
International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

DOI : 10.5121/ijsc.2012.3110 121

DEVELOPMENT AND PERFORMANCE EVALUATION

OF A LAN-BASED EDGE-DETECTION TOOL

Ghassan F. Issa
1
, Hussein Al-Bahadili

1
, and Shakir M. Hussain

1

1
Petra University, Faculty of Information Technology

P.O. Box 961343, Amman 11196, Jordan

 (gisaa@uop.edu.jo, hbahadili@uop.edu.jo, shussain@uop.edu.jo)

ABSTRACT

This paper presents a description and performance evaluation of an efficient and reliable edge-detection

tool that utilize the growing computational power of local area networks (LANs). It is therefore referred to

as LAN-based edge detection (LANED) tool. The processor-farm methodology is used in porting the

sequential edge-detection calculations to run efficiently on the LAN. In this methodology, each computer on

the LAN executes the same program independently from other computers, each operating on different part

of the total data. It requires no data communication other than that involves in forwarding input

data/results between the LAN computers. LANED uses the Java parallel virtual machine (JPVM) data

communication library to exchange data between computers. For equivalent calculations, the computation

times on a single computer and a LAN of various number of computers, are estimated, and the resulting

speedup and parallelization efficiency, are computed. The estimated results demonstrated that

parallelization efficiencies achieved vary between 87% to 60% when the number of computers on the LAN

varies between 2 to 5 computers connected through 10/100 Mbps Ethernet switch.

KEYWORDS

Parallel processing, processor farm methodology, image processing, edge detection, noise removal, LAN

1. INTRODUCTION

Digital image processing is an ever expanding area with applications reaching out our everyday

life such as medicine, space exploration, surveillance, authentication, automated industry

inspection, security, and many more areas. Such applications involve different processes like

image enhancement, edge detection, object detection, noise removal, color quantization, etc [1-3].

Implementing such applications on general-purpose scalar computers is easy, but, in addition to

be relatively slow, it faces other drawback such as memory restrictions. The most obvious

solution to meet the growing demands of image processing applications is the use of parallel

(distributed) computing [4-7].

Parallel computing uses multiple computing resources to solve a time consuming computational

problem faster and maintaining the same accuracy level. Furthermore, parallel computing takes

advantage of non-local resources to overcome memory constraints of a single computer, cost

savings by using multiple cheap computing resources, etc [8]. Fortunately, during the last three

decades there has been an impressive gain in personal computer (PC) performance (speed and

memory), tremendous development in computer communication technologies and

internetworking methodologies, and drastic reduction in the cost of PC and communication

technologies. These all are due to the tremendous advances in technology and innovations in

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

122

computer and communication system architectures. It has been well recognized that to conduct

parallel computing, the computing resources can include a single advanced processor architecture

and technology, a single computer with multiple processors, or an arbitrary number of computers

connected by a network or a combination of the three [9].

The use of homogeneous/heterogeneous collections of low-cost computing systems (e.g., PCs,

laptops, PDAs, smart phones, etc) interconnected using wired and/or wireless media forming a

single logical computational resource has become a wide-spread approach to speedup up time-

consuming computations. As an example of such cost-effective computing systems are the local

area networks (LANs) [10].

In this paper, we first present a description of a serial, research-level, image processing

application developed for edge detection in distorted images, namely, the edge detection (ED)

tool. In ED tool, in order to increase the edge detection accuracy, the input images are pre-

processed for noise reduction or removal using standard filters (e.g., mean, median, or Gaussian)

[11], then the tool performs edge detection using one of the following well-know edge detection

algorithms: Sobel, Canny, or Laplacian algorithm [12-14]. The image processing rate (λ) (number

of images processed per min) that can be achieved by running the ED tool on a single computer is

1/τ, where τ is the image processing time. Therefore, to use the ED tool for online edge detection,

the image arriving or capturing rate should be less or equal to λ, otherwise arriving images need

to be buffered before processing. Consequently, the buffer size depends on τ (or λ) and the size

of the arrived image. Thus, reduce the buffer size or perform a realistic online processing, �

should be minimized to meet the image capturing rate.

In this paper, we present our work on implementing and evaluating the performance of a LAN in

speeding up image processing applications. To demonstrate that we develop a parallel version of

the ED tool to run concurrently on number of computers interconnected into a LAN. The parallel

version is called LAN-based edge detection (LANED). The philosophy adopted and the

parallelization methodology used in transferring ED tool to run on the LAN, are discussed. The

LANED tool uses the Java parallel virtual machine (JPVM) to exchange data between the

different PCs on the LAN [15-17]. For equivalent calculations, the computation times on a single

PC and a LAN of various number of PCs, are estimated, and the resulting speedup and

parallelization efficiency computed. Furthermore, in this paper, we investigate the effect of a

number of parameters, such as: size of the LAN, number of images, and size of convolution

function, on the LAN performance.

This section presents an introduction to the main topics, objectives, and outcome of this paper.

Section 2 presents a literature review that summarizes the most recent and related work. Section 3

briefly describes the ED tool. The parallel programming methodologies are described in Section

4. The parallel implementation of the ED tools is presented in Section 5. Some performance

measures are defined in Section 6, while the results and discussions are given in Section 7.

Finally, in Section 8, based on the results obtained, a number of conclusions are drawn and

recommendations for future work are pointed-out.

2. LITERATURES REVIEW

In this section, we review some of the most recent and related work, which include a number of

parallel and distributed models for image processing applications on different types of parallel

computer architectures, and some dedicated parallel and distributed models that run on LAN-

Based systems.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

123

H. Fatemi et. al. [5] presented and evaluated a method for introducing parallelism into an image

processing application. The method is based on algorithmic skeletons for low, medium and high

level image processing operations. They provided an easy-to-use parallel programming interface.

The approach identified number of skeletons for parallel processing of low-level, intermediate-

level and high-level image processing operations. Each skeleton can be executed on a set of

processors. From this set of processors, a host processor is selected to split and distribute the

image to the other processors. The other processors from the set receive a part of the image and

the image operation which should be applied to it. Then, the computation takes place and the

result is sent back to the host processor. To evaluate this approach, face recognition was

implemented twice on a highly parallel processing platform, namely, the IMAP-board, once via

skeletons, and once directly and highly optimized. It was demonstrated that the skeleton approach

is extremely convenient from a programmer’s point of view, while the performance penalty of

using skeletons is well below 10% in the case study.

W. Caarls et. al. [18] designed asynchronous remote procedure call (RPC) system to exploit low-

level image processing operation task-level parallelism to be used for algorithmic skeletons. The

system was programmed in C language, divided into number of image processing operations, and

applied these using function calls. They implemented a double threshold edge detection algorithm

on a prototype architecture consisting of XETAL 16 MHz 320-PE SIMD (single instruction

multiple data) processor and a TriMedia 180 MHz 5-issue VLIW processor. The result showed

that the overhead of running the RPC system is around 8%, but decreasing processing time about

42%. Their result also showed that the system can achieve a significant speedup by using SIMD

processor for low-level vision processing.

H. Kelash et. al. [19] presented parallel processing using multi-agent system which can be

structured into application interface that allows to call particular operators or to pass image

processing operation for parallelization. In their system, each agent has a very simple behavior

which allows it to take a decision such as find out an edge, or region, etc., according to its

position in the image and to the information enclosed in it. The system provides an environment

for developing and processing image operations within distributed system. Data parallelism was

implanted in this system, where all processing elements (PEs) receive commands from a central

control processor. The system uses the CxC language, and applies Sobel and Laplace operators

using different data which can be parallelized using array controller of processors where one

processor associated with one pixel. They compared between their multi-agent system and the

sequential execution using MATLAB. They found that the speedup factor is increasing when

using multi-agent system as the size of images increases.

D. V. Rao et. al. [20] addressed the implementation of image processing algorithms like image

filtering, image smoothing and edge detection on field programmable gate array (FPGA) using

Handle-C language which is a C-based language that can provide direct implementation of

hardware from the C-based language description of the system. The design was implemented on

RC1000-PP Xilinx Vertex-E FPGA based hardware. The results from this design used operations

for the image processing algorithms on a 256x256 size grayscale of Lena image show that the

speed of this FPGA solution for the image processing algorithms was approximately 15 times

faster than the software implementation in C language.

F. Schurz and D. Fey [21] presented a parallel processor architecture based on small PEs in a

FPGA. Their architecture is able to detect and process multiple separated objects simultaneously

in image which is divided into partitions and handled one by one to keep the whole design small.

The architecture is using SIMD approach, which means that the same operations are carried out in

parallel on each image pixel. The PEs in this design are connected through a NEWS network and

controlled by a central unit. Their design is programmable using assembler language. This

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

124

approach designed to be small and cheap and fast possibility for industrial image processing. The

results for this design, in a VGA resolution approximately one and half million clocks, were used

and 66 images can be processed at 100 MHz, which leads to a performance of 20 MPixel/s.

F. Baldacci and P. Desbarats [22] presented a parallel algorithm for 3D split and merge

segmentation using topological and structuring with an oriented boundary graph image

processing. They used multiprocessor systems and non-uniform memory access (NUMA)

architecture. The algorithm was tested in two machines. First machine was equipped with two

Intel Xeon Quad core at 2.33 GHz, and the other was equipped with 8 AMD Opteron Dual core at

1.8 GHz with NUMA architecture. They used two medical images in test: one image with size

256x256x256 voxels and the other with 512x512x475 ovxels size. The results studied the

execution time and showed that the NUMA architecture was two time slower than the other one,

and using 16 threads was slower than using 8 threads.

A. Bevilacqua [23] introduced a model to obtained efficient load balancing for data parallel

applications based on dynamic data assignment running on a heterogeneous cluster of

workstations. The model was referred to the working-manager model, which aims was to

maximize the performance of loosely coupled systems. It is essential to minimize the idle time of

each process and ensure the balancing of processes workload. The cluster used consists of four

workstations, connected to a LAN by a 100Mbps Ethernet, except for workstation 3, which was

connected by 10Mbps adapter. The results showed that the efficiency was over 90%.

J. A. Gallud et. al. [24] presented a workbench called distributed processing of remotely sensed

imagery (DIPORSI). It was developed to provide a framework for the distributed processing of

Landsat images using a cluster of NT workstations connected by Ethernet network using the

message passing interface (MPI) standard. The distributed machine in their model is composed of

8 P-II 333 MHz with 32 MB of RAM running windows NT Workstation v4.0, and the nodes were

linked using a 10 Mbps Ethernet. The results showed that a reduction of 400% in the execution

time for a moderate number of nodes can be achieved. The results also showed that a near linear

speedup for large image size can be achieved.

H. S. Bhatt et. al. [25] developed an environment over a network of VAX/AMS and UNIX for

distributed image processing. They redesigned and generalize DEDIP (development environment

for distributed image processing) to make it more user-friendly and truly heterogeneous, using

Java and Web technology, therefore, they referred to the new environment as WebDEDIP, which

has three tier architectures: GUI, DEDIP server, and agents, instead of master-slave one. The

functionality and efficiency of the WebDEDIP was tested using Microsoft NT as host and IRIS

workstations as a slave. IIS 4 was used as a Web server and the front-end GUI was tested on two

most popular browsers IE and Netscape. The model was used by 15 scientists for development

and operationalization of 10 distributed image processing applications for Indian remote sensing

(IRS) satellite. The efficiency was as high as 90-95%.

C. Nicolescu and P. Jonker [26] presented a data and task parallel low-level image processing

environment for distributed memory system. They designed an approach of adding data and task

parallelism to an image processing library using algorithmic skeletons and the image application

task graph (IATG). They used a distributed system which consists of a cluster of Pentium Pro/200

MHz PCs with 64MB RAM running Linux, and connected through Myrinet in a 3D-mesh

topology with dimension order routing. The code was written using C and MPI message passing

library and the multi-baseline stereo vision algorithm is an example used in their system. They

concluded that the speedup in data and task parallel approach was more efficient than the speedup

in data parallel approach only.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

125

Z. Qiu et. al. [27] developed fast parallel stereo matching parallel algorithm on home-based

software DSM JIAJIA. A cluster of 8 P-II PCs connected by a 100 Mbps switched Ethernet was

used. The stereo images were divided into 8 parts. Each PC carried out the matching task of one

parts of stereo image. The speedup ratio is near the ideal linearity speedup ratio. The speedup of

finding corresponding points reaches 3200 pair/second, when 8 PCs were used.

J. O’Connell and P. Caccetta [28] presented an algorithm used for time series classification of

remotely sensed image data which is spatial/temporal algorithm. Their approach used

homogeneous and heterogeneous clusters of computers for reducing computational time using the

MPI standard library. The parallel algorithm distributes each line of the input probability images

to a number of slave nodes with I/O performed by one master node. Slave nodes then perform the

necessary processing tasks and send the output back to the master. The parallel algorithm

implemented on two clusters, an ad hoc cluster and the dedicated cluster. The ad hoc cluster used

13 office Wintel machines. All machines were P-IV between 1.6 GHz and 3.6 GHz and of signal

dual and quad CPU connected via 100 Mbps Ethernet. The MPICH implementation was used in

this cluster. The results showed that the efficiency in an ad hoc cluster at least 67% in

homogenous CPUs, but the efficiency in the dedicated cluster was about 86.2% (speedup 7.76) in

9 CPU, and 85.43% (speedup 41.86) in 49 CPU.

A. K. Manjunathachari and K. SatyaPrasad [7] designed approach to solve the convolution filter

by using simultaneous multi-threading (SMT), processing buffer (PB), and simulated in a

standard LAN environment. Their approach presented a method to the bifurcation of image

processing application into three fundamental layers (resource layer, linking layer and application

layer), which are isolated based on processor requirements and their functionality. The

parallelism was enhanced by adding the concepts of SMT over the processor for redundancy the

transition delay in parallel computing image processing application. Results showed that for a

large number of processing units, speedup is close to linear, and also speedup characteristics were

identical when the same number of templates was used in the matching process. The approach

used two different implementation methods for parallel image convolution. The first method was

the direct convolution method which has less communication load than the other method, which

was 2D fast Fourier transform (FFT) in a Fourier domain. Direct convolution method’s scalability

slightly decreased as kernel size got smaller but hardly affected by image size. The other

method’s scalability decreased as image size got smaller and never affected by kernel size.

A. Paz et. al. [29] developed several parallel algorithms for target detection in hyper-spectral

imagery. They developed four algorithms for target and anomaly detection in hyper-spectral

images, these algorithms are: the automatic target generation process (ATGP), an unsupervised

fully-constrained least squares (UFCLS) algorithm, an iterative error analysis (IEA) algorithm,

and RX algorithm which developed by Reed and Xiaoli for anomaly detection. The problem in

these algorithms were computational very expensive. They solved the computational problem by

developed four computationally efficient parallel implementations, a parallel ATGP (P-ATGP)

algorithm, a parallel UFCLS (P-UFCLS) algorithm, a parallel anomaly detector (P-RXD) and a

parallel MORPHological target detection algorithm (P-MORPH). In all algorithms they used a

data-driven partition strategy tested on a hyper-spectral image scene collected by the AVIRIS

instrument. The full data in the experiment consists of 2133x512 pixels, 224 spectral bands and

total size about 900 MB. They used a single processor of a Beowulf cluster with 256 processors

called Thunderhead and available at NASA’s Goddard Space Flight Center. The results showed

that the computation time of the parallel algorithms was more efficient of the computation time in

sequential algorithms.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

126

3. THE EDGE DETECTION (ED) TOOL

This section presents a description of the edge detection (ED) tool, which is a software tool

especially developed for edge detection in distorted images. In order to ensure accurate edge

detection with ED tool, we first reduce or ultimately remove noise from images, then apply edge

detection technique [2]. The current version of ED tool can be configured to use one of the

following noise-removal filters: mean, median, or Gaussian filter [11]. For edge detection, one of

the following techniques can be used: Sobel, Canny, or Laplacian technique [12-14]. Sobel and

Canny techniques detect edges by looking for the maximum and minimum in the first derivative

of the image; while the Laplacian technique searches for zero-crossings in the second derivative

of the image in order to find edges.

Both noise reduction and edge detection algorithms used in ED tool are based on a simple

mathematical function, it is the convolution function, which is a multiplication of two arrays, the

image and the kernel arrays. The kernel array is usually much smaller than the image array, and is

also two dimensional (although it may be just a single pixel thick). The kernel array could be of

different size; such as 3×3, 5×5, 7×7, etc. If the image has M rows and N columns, and the kernel

has m rows and n columns then the convolution function is written as [2, 11]:

() ()

1 1

(,) 1, 1 ,
m n

k l

H i j G i k j l K k l
= =

= + − + −∑ ∑

(1)

Where i runs from 1 to M-m+1 and j runs from 1 to N-n+1. The function moves the kernel K

through the image G pixel by pixel, at each point the overlapping pixels in the image and kernel

arrays are multiplied and then summed to get new value for the pixel. Convolution function is a

very complex operation that requires huge computation power. To calculate a pixel for a 3x3

kernel, there are 9 multiplications per image pixel, if the input image is 1024×1024, then the

convolution function needs more than 9x106 multiplications.

4. METHODOLOGIES FOR PARALLEL PROGRAMMING

Parallel computing is the design, implementation, and tuning of computer programs to take

advantage of parallel computing systems [8, 9]. It focuses on partitioning the overall problem into

separate tasks (processes and data), allocating tasks to processors and synchronizing the tasks to

get meaningful results. For most applications, there are three common broad methodologies for

parallel programming; these are: processor-farm or event methodology, geometric methodology,

and arithmetic or algebraic methodology [30].

In this paper, the processor farm methodology [31, 32] is used in porting the serial code to run on

the LAN; therefore, we shall discuss it in details next. In geometric methodology, each processor

executes more or less the same program but the data is distributed in a manner which requires

extensive communication between the processors, for example, each processor might be used to

simulate one part or more of a large system of similar objects interacting with each other. While

in arithmetic or algebraic methodology this methodology, the whole algorithm is split into a

number of sections, each of which is assigned to one processor, but data relating the whole

system flows through each processor like a production line. Thus, complicated and extensive

communication is required in transferring the data from one processor to another. Further details

on these two methodologies can be found in [8, 9, 30].

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

127

4.1 Processor farm methodology

The processor-farm is may be considered as the simplest methodology in which each processor

executes the same program independently from all other processors, each operates on different

part of the total data [31, 32]. Therefore, this methodology is very suitable for applications where

the same process has to be applied to a number of independent data sets. It allows the same

sequential program to be implemented with minor modifications to create two different versions

of the program, namely, the master and the slave programs. The processor that runs the master

program is called the master processor, while the processor that runs the slave program is called

the slave processor. Usually, exactly the same slave program is loaded and allowed to run on

more than one processor concurrently performing its calculations on different data. This last

feature requires that enough memory is available to accommodate the whole program on each

processor.

In this methodology, the standard relationship between the master and the slaves programs can be

summarized as follows:

1. The master reads-in the input data and perform any require preliminary computations.

2. Send the data to the appropriate slave.

3. After completion of the computations, the slave sends the output results back to the

master processor.

4. The master processor performs any post-processing computations and then presents the

final outputs.

It is clear from the above relationship that the processor-farm involves no inter-processor

communications other than in forwarding data/results between the master and the slaves, once for

all at the beginning and the end of the computation. Furthermore, slaves are only allowed to

communicate with the master.

5. THE LAN-BASED EDGE DETECTION (LANED) TOOL

This section presents a description of the parallel implementation of sequential ED tool on a

LAN-based computing system to speed up the image processing computations by efficiently

utilizing the relatively high computational power of the LAN to provide a cost-effective solution.

The performance of a LAN-based computing system depends on a number of factors, these

include:

1. Number of PCs used to perform the computational task concurrently.

2. Speed of each individual PC on the LAN.

3. Speed of the communication channels.

4. Efficiency of the message passing library.

5. Parallel programming model that is used in porting the computational task to the parallel

system.

The parallel methodology that is going to be used in transferring (parallelizing) the serial

computation of ED tool is based on the processor-farm strategy. In which the parallelized version

of the code is developed in two versions, one version is developed to run as on a master PC acting

as a server, and the other version is to run as one or more slave computer(s) (client(s)). More than

one slave is usually loaded and run concurrently on different processor performing its calculation

on different data (images) (also refer to as multiple instructions multiple data (MIMD)

architecture) [33]. This form of paradigm involves no inter-processor communication and slaves

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

128

are only allowed to communicate with the master. The relationship between the master-slave is

summarized as follows:

1. The master reads-in the input data (images) and perform any require preliminary

computations.

2. The master sends necessary data to one or more appropriate slave(s).

3. The slave(s), after completion of the computations, send(s) the results back to the master.

4. The master performs any post-processing computations and then presents the final

outputs.

It is clear from the above relationship that the master is idle while waiting for the slaves to

complete their computations. Therefore, in order to utilize the master to perform some useful

computations, instead of being idle while waiting, it is used to run as a slave. However, since the

master starts performing its computation after sending all data to all slaves (after all slaves start),

then it is expected that all of them will finish first, and they have to wait until the master complete

its computations before sending their results back to the master. In order to avoid this conflict, the

size of the task assigned to the master should be less, so that it can finish before the slaves

complete their computations, and be ready to receive their results.

The LANED tool can efficiently process many images at a time. These images may be obtained

from on-line (real-time) or offline image sources. On-line image sources include capturing

devices, such as: digital camera, satellite images, etc. Off-line image processing means those

images which are captured, stored to be processed in a later time, such as internet images.

Furthermore, the LANED tool can be configured to accommodate more than PC as a mater

processor. The LANED tool is implemented using the JPVM environment as message passing

tools between PCs on the LAN, and the image processing applications in Java language.

Switch

(Access Point)

MP

(Server 1)

SP1

(Client 1)

SP2

(Client 2)

SP3

(Client 3)

SPn

(Client n)

Image

Source

Digital Camera
Stored images
Satellite images

Internet images
………

………

MP

(Server 2)

Figure 1. System architecture and the data flow of the LANED tool.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

129

5.1. The Data Communication Library

There are many message passing libraries in use between the different PCs on the LAN, such as:

message-passing interface (MPI) [24, 31], parallel virtual machine (PVM) [34], and Java parallel

virtual machine (JPVM) [15-17].

5.1.1 Parallel virtual machine (PVM)

The PVM is a software system that permits a collection of many heterogeneous computers that

networked together to be one large computer working in parallel mode [34]. The PVM is

designed to link computing resources together and provided users with a transparent efficient

parallel platform for running their computer applications. The PVM transparently and

independently handles all message routing data conversion and task scheduling across a network

of incompatible computer architectures. Therefore, it is used in many sites all over the world to

solve important problems in scientific, engineering, industrial and in medical applications. The

PVM system can be used to run different computers in parallel mode (concurrently), and it is

designed to have many important features and capabilities, such as:

1. Reduce the cost to solve problems.

2. Reduce the contention for resources.

3. More effective implementations of an application.

4. Make the parallel programming in a heterogeneous collection of processors

straightforward.

5.1.2 Java parallel virtual machine (JPVM)

The Java language and its libraries and environment provide a powerful and flexible platform for

programming computer clusters. Java tools enable experimentation in both management aspects

as well as performance aspects of cluster systems [15-17].

The JPVM is a PVM like library of object classes implemented in and for use with the Java

programming language. The library supports an interface similar to C and FORTRAN interfaces

provided by the PVM system, but with syntax and semantics enhancements afforded by Java and

better matched to Java programming styles.

The JPVM is a combination of both ease of programming inherited from Java and high

performance through parallelism inherited from the PVM. The JPVM library is software used for

message passing in distributed memory MIMD LAN-Based parallel computing system. The

JPVM has many features not found in standard PVM, such as [15-17]:

1. JPVM is thread safety; it can control multiple Java threads inside a single JPVM task.

2. Standard PVM has single communication end-points for every task, but the JPVM can

create a new task within a process every time, so it has multiple communication end-

points for each task.

3. JPVM code can be maintained much simpler than the PVM across heterogeneous

machine.

4. JPVM has default-case direct message routing.

For as mention features of Java language and JPVM; the LANED tool uses the JPVM as a

parallel environment.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

130

As in the PVM, the programmer decomposes the problem to be solved into a set of cooperating

sequential task implementations. These sequential tasks execute on a collection of available

processors and invoke special library routines to control the creation of additional tasks and to

pass messages among tasks. In JPVM, task implementations are coded in Java, and support for

task creation and message passing is provided by the JPVM library.

The architecture of the JPVM is similar to architecture of the PVM, which is consisting of the

daemon, the console and the interface library functions. The JPVM library routines require run-

time support during execution in the form of a set of JPVM daemon processes running on the

available collection of processors. The console can start in any processors in the network. The

JPVM console can be used to list the hosts available to the system and the JPVM tasks running in

the system.

Tasks in the JPVM environments are process-based; however the communications are using

transfer control protocol (TCP) sockets through the network [10]. Figure 2 outlines the JPVM

architecture.

Figure 2. JPVM architecture[17].

5.2. Implementation of the LANED Tool

First the JPVM platform must starting by run jpvmDaemon.java program in all computers in the

LAN-based system, then run jpvmConsole.java in one computer as a master computer. The

master controls the message passing techniques in the network. The master PC starts to capture or

input sequence of noisy images from devices or files, these images may have similar or different

sizes. Task creation start in master program by using jpvm.pvm_spawn() method, which has

number of slaves and the java class program for slave.

When the master has number of images it is start to send these images between slaves by sending

the same number of images for each slave on the LAN, the distribution of images depends on the

total number of images and number of slaves.

The master does not send all images at the same time; it is sends images one by one to each slave

using a for-loop to prevent slaves from being idle while waiting until first slaves receive their

images, the images are stored in buffers. Then each slave reads one image from the buffer at a

time and starts processing the images sequentially until it processes all images sent by the master.

At this time when the master finishes send all images to slaves it starts processing number of

images to save time and to be not idle while waiting till the completion of slaves. As we

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

131

explained above, for more efficient load balancing [23], the number of images allocated for the

master must be less than number of images allocated for the slaves. The number of images

allocated for the master depends on number of images allocated for each slaves on the LAN.

When slaves finish processing their images, they start sending processed images back to the

master. The master starts receiving all images from slaves and then the master output the resultant

images.

6. PERFORMANCE MEASURES

In order to measure the performance of a parallel algorithm running on a parallel machine two

performance measures are usually considered, these are:

(i) Speedup factor (S)

Speedup factor (S) is defined as the ratio between the time required to perform a particular

computation on a sequential mode machine (Ts) and the time required to perform an equivalent

computation on a parallel mode machine (Tp)., and it is calculated as S=Ts/Tp [8, 9]. For a LAN, Ts

represents the time required to perform the computation on a single PC, and Tp is the time

required to perform the computation on all active PCs including both the master and slaves that

are participating in the computations.

Ideally, the maximum speedup that can be achieved is equal to the number of active PCs on the

LAN (C) (master plus the number of running slaves). However, there are several factors that limit

and prevent the speedup from reaching its maximum value, such as:

1. Load balancing when not all computers perform useful computation all the time, and

some of the computers may be left simply idle for a period of time during the

computation.

2. Software overhead due to the extra computation may be required in the parallel version of

the code not appearing in the sequential version, for example, to recomputed constants

locally.

3. Communication time for data and messages exchange among the processors.

(ii) Parallelization efficiency (E)

Another factor of interest is the parallelization efficiency (E) [8, 9], which is defined as the ratio

between S and C (i.e., E=100×S/C). E can also be defined as the actual computation time (Tcomp)

divided by the total computation and communication times (Tp), which represents the sum of

Tcomp, communication time (Tcomm), and other overheads (Tover). Accordingly, E can be given as:

E=100×Tcomp/(Tcomp+Tcomm+Tover). Tover is very small compared to Tcomp and Tcomm, thus E can be

expressed as: E=100×Tcomp/(Tcomp+Tcomm). It is clear from the above two equations that E depends

on the amount of time that is spent on communication or on the ratio R between the

communication and computation times. The maximum efficiency can be achieved when Tcomm

(i.e., R) approaches zero.

7. RESULTS AND DISCUSSIONS

In order to evaluate the performance of the LANED tool, a number of edge detection applications

were performed on a LAN consisting of 5 PCs interconnected through an Ethernet 10/100 Mbps

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

132

switch. The PCs are Acer verition GT series, Intel (R), Pentium IV processor with 2.8 GHz speed

and running Windows XP operating system. The image processing analysis performed by the

LANED tool includes noise removal using median filter and edge detection using Sobel

algorithm. The input to these applications is listed in Table 1.

Table 1. Input data

Parameters Value/Type

Edge detection technique Sobol

Filter type Median

Type of noise Impulsive noise

Image size 256x256

Number of images 100, 200, 300, 400, 500

Kernel size 3x3, 5x5

The results for the computation time, S, and E are presented in Table 2. Moreover, the variation of

S and E are shown in Figures 3 and 4, respectively. These results can be used as a roadmap for a

number of outcomes about the performance of a LAN-based image processing system. The main

outcomes can be summarized as follows:

1. For an image of 256×256 pixel, the average image processing time on our PCs is 0.125

sec for 3×3 kernel size and 0.365 sec for 5×5 kernel size. So that the average pixel

processing time is 1.91 µsec for 3×3 kernel size and 5.57 µsec for 5×5 kernel size.

2. For a fixed m and k, E decreases with increasing n, because as n increases, Tcomm becomes

the dominant part as compared to Tcomp. This is due to the fact that a LAN has high

message start-up latencies and low bandwidths. Furthermore, as n increases, the number

of images that needs to be sends by the master to the slaves is increasing.

3. For fixed n and m, E increases when k increases from 3×3 to 5×5; because as we

discussed earlier, Tcomp is increased by triple while Tcomm should remained unchanged.

4. According to our analysis, for the ranges of n, k, and m investigated in this work, for

fixed n and k, m has no or insignificant effect on E, because as m increases both Tcomp and

Tcomm are increased keeping E unchanged.

The LANED tool achieved a S of over1.6 (E~30%) on a LAN of 5 PCs when 3×3 kernel size

used and a S of over 3.0 (E~60%) for 5×5 kernel size. From this last point, we can realize that as

the average image or pixel processing time increases, then S and E will be increased. Thus, higher

parallelization efficiency is expected for 7×7 kernel size. In general, we can conclude that the

processor-farm methodology is better suited to image processing applications that relatively has

no communication overheads and require high average pixel processing time.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

133

Table 2. Performance of the LANED tool running on a LAN of various number PCs (n≤5)

(Results for 3×3 and 5×5 convolution function computation)

No.

of

PCs

m=100 m=200 m=300 m=400 m=500

K

3x3 5x5 3x3 5x5 3x3 5x5 3x3 5x5 3x3 5x5

CPU time (sec)

1 12.50 36.6 24.91 73.1 37.20 109.8 49.66 146.0 62.03 182.5

2 9.31 21.7 17.88 42.4 29.88 63.1 41.58 83.3 52.92 104.9

3 8.62 16.6 17.20 31.9 25.71 47.6 35.00 63.6 43.17 79.3

4 8.30 14.2 15.76 27.3 23.79 40.7 31.62 52.7 38.91 66.0

5 7.67 12.4 15.06 24.2 22.30 36.2 29.89 48.1 36.88 59.5

Speedup factor (S)

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.34 1.69 1.39 1.72 1.24 1.74 1.19 1.75 1.17 1.74

3 1.45 2.20 1.45 2.29 1.45 2.31 1.42 2.30 1.44 2.30

4 1.51 2.58 1.58 2.68 1.56 2.70 1.57 2.77 1.59 2.77

5 1.63 2.95 1.65 3.02 1.67 3.03 1.66 3.04 1.68 3.07

Parallelization efficiency (E) (%)

1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2 67.1 84.3 69.7 86.2 62.2 87.0 59.7 87.6 58.6 87.0

3 48.4 73.5 48.3 76.4 48.2 76.9 47.3 76.5 47.9 76.7

4 37.7 64.4 39.5 66.9 39.1 67.4 39.3 69.3 39.9 69.1

5 32.6 59.0 33.1 60.4 33.4 60.7 33.2 60.7 33.6 61.3

8. CONCLUSIONS

The main conclusions can be summarizes as follows:

1. A standard Ethernet LAN can be successfully used as a cost-effective, efficient, and

reliable computing platform to speedup image processing computations, subject to the

development of an efficient parallel (distributed) implementation model.

Figure 3. Variation of S against n. Figure 4. Variation of E against n.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

134

2. The processor-farm methodology is a simple and easy to implant and configure to meet

application needs, where, in this methodology, the same version of the code is running on

all slaves, with little variation required for the master.

3. The performance depends on the number of PCs on the LAN, pixel average processing

and communication times. The results in this paper demonstrated that the processor-farm

methodology provided an excellent parallelization efficiency of over 60% on 5 PCs

network for moderate average pixel processing time. However, this can be improved

further by introducing an exceptional load balance across the network.

For future work, it is highly recommended to carry on with a number of research projects to

implement and compare the performance for larger LAN, evaluate the performance of the tool for

various image size, different network technologies and protocols (such as: 100 Mbps (IEEE

802.3u), 1 Gbps (IEEE 802.3z and IEEE 802.3ab), 10 Gbps (IEEE 802.3ae, IEEE 802.3ak, IEEE

802.3an), etc., different LAN network topologies, wireless LAN utilizing the IEEE 802.11

protocol in access point and ad-hoc configurations. Also, develop a version of LANED utilizing

other parallel programming methodologies (algorithmic model or geometric model).

REFERENCES

[1] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-Hall Inc., 2nd Edition,

2002.

[2] P. Civicioglu and M. Alci. Edge Detection of Highly Distorted Image Suffering from Impulsive

Noise. International Journal of Electronics and Communications, Vol. 58, No. 6, pp. 413-419, 2004.

[3] Mohamed Roushdy. Comparative Study of Edge Detection Algorithms Applying on the Grayscale

Noisy Image Using Morphological Filter. ICGST International Journal on Graphics, Vision and

Image Processing (GVIP), Vol. 6, Issue 4, pp. 17-23, 2006.I. S. Jacobs and C. P. Bean, “Fine

particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds.

New York: Academic, 1963, pp. 271–350.

[4] Thomas Bräunl. Tutorial in Data Parallel Image Processing. Australian Journal of Intelligent

Information Processing Systems (AJIIPS), Vol. 6, No. 3, pp. 164-174, 2001.

[5] Hamed Fatemi, Henk Corporaal, Twan Basten, Pieter Jonker, and Richard Kleihorst. Implementing

Face Recognition Using a Parallel Image Processing Environment Based on Algorithmic Skeletons.

Proceedings of the 10
th

 Annual Conference of the Advanced School for Computing and Imaging, pp.

351-357, 2004.

[6] A. Clematis, D. D’Agostino, and A. Galizia. A Parallel Image Processing Server for Distributed

Applications. John von Neumann Institute for Computing, NIC Series, Vol. 33, pp. 607-614, 2006.

[7] A. K. Manjunathachari and K. Satya Prasad. Implementation of Image Processing Operations Using

Simultaneous Multithreading and Buffer Processing. ICGST International Journal on Graphics,

Vision and Image Processing (GVIP), Vol. 6, Issue 3, pp. 47-53, 2006.

[8] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel

Computing. Pearson, Addison Wesley, 2nd Edition, 2002.

[9] Fayez Gebali. Algorithms and Parallel Computing. John Wiley & Sons, Inc. 2001.

[10] Behrouz A. Forouzan. Data Communications and Networking. McGraw-Hill, 4th Edition, 2007.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

135

[11] Bob Fisher, Simon Perkins, Ashley Walker and Erik Wolfart. Hypermedia Image Processing

Reference. Department of Artificial Intelligence, University of Edinburgh, 1994.

[12] O. R. Vincent and O. Folorunso. A Descriptive Algorithm for Sobel Image Edge Detection.

Proceedings of Informing Science & IT Education Conference (InSITE), Macon State College,

Georgia, USA, June 12-15, 2009.

[13] J. F. Canny .A Computational Approach to Edge Detection. IEEE Trans Pattern Analysis and

Machine Intelligence, Vol. 8, Issue 6, pp. 679-698, 1986.

[14] Shen-Chuan Tai and Shih-Ming Yang. A Fast Method for Image Noise Estimation Using Laplacian

Operator and Adaptive Edge Detection. Proceedings of the 3
rd

 International Symposium on

Communications, Control, and Signal Processing (ISCCSP’08), pp. 1077-1081, Malta, March 12-14,

2008.

[15] Adam Ferrari. JPVM: Network Parallel Computing in Java. Concurrency: Practice and Experience.

Vol. 10, No. 11-13, pp. 985-992, 1998.

[16] Narendar Yalamanchilli and William Cohen. Communication Performance of Java-based Parallel

Virtual Machines. Department of Electrical and Computer Engineering, University of Alabama in

Huntsville, USA, 1998.

[17] Bu-Sung Lee, Yan Gu, Wentong Cai, and Alfred Heng. Performance Evaluation of JPVM. Journal

Parallel Processing Letters, Vol. 9, No. 3, pp. 401- 410, 1999.

[18] Wouter Caarls, Pieter Jonker, and Henk Corporaal. Skeletons and Asynchronous RPC for Embedded

Data and Task Parallel Image Processing. IAPR Conference on Machine Vision Application

(MVA’05) (pp. 16-18). Tsukuba Science City, Japan, May 16-18, 2005.

[19] H. Kelash, M. Zaki Gamal El_Dein, and N. Kamel. Agent Distribution Based Systems for Parallel

Image Processing. ICGST International Journal on Graphics, Vision and Image Processing (GVIP),

Vol. 6: Special Issue on Applicable Image Processing Techniques, pp. 87-92. 2006.

[20] Daggu Venkateshwar Rao, Shruti Patil, Naveen Anne Babu, and V. Muthukumar. Implementation

and Evaluation of Image Processing Algorithms on Reconfigurable Architecture Using C-Based

Hardware Descriptive Languages. International Journal of Theoretical and Applied Computer

Sciences, Vol. 1, No. 1, pp. 9–34, 2006.

[21] Frank Schurz and Dietmar Fey. A Programmable Parallel Processor Architecture in FPGAs for Image

Processing Sensors. Proceedings of the Integrated Design and Process Technology (IDPT’07)

Conference, pp. 30-35. Antalya, Turkey, June 3-8, 2007.

[22] Fabien Baldacci, Achille Braquelaire, Pascal Desbarats, and Jean-Philippe Domenger. 3D Image

Topological Structuring with an Oriented Boundary Graph for Split and Merge Segmentation.

Proceedings of the 14
th

 IAPR International Conference on Discrete Geometry for Computer Imagery

(DGCI'08) (pp. 541–552). Lyon, France, April 16-18, 2008.

International Journal on Soft Computing (IJSC) Vol.3, No.1, February 2012

136

Authors

Ghassan F. Issa (gissa@uop.edu.jo). He received his B.E.T degree in Electronic

Engineering from the University of Toledo, Ohio, in 1983, and B.S.EE in Computer

Engineering from Tri-State University, Indiana in 1984. He received his M.S. and

Ph.D. in Computer Science from Old Dominion University, Virginia, in 1987 and

1992 respectively. He was a faculty member and department chair of Computer

Science at Pennsylvania College of Technology (Penn State) from 1992–1995. He

also served as faculty member and the dean of Computer Science at the Applied

Science University in Amman, Jordan from 1995-2007. Currently he is an associate

professor and the dean of faculty of information technology at Petra University in

Amman, Jordan. His research interest covers block cipher, and authentication.

Hussein Al-Bahadili (hbahadili@uop.edu.jo) is an associate professor at Petra

University. He received his PhD and M.Sc degrees from University of London (Queen

Mary College) in 1991 and 1988. He received his B.Sc in Engineering from the

University of Baghdad in 1986. He is a visiting researcher at the Centre of Wireless

Networks and Communications (WNCC) at the School of Engineering, University of

Brunel (UK). He has published many papers in different fields of science and

engineering in numerous leading scholarly and practitioner journals, and presented at

leading world-level scholarly conferences. He has published three chapters in

prestigious books in IT and Simulations. He is also a reviewer for a number of books,

and currently, he is an editor of a book on Simulation in Computer Network Design

and Modeling: Use and Analysis. His research interests include computer networks

design and architecture, routing protocols optimizations, parallel and distributed

computing, cryptography and network security, data compression, software and Web

engineering.

Shakir M. Hussain (shussain@uop.edu.jo) He received his B.A. degree in statistics

from University of Al-Mustansiriyah, Iraq, in 1976 and M.Sc. degree in Computing and

Information Science from Oklahoma State University, USA, in 1984. In 1997 he

received his Ph.D. degree in Computer Science from University of Technology, Iraq.

From 1997 to 2008 he was a faculty member at Applied Science University, Jordan.

Currently, he is an associate professor, dean assistant of faculty of information

technology, and department chair of computer Science at the Petra University, Jordan.

His research interest covers block cipher, key generation, authentication, and data

compression. He is a member of ACM.

