight for
applying the vague set to Bayesian system reliability and availability. Conclusions and future
extensions of this work are given in Section 6.

2. Vague environment

Definition 1.A vague set in a universe of discourse is characterized by a true membership
function, , and a false membership function, , as follows: ∶ → [0,1], ∶ → [0,1],
and ( ) + ( ) ≤ 1, where ( ) is a lower bound on the grade of membership of derived
from the evidence for , and ( ) is a lower bound on the grade of membership of the negation
of derived from the evidence against .

Suppose = { , , … }. A vague set of the universe of discourse can be represented by= ∑ [ ( ), 1 − ( )]/ , where 0 ≤ ( ) ≤ 1 − ( ) ≤ 1 and 1 ≤ ≤ . In other
words, the grade of membership of is bounded to a subinterval [ ( ), 1 − ( )of [0, 1].
Thus, vague sets are a generalization of Fuzzy sets, since the grade of membership ( ) of in
Definition 1 may be inexact in a vague set. We now depict a vague set in Fig. 1.

Fig. 1.Membership Functions of a vague set.

Definition 2.The complement of a vague set is denoted by and is defined by
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( ) = ( ),1 − ( ) = 1 − ( ).

Definition 3.A vague set is contained in another vague set , ⊆ , if and only if,( ) ≤ ( ),1 − ( ) ≤ 1 − ( ).

Definition 4.Two vague sets and are equal, written as = , if and only if, ⊆
and ⊆ ; that is ( ) = ( ),1 − ( ) = 1 − ( ).

Definition 5.Let , be a vague set of . Then, we define -cuts and -cuts of as the
crisp sets of given by = { ∶ ( ) ≥ }, ∈ [0, 1],= ∶ 1 − ( ) ≥ , ∈ [0, 1],
Definition 6.Let , be a vague set of ⊆ . We say that is convex if for all , ∈
and in [0,1], ( + (1 − ) ) ≥ min ( ), ( ) ,1 − ( + (1 − ) ) ≥ min 1 − ( ), 1 − ( ) .
Definition 7.A vague set , of with continuous membership functions and is called

a vague number if and only if and , for all , ∈ (0, 1], are bounded closed intervals; i.e.= ,= ,
We denote the class of all vague numbers by ( ).

Definition 8.Thevague number , is called a triangular vague number, if

( ) = −( − ) ≤ ≤−( − ) ≤ ≤0
1 − ( ) = −− ≤ ≤−− ≤ ≤0
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Where ∈ [1, ∞). We denote such a vague number by = ( , , , ) .

Proposition 1.(Taheri and Zarei (2011); Resolution Identity for Vague Sets) Let , be a
vague set of . Then ( ) = sup∈[ , ] . ( ), 0 ≤ ≤ 1,( ) = sup∈[ , ] . ( ), 0 ≤ ≤ 1,
Where, (. ) is denoted for the indicator function.

3. Vague point estimator

With according to Taheri and Zarei (2011), Let X: Ω V( ).be a vague valued function. Then,
is called to be a vague random variable if , and for all 0 ≤ α , α ≤ 1, are

(ordinary) random variables. Too, Let be a vague random variable whose distribution depends
on a vague parameter . So, it could be said that , and are the parameters of

distributions of (crisp) random variables , and , respectively. Our purpose is to

estimate based on a Bayes approach. According to this approach, is considered as a vague
random variable so that the crisp random variables , and have some distributions

with parameters ( ) , … , ( ) , ( ) , … , ( ) , , … , , , … , ,

respectively.
Concerning Definition 7, we can find the Bayes point estimator for each ∈ , .
Consider

)1(= { , }, { , }
Then, contains all of the Bayes point estimators for each ∈ , . The same argument

can be established for ∈ , .

The vague Bayes point estimator for the vague parameter is defined to be a vague number, , where

)2(( ) = sup∈[ , ] . ( ), 0 ≤ ≤ 1,
)3(( ) = sup∈[ , ] . ( ), 0 ≤ ≤ 1,

4. Vague Bayesian system reliability and availability

In the Bayesian approach to system reliability, some prior distributions are assigned to the
components of the system. Then, the posterior distribution of each component’s reliability can be
found using the Bayes theorem. We can derive, therefore, the posterior distribution of the system
reliability from the posterior distribution of each component reliability. The key point in this
approach is that system reliability can be expressed as a product of independentrandom variables
which corresponds to either component reliability (for series system) or to component
unreliability (for parallel systems). To this end, we need to use the method of Mellin integral
transform [2] described below.
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4.1 Mellin transformation

Definition 9. [2] Let be a non-negative random variable with pdf ( ). The Mellin transform
of ,with respect to the complex parameter, is defined by( ; ) = ∫ ( ) ( ) (4)

Such a transform exists if ∫ | ( )| ( )is bounded for some > 0.
Remark1. Based on the above definition, the inverse Mellin transform of ( ; ) is given by( ) = ∫ ( , ) ,
where − ∞ and + ∞ are complex values [2].

Remark 2. It is convenient to regard the Mellin transform as the moments of , i.e.( ; ) = ( ).
Theorem 1. [25] Let , . . . , be independent random variables with ’s , . . . ,
respectively. Let ( ) be the of the random variable = ∏ . Then( ; ) = ∏ ( ; ) . (5)

With the help of Theorem1, we can obtain the posterior distribution of the system reliability from
the posterior distribution of the component reliabilities. On the other hand, the Bayes estimator of
the system reliability, under the squared error loss function, is the mean of the posterior
distribution [21], so that we can use Eq. (4), for = 2, to obtain the Bayes estimator of the
system reliability.

4.2 Bayesian approach to system reliability

The fuzzy Bayesian interval estimate of reliability is calculated using the method proposed by Wu
(2006). Let random variable be the th failure time of the th componentsand be the
realization of this random variable, = 1, 2, . . . , , = 1, 2, . . . , . It is assumed that ,= 1, 2, . . . , , are independent and identically distributed exponential random variables with
parameter . is unknown; therefore, a gamma distribution with parameters and is
assigned as prior distribution to quantify the uncertainty in . From previous experience we
know the parameters of the prior distribution and .They can be interpreted as numbers
of failures that occur in the duration for component since the expected value of

gammadistribution is ⁄ . On the total operating time of , = ∑ , failures are

observed for the component . Since the gamma distribution is a conjugate prior distribution for
the exponential sampling distribution, the posterior distribution of is a gamma distribution with
parameters ( + m )and ( + ). Reliability of the components for the duration ∗ is( ∗) = ∗

and it is monotonically decreasing function of , so there is aone-to-one
relationship between and . Therefore the unique inverse is λ = −ln r t∗⁄ so the distribution
of can be determined fromthedistribution of as( ) = ∗ = ∗ ∗ ,

Where ( ) is either prior or posterior distribution of and ( ) is corresponding prior or
posterior distribution of (Martz and Waller,1991). Assigning a gamma ( , ) prior
distribution to corresponds to assigning a Negative-Log-Gamma ( , t∗⁄ ) priordistribution
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to . Given the data, the posterior distribution of is a Negative-Log-Gamma ( +, ( + ) ∗⁄ ) distribution.

Series system

Consider a series system consisting of independent components. The system reliability is= ∏ .So from Eq. (5), the Mellin transform of the ( | , )of system reliability is given
by

[ ( | , ); ] = ∏ ( ) (6)

Under a squared error loss function, the Bayes point estimate of the system reliability r isgiven as= [ | , ] = [ ( | , ); = 2] = ∏ (7)

The Bayes point estimate of the system reliability under a precautionary loss function is:

= ( [ | , ]) = ( [ ( | , ); = 3]) = ∏ (8)

Now, suppose in a complex system the number of failures and failure times may be recorded
imprecisely due to equipment and human errors. For such cases this imprecision also should be
quantified in the calculations. Here vague set theory is used to quantify the uncertainty of
imprecision. Failure rate, λ , reliability,r , and failure times,t , are taken as vague random
variables. It is assumed that prior distribution parameters are known from the previous experience
so those and are taken as vague number (the parameter θ can be interpreted as the
‘pseudo’ number of and failures in a lifetime test of durationθ ‘pseudo’ time units).the Bayes
point estimates of( ̃ ) , ( ̃ ) , ( ̃ ) and ( ̃ ) under a squared error loss function are given
by = ∏ ( ) ( )( ) ( ) ( ) = ∏ ∑ ( ) ( )∑ ( ) ( )

( )
,

= ∏ ( ) ( )( ) ( ) ( ) = ∏ ∑ ( ) ( )∑ ( ) ( )
( )

(9)

= ( ) + ( )( ) + ( ) + ( ) ∑ ̃( ) + ( )∑ ̃( ) + ( ) +
( ) ,

= ( ) + ( )( ) + ( ) + ( )

= ∑ ̃( ) + ( )∑ ̃( ) + ( ) +
( ) (10)

the Bayes point estimates of ̃ , ̃ , ̃ and ̃ under a precautionary loss

function are given by
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Respectively, for all [ ]1,0∈ . According to the discussions in Section 3, let

= { , }, { , }
The above intervals contain all of the Bayes estimators for each ∈ ̃ , ̃ . The same intervals

can be established for ∈ ̃ , ̃ . But, for α < have

̃ ≤ ̃ , ̃ ≤ ̃ , ̃ ≥ ̃ ,
And so ̃ ≤ ̃ ≤ ̃ ≤ ̃ .
Therefore, and can be rewritten as

= ̃ , ̃ (13)

= ̃ , ̃ (14)

Now, using Proposition 1, the truth membership function and the false membership function of
the vague Bayes estimate of ̃ , denoted by ̃ , are defined as follows

̃( ) = ∈[ , ] . ̃ ( ), 0 ≤ ≤ 1 (15)

̃( ) = ∈[ , ] . ̃ ( ), 0 ≤ ≤ 1 (16)

Parallel systems

For a parallel system consisting of independent components, the system reliability is = 1 −∏ (1 − )where is the component reliability of the th component. Equivalently, the
ystemunreliability is the product of component unreliabilities = 1 − , i.e., =∏ .The Bayes point estimate of system unreliability is given by[ | , ] = [ | , ] = 1 − ++ +
And[Q |m, ν] = E Q |m , ν = 1 − 2 ν + θν + θ + t + ν + θν + θ + 2t
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The Bayes point estimate of the system reliability r under a squared error loss function is given
by= [ | , ] = [(1 − )| , ] = 1 − [ | , ] = 1 − ∏ 1 − (17)

The Bayes point estimate of the system reliability r under a precautionary loss function is given
by

Under the vague assumptions as described above, the Bayes point estimates of ̃ , ̃ ,̃ and ̃ under a precautionary loss function are given by

= 1 − 2 1 − ( ) + ( )( ) + ( ) + ( )

+ 1
− 2 ( ) + ( )( ) + ( ) + ( ) ( ) + ( )( ) + ( ) + 2 ( )

1 − 2 1 − ( ) + ( )( ) + ( ) + ( )

+ 1 − 2 ( ) + ( )( ) + ( ) + ( ) ( ) + ( )( ) + ( ) + 2 ( ) (21)
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Respectively, for all α ∈ [0,1] the membership function of the vague Bayes point estimate of
system reliability r is defined by the same way as discussed above.

k-out-of-m system

For a k-out-of-m system consisting of m independent and identical components, the system
reliability is given by = ̅ (1 − ̅)
That ̅ is the reliability of the (common) component. The Bayes point estimate of system
reliability r is the mean E[R| , ] under the squared error loss function, and is given by

= [ | , ] = ̅ (1 − ̅) . ( ̅| , )
= ∑ ∑ (−1) (23)

The Bayes point estimate of system reliability at time , under a squared loss function, given by= ( [ | , ]) = ∑ ∑ ∑ (−1) ( )( )
(24)

Under the vague assumptions as described above, the Bayes point estimates of ( ̃ ) , ( ̃ ) ,( ̃ ) and( ̃ ) under a squared error loss function are given bỹ = (−1) − + ( )+ + + ( ) ( )

̃ = (−1) − + ( )+ + + ( ) ( ) (25)
̃ = (−1) − + ( )+ + + ( ) ( )

̃ = (−1) − + ( )+ + + ( ) ( ) (26)
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Under the vague assumptions as described above, the Bayes point estimates of ̃ , ̃ ,̃ and ̃ under a precautionary loss function are given by

= (−1) − 2 − ( + ) + ( )+ + + + ( ) ( )( )

= (−1) − 2 − ( + ) + ( )+ + + + ( ) ( )( ) (27)
= (−1) − 2 − ( + ) + ( )+ + + + ( ) ( )( )

= (−1) − 2 − ( + ) + ( )+ + + + ( ) ( ) (28)( )

Respectively, for all α ∈ [0,1] the membership function of the vague Bayes point estimate of
system reliability is defined by the same way as discussed above.

4.3 Bayesian approach to system availability

Martz and Waller, (1991) presented the method to calculate the availability of a repairable system

= ( )( ) + ( ) = + (29)
That X is the failure time and Y is the repair time. Assume X and Y are independent variables and
have exponential distributions with parameters λ and μ respectively. Separate gamma
distributions are assigned as prior distributions to λ and μ. To determine the availability of the
system, the parameters of exponential distribution should be estimated. Vague Bayesian
estimations under the squared error loss function by use Wu (2004) are given by

= ( )( ) ( ) , = ( )( ) ( ) (30)

= ( )( ) ( ) , = ( )( ) ( ) (31)

Vague Bayesian estimations under the precautionary loss function are given by

= ( ) ( )( ) ( ) , = ( ) ( )( ) ( ) (32)

= ( ) ( )( ) ( ) , = ( ) ( )( ) ( ) (33)
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and are the prior distribution parameters of ; they are assumed to be known from previous
experience.For the parameter of repair time distribution, vague Bayes point estimators under the
squared error loss function are given in (34) and (35)

= ( )( ) ( ) , = ( )( ) ( ) (34)

= ( )( ) ( ) , = ( )( ) ( ) (35)

Vague Bayesian estimations under the precautionary loss function are given by

= ( ) ( )( ) ( ) , = ( ) ( )( ) ( ) (36)
= ( ) ( )( ) ( ) , = ( ) ( )( ) ( ) (37)

and are the prior distribution parameters of ; they are assumed to be known from previous
experience.

Vague Bayes point estimators under the squared error loss function of availability interval

bounds , , and are given by

= ( )( ) ( )( )( ) ( ) + ( )( ) ( ) , ( )( ) ( )( )( ) ( ) + ( )( ) ( ) (38)
= ( )( ) ( )( )( ) ( ) + ( )( ) ( ) , = ( )( ) ( )( )( ) ( ) + ( )( ) ( ) (39)

Vague Bayes point estimators under the precautionary loss function of availability interval

bounds , , and are given by

= ( ) ( )( ) ( )
( ) ( )( ) ( ) + ( ) ( )( ) ( )

= ( ) ( )( ) ( )
( ) ( )( ) ( ) + ( ) ( )( ) ( )

(40)
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= ( ) ( )( ) ( )
( ) ( )( ) ( ) + ( ) ( )( ) ( )

=
( ) ( )( ) ( )

( ) ( )( ) ( ) + ( ) ( )( ) ( )
(41)

The availability of a series system consisting of independent components can be calculated
with Eq. (42) (Martz and Waller, 1991)= ∏ (42)

Inserting the vague Bayesian estimates of failure and repair rates into (42), vague Bayesian
availability equations of a series system under squared error loss functions are given in (43) and
(44) respectively

= ∏ , = ∏ (43)

= ∏ , = ∏ (44)

Vague Bayesian availability equations of a series system under precautionary loss functions are
given by= ∏ , = ∏ (45)

= ∏ , = ∏ (46)

Respectively, for all [ ]1,0∈ . According to the discussions in Section 3, let

= { , }, { , }
The above intervals contain all of the Bayes estimators for each ∈ , . The same

intervals can be established for ∈ , . But, for α < have

≤ , ≤ , ≥ ,
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And so ≤ ≤ ≤ .
Therefore, and can be rewritten as= , (47)= , (48)

Now, using Proposition 1, the truth membership function and the false membership function of

the vague Bayes estimate of , denoted by , are defined as follows( ) = ∈[ , ] . ( ), 0 ≤ ≤ 1 (49)

( ) = ∈[ , ] . ( ), 0 ≤ ≤ 1 (50)

The availability of a parallel system consisting of independent components can be calculated
with Eqs. (51)– (53) (Martz and Waller, 1991)= ̅ = 1 − (51)

̅ = + (52)
= 1 − + (53)

In the same way, inserting the vague Bayesian estimates of failure and repair rate into (50),
Vague Bayesian availability equations of a parallel system under squared error loss functions
are given in (53) and (54) respectively

= 1 − ∏ , = 1 − ∏ (54)

= 1 − ∏ , = 1 − ∏ (55)

Vague Bayesian availability equations of a parallel system under precautionary loss functions are
given by= 1 − ∏ , = 1 − ∏ (56)

= 1 − ∏ , = 1 − ∏ (57)

Respectively, for all α ∈ [0,1] the membership function of the vague Bayes point estimate of
system availability is defined by the same way as discussed above.
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For a k-out-of-m system consisting of m independent and identical components, the system
availability is given by = ∑ (1 − ) (58)

= ∑ (59)

Vague Bayesian availability equations of a -out-of- system under squared error loss functions
is given by

Vague Bayesian availability equations of a parallel system under precautionary loss functions are
given by

4 Computational procedures and example
we need to apply some computational techniques for evaluating the truth and false membership
degrees of the vague Bayes point estimate as presented in Eq. (2) and Eq. (3) will be provided.
From Eq. (1), we adopt the following notations= [ ( ), ( )] = [ { ( ), ( )}, { ( ), ( )}] (64)= , = , , , (65)

Where( ) = inf , ( ) = inf , ( ) = sup , ( ) = sup ,= inf , = inf , = sup , = sup ,
From Eq. (1), the truth and false membership functions of the vague Bayes estimate , are given
by( ) = sup∈[ , ] . ( ) = { : ( ) ≤ ≤ ( ), 0 ≤ ≤ 1 }, (66)

( ) = sup∈[ , ] . ( ) = : ≤ ≤ , 0 ≤ ≤ 1 . (67)

Therefore, needs to be solved the following type of nonlinear programming problem
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maxmin{ ( ), ( )} ≤m { ( ), ( )} ≥0 ≤ ≤ 1
maxmin , ≤m , ≥0 ≤ ≤ 1

Now, the following eight sub-problems have been considered

Let and ∗ be the objective values of subproblems − , and ∗ , ∗ , ∗ and ∗ be the
objective values of subproblems − , respectively. Assume that,∗ = ∗ , ∗ , ∗ , ∗ and ∗ = ∗ , ∗ , ∗ , ∗ . Let ∗ and ∗ be the

objective values of the original problems with optimal solution ∗ and ∗ respectively (in fact∗ = ∗ , ∗ = ∗ ). In according to Wu (2004), we have ∗ = ∗ and ∗ = ∗ , so to
obtain the objective value ∗ and ∗ of the original nonlinear programming problems, it will be

enough to just solve the eight sub-problems − and − .

Example 5.1. We consider a series-parallel system consisting of three independent components
that have Exponential distributions, that structure as shown in Fig. 1.

Fig. 2. The series–parallel system

The follow data show that the failure times and repair times are assumed as vague numbers, since
the failure times and repair times cannot be recorded precisely due to human errors, machine errors,
or some unexpected situations. The simulated failure times and repair times are presented in Table
1. For example component 1, the first failure time and repair time are around 20 and 15 h,
respectively.the second failure time and repair time are around30 and 20h. There are the same
explanations for components 2 and 3. The prior distribution parameters (pseudo) of the failure rate
and repair rate are presented in Table 2.
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Where 3 , 4 , 5 , 6 , 8, 10 , 15 , 20 , 25, 30, 35 , 45and50are vague numbers with the following
membership functions

( ) = − 14 1 ≤ ≤ 35 −4 3 < ≤ 5 , 1 − ( ) = − 12 1 ≤ ≤ 35 −2 3 < ≤ 5
( ) = − 24 2 ≤ ≤ 46 −4 4 < ≤ 6 , 1 − ( ) = − 22 2 ≤ ≤ 46 −2 4 < ≤ 6
( ) = − 34 3 ≤ ≤ 57 −4 5 < ≤ 7 , 1 − ( ) = − 32 3 ≤ ≤ 57 −2 5 < ≤ 7

Now, we want to obtain the vague Bayesian system reliability and availability. First of all, note
that the -cuts and -cuts of the vague numbers3 ,4, 5 , 6 , 8, 10 , 15 , 20 , 25, 30 ,35 , 45and50 are
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The vague Bayes point estimates of reliability under different loss functions of ̃ , ̃ , ̃ and ̃
are obtained as follows (for all , ∈ [0, 1])

̃ = (15 + 10 ) + (25 + 10 ) + 140(15 + 10 ) + (25 + 10 ) + 140 + 30 ( ) 1 − 1 − (45 + 10 ) + (30 + 10 ) + 120(45 + 10 ) + (30 + 10 ) + 120 + 30 ( )

1 − (40 + 10 ) + (30 + 10 ) + 180(40 + 10 ) + (30 + 10 ) + 180 + 30 2+(6+4 )
= 180 + 20220 + 20 6+4 1 − 30225 + 20 5+4 30280 + 20 8+4

̃s = (25 − 10 ) + (35 − 10 ) + 140(25 − 10 ) + (35 − 10 ) + 140 + 30 ( ) 1
− 1 − (55 − 10 ) + (40 − 10 ) + 120(55 − 10 ) + (40 − 10 ) + 120 + 30 ( )

1 − (50 − 10 ) + (40 − 10 ) + 180(50 − 10 ) + (40 − 10 ) + 180 + 30 ( )
= 220 − 20α250 − 20α 1 − 30245 − 20α 30300 − 20α

̃s = 15 + 5 + 25 + 5 + 14015 + 5 + 25 + 5 + 140 + 30 1
− 1 − 45 + 5 + 30 + 5 + 12045 + 5 + 30 + 5 + 120 + 301 − (40 + 5α ) + (30 + 5α ) + 180(40 + 5α ) + (30 + 5α ) + 180 + 30 ( ) = 180 + 10α220 + 20α 1 − 30225 + 10α 30280 + 10α̃s = 25 − 5 + 35 − 5 + 14025 − 5 + 35 − 5 + 140 + 30 1
− 1 − 55 − 5 + 40 − 5 + 12055 − 5 + 40 − 5 + 120 + 30
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1 − 50 − 10 + 40 − 10 + 18050 − 10 + 40 − 10 + 180 + 30= 220 − 10250 − 10 1 − 30245 − 10 30300 − 10
And̃ = (180 + 20 )(220 + 20 ) 1 − 2 30225 + 20 30280 + 20+ 1 − 2 195 + 20225 + 20 195 + 20255 + 20 1 − 2 250 + 20280 + 20 250 + 20310 + 20

̃ = (220 − 20 )(220 + 20 ) 1 − 2 30245 − 20 30300 − 20+ 1 − 2 215 − 20245 − 20 215 − 20275 − 20 1 − 2 270 − 20300 − 20 270 − 20330 − 20
̃ = 180 + 10220 + 10 1 − 2 30225 + 10 30280 + 10

+ 1 − 2 195 + 10225 + 10 195 + 10255 + 10 1 − 2 250 + 10280 + 10 250 + 10310 + 10
̃ = 220 − 10220 + 10 1 − 2 30245 − 10 30300 − 10

+ 1 − 2 215 − 10245 − 10 215 − 10275 − 10 1 − 2 270 − 10300 − 10 270 − 10330 − 10
The vague Bayes point estimates of availability under different loss functions of , , and

are obtained as follows (for all , ∈ [0, 1])
A = ( )( ) ( )( )( ) ( ) + ( )( ) ( ) ∗ {1 −

( )( ) ( )( )( ) ( ) + ( )( ) ( )
( )( ) ( )( )( ) ( ) + ( )( ) ( )

= + 1 − + +
A = ( )( ) ( )( )( ) ( ) + ( )( ) ( ) ∗ {1 −

( )( ) ( )( )( ) ( ) + ( )( ) ( )
( )( ) ( )( )( ) ( ) + ( )( ) ( )

= + 1 − + +
A = + ∗ {1 −
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+ +
= + 1 − + +

A = + ∗ {1 −

( ) + +
= + 1 − + +

And

A = ( )( )( )( )( )( ) + ( )( )( ) ∗
1 − ( )( )( )( )( )( ) + ( )( )( )

( )( )( )( )( )( ) + ( )( )( )
A = ( )( )( )( )( )( ) + ( )( )( ) ∗

1 − ( )( )( )( )( )( ) + ( )( )( )
( )( )( )( )( )( ) + ( )( )( )

A = + ∗
1 − + +

A = + ∗
1 − + +

Therefore, we just need to solve subproblems and .We use the method provided in Section

5 to solve these problems. For = 0.5yields ̃ . = 1 − =0.21687 = ̃ . , i.e. ̃(0.21687) = 0.5. on

the other hand, α = 1 yields r = 0.21687 = r , i.e. 1 − f (0.21687) = 1. SinceV = [0.27851,0.29998], we are just interested in considering the system reliability ∈ . By
applying the Supplemental Procedure Wu (2004), we have, for ∈ .
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(i) if < 0.21687, then we solve the following problem, using a suitable software
(LINGO): ̃( ) = ∈ [0, 1]: ( ) = ( ) = ̃= 180 + 20220 + 20 1 − 30225 + 20 30280 + 20 ≤

1 − ̃( ) = ∈ [0, 1]: = = ̃= 180 + 10α220 + 20α 1 − 30225 + 10α 30280 + 10α ≤
(ii) if > 0.21687, then we solve the following problem:

̃( ) = ∈ [0, 1]: ( ) = ( ) == 180 + 20220 + 20 1 − 30225 + 20 30280 + 20 ≥
1 − ̃( ) = ∈ [0, 1]: = = = 180 + 20220 + 20 1 − 30225 + 20 30280 + 20 ≥
Therefore we now can obtain the membership degree for any given Bayes point estimate of
vague system reliability ̃ by evaluating the above formulas.

Above conclusion is defined by the same way for system availability.

6. Conclusion
We developed Bayesian approach to system reliability analysis in the vague environment, Taheri
and Zarei (2011), for system availability under different loss function based on Exponential
distribution. In order to evaluate the truth and false membership degrees of the vague Bayes
estimate, a nonlinear programming problem was solved. The vague Bayesian approach to system
reliability and availability is a generalized version of the fuzzy Bayesian reliability and
availability, and it is also an extension of the conventional Bayesian system reliability and
availability.

For future research, distributions other than exponential distribution can be used for failure and
repair times of system. In addition to vague data in the analysis, vague multi state reli- reliability
can be considered.
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