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ABSTRACT 

A simple CMOS circuitry using very less number of MOSFETs reproduce most of the electrophysiological 

cortical neuron types and is capable of producing a variety of different behaviors with diversity similar to 

that of real biological neuron cell. The firing pattern of basic cell classes like regular spiking (RS), 

chattering (CH), intrinsic bursting (IB) and fast spiking(FS) are obtained with a simple adjustment of only 

one  biasing voltage makes circuit suitable for applications in reconfigurable neuromorphic devices that 

implement biologically resemble circuit of cortex. This paper discusses spice simulation of the various 

spiking pattern ability with required and firing frequency of a given cell type. The circuit operation is 

verified for both conditions-constant input and pulsating input. 
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1. INTRODUCTION 

The neocortex is that part of the brain which makes up the outer 2 to 4 mm of the cerebral 

hemispheres. It is the “gray matter” of the brain lying atop the cerebral “white matter’ composed 

of myelinated axons that interconnect different regions of the brain. All the higher-level 

psychophysical functions sensory perception, object and event representation, planning and 

decision making are believed to take as their biological substrate the activities of interconnected 

and distributed networks of neurons in the neocortex. The cortex structure is very thin and highly 

folded with  many grooves. All sensory information reaching the neocortex is conveyed through a 

sub-cortical (below the cortex) structure called the thalamus. Other signals, thought to be 

primarily ‘control’ signals that modulate cortical  activity, also come into the neocortex from 

approximately 20 sub-cortical regions of the brain. Different regions of the neocortex appear to 

be specialized to participate in specific type of psychophysical functions[12]. No single area of 

the brain has been successfully identified as the sole functional area of any psycho-physical 

phenomenon. 
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The basic component of the cortical microcircuits are neuron cells. Mimicking it’s operation in 

silicon circuits is a subject of ongoing research interest. Analog VLSI model(Very Large Scale of 

Integration) of neural circuits provides efficient emulation engines. This could lead in developing 

the electronic devices that mimic the operation of biological brain. This ongoing research will 

make it possible to make more realistic model of human brain. These models are important tools 

for characterizing what nervous system do, determining how they function, and understanding 

why they operate in particular ways. 

  

Power consumption and area required to design certain model with least number of transistor is a 

fact of adopting the VLSI neural networks that consists of many thousands of neurons.   

 

Growing interest approaches towards the spike-based neural network as they appears to provide 

promising solution to a variety of complex problems which can not be solved by most powerful 

computers. This paper focuses on the different spiking and firing patterns of the cortical neuron. 

Typically used I&F (Integrate &Fire) cells consume approximately 20 transistors to implement 

low power adaptive neuron circuitry [4][5]. This is not capable of imitating the processing of 

human nervous system, as approximately 90% of the cortex is made of non-linear oscillatory 

neuron rather than simple spiking neurons. Therefore work focuses on the utilization of the 

minimum number of transistors providing different types of firing patterns obtaining different 

types of adaptive and oscillatory neuron behaviors in a single chip. 

. 

The feature of biological neural network are attributed to it’s structure and function. Fundamental 

unit of the network is called a neuron or a nerve cell. It consists of a cell body or soma where the 

cell nucleus is located. Tree like nerve fibers called dendrites are associated with the cell body. 

These dendrites receives signals from other neurons. Extending from the cell body is a single long 

fiber called the axon, which branches into strands and sub strands connecting to many other 

neuron at the synaptic junctions or synapses. 

 

Generally the electrical activity is confined to the interior of a neuron, whereas the chemical 

mechanism operates at the synapses. The dendrites serve as receptors for signals from other 

neurons, whereas the purpose of an axon is transmission of the generated neural activity to other 

nerve cell or to muscle fibre.. 

 

Artificial neural network (ANN) is a highly simplified model of the structure of the biological 

neural network. ANN consists of interconnected processing units. The general model of a 

processing unit consist of summing part followed by output part. The summing part receives 

u1,u2----un input values(w1,w2----wn) and computes a weighted sum. The weighted sum is 

called the activation value. The output part produces a signal from activation value. The sign of 

the weight for each input determines whether the input is excitatory(positive weight) or 

inhibitory(negative weight). The input could be discrete or continuous data values, and likewise 

the output also be deterministic or stochastic or fuzzy. 

 

In an artificial neural network several processing units are interconnected according to some 

topology to accomplish a pattern recognition task. Therefore the input to a processing unit may 

come from the output of other processing units, and/or from external sources. The output of each 

units may be given to several units including itself. The amount of the output  of one unit 

received by another unit depends on the strength of the connection between the units and it is 

reflected in the weight value associated with the connecting links. If there are n activation value 

of the network defines the activation state of the network at that instant. 



International Journal on Soft Computing ( IJSC ) Vol.2, No.4, November 2011 

47 

Neurons in the cortex are found with great variety of dendritic morphology, ion channel 

distribution and composition. Hence these neurons exhibit different electrical behavior 

transforming the same input signal into different firing patterns. Many parameters such as spike 

frequency, inter spike interval histogram, spike frequency, adaptation index etc. can be used to 

classify the neurons. Approximately 90% of the cortex is made up of non-oscillatory neuron 

rather than simple spiking neurons.  

 

Therefore effort has been made for implementing simple neuron circuits that are capable of 

providing different types of cortical spiking behavior by utilizing as few transistors as possible to 

enable integration of large number of cell in a single chip. The neuronal  response to a step 

stimulus of supra-threshold current (post synaptic input current that causes action potential) 

displays either spiking or bursting firing behavior. The spiking neurons are of two types like 

regular spiking (RS) and fast spiking (FS). The RS cell exhibit accommodation property. In 

response to a supra-threshold current step they fire repeatedly. The RS cell class can be further 

sub-divided into two sub-types—weak accommodating cell are RS1 and strong accommodating 

cell are called RS2. Pyramidal cells are an example of RS1 type and and stellate cells are an 

example of RS2 type. The FS cells fire repetitively at high frequency with little or negligible 

accommodation to a sustained supra-threshold current injection.  

 

The action potential of FS cells exhibit faster rise and fall rates and distinct fast after-

hyperpolarization (AHP) e.g. neocortical small basket cells, bitufted cells and large basket cells. 

The basic bursting cell types are chattering (CH) and intrinsic bursting (IB). The CH neurons 

usually display repetitive long clusters of spikes. The IB neurons respond to a step current 

injection with a cluster of three to five initial spikes followed by an AHP, and then by either 

single spikes or burst at more or less regular intervals. These types are observed in sub-population 

of bitufted cells, bipolar cells and martinotti cells in the neocortex. 
 

 

 2. VLSI MODEL OF CORTICAL NEURON 

Cortical microcircuits are capable of performing sophisticated information processing, handling 

high computational throughput of sensory perception, cognitive processes, control and decision 

making with low energy consumption. The basic component of the cortical microcircuits are 

neuron cells. Mimicking their operation in silicon circuit is the aim of the paper. It is hoped that 

analogue VLSI model of neural circuits will provide very efficient brain-inspiredcomputer 

architecture. It is an important consideration to design a neuron circuit with the least number of 

transistors and with least energy consumption, especially due to the fact that such circuit is 

intended to be used in large scale VLSI neural networks that consists of many thousands of 

neuron. While considering presently available neuron models the integrate and fire (I&F) neuron 

model is widely used due to it’s simplicity – typical I&F neuron cells use approximately 20 

transistors to implement low power adaptive neuron circuitry. 
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Fig.1 Circuit of cortical neuron 

However, I & F neurons exhibit simple firing behavior only, this might not be adequate for the 

development of VLSI circuitry which would be capable of imitating the processing of the cortex, 

which is made up of a large number of more complex non-linear oscillatory neurons exhibiting a 

variety of inherent firing patterns. Circuit implementing conductance based neuron model 

(Hodgkin-Huxley) consume large number of transistors. The circuit implementation of oscillatory 

neuron model Fitzhugh-nagumo, resonate and Fire model, Hindmarsh-Rose uses around 20 

transistors. However all these models donot accurately reproduce the shapes of the spikes that 

have been observed in biological neurons and are also not capable of generating different types of 

spiking and bursting behavior in a single circuit with tunable parameters. 

 

The work presents a simple CMOS circuit model that exploits underlying non-linear 

characteristics of MOSFETs to implement the neuron using only 14 transistors. The spiking shape 

given by the circuit resembles that of real neurons. The circuit is capable of producing linear and 

non-linear responses (firing rate vs. input current) with spike frequency adaptation and  a variety 

of spiking patterns such as regular spiking, fast spiking, low threshold spiking, intrinsic bursting 

etc. 

 

 The proposed silicon cortical neuron circuit contains 14 MOSFETs. The two state variables 

“membrane potential” (v) and “slow variable” (u), are represented by voltages across capacitors 

Cv and Cu respectively. The circuit consists of three functional blocks: membrane potential 

circuitry, slow variable circuitry and comparator circuitry.  

 

2.1 Membrane Circuit 
 

Fig.2 – illustrates the membrane potential circuit where the magnitude of the current through M3, 

Iv, is controlled by the membrane potential V. Transistors M2 and M3 form a current mirror 

circuits, with input current generated by M1. The current Iv acts as a positive feedback to 

generate spikes.The current Il is the leakage current generated by M4 and is controlled by the 

slow variable U. The current I is the post synaptic input current and it is supplied by an external 

synapse. The net sum of these currents is integrated on the membrane capacitor Cv: 
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Positive input current leads to the increase in V, which becomes more rapid as V in

generating the spike. Once the spike is detected (by the comparator circuit) a pulse on VA is 

generated. Consequently transistor M5 opens and membrane potential voltage is rapidly 

hyperpolarized. The transistor M5 is designed so that the capacitor

the VA pulse, thus the value of V after hyper

by the voltage Vc. 

 

2.2 Slow Variable Circuit 

 
The magnitude of the current provided by M7, Ivu is determined by the membrane potential. 

Transistor M2 and M7 form a current mirror circuit with input current generated by M1. The 

transistors are scaled so that the drain current of transistor M7 is lower 

capacitance value of Cu is selected as larger than that of Cv. This ensures that potential U will 

vary more slowly than V.  

The transistor M6 operates as a non

the slow variable potential U. The net sum of these  currents is integrated on the slow variable 

capacitor Cu. 

 

Following the membrane potential spike, the comparator generates a pulse, VB to open the 

transistor M8, The narrow size of M8 and short duration of pulse VB ensures that the capacitance 
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 Fig.2 Membrane circuit 

Positive input current leads to the increase in V, which becomes more rapid as V in

generating the spike. Once the spike is detected (by the comparator circuit) a pulse on VA is 

generated. Consequently transistor M5 opens and membrane potential voltage is rapidly 

hyperpolarized. The transistor M5 is designed so that the capacitor Cv is fully discharged during 

the VA pulse, thus the value of V after hyper-polarization is entirely determined by the value set 

The magnitude of the current provided by M7, Ivu is determined by the membrane potential. 

Transistor M2 and M7 form a current mirror circuit with input current generated by M1. The 

transistors are scaled so that the drain current of transistor M7 is lower than that of M3 and 

capacitance value of Cu is selected as larger than that of Cv. This ensures that potential U will 

 

 

 

 

 

 

 

Fig.3 Slow variable circuit 

The transistor M6 operates as a non-linear resistor  and the current through M6 Iu is a function of 

the slow variable potential U. The net sum of these  currents is integrated on the slow variable 

Following the membrane potential spike, the comparator generates a pulse, VB to open the 

of M8 and short duration of pulse VB ensures that the capacitance 
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Positive input current leads to the increase in V, which becomes more rapid as V increases, 

generating the spike. Once the spike is detected (by the comparator circuit) a pulse on VA is 

generated. Consequently transistor M5 opens and membrane potential voltage is rapidly 

Cv is fully discharged during 

polarization is entirely determined by the value set 

The magnitude of the current provided by M7, Ivu is determined by the membrane potential. 

Transistor M2 and M7 form a current mirror circuit with input current generated by M1. The 

than that of M3 and 

capacitance value of Cu is selected as larger than that of Cv. This ensures that potential U will 

M6 Iu is a function of 

the slow variable potential U. The net sum of these  currents is integrated on the slow variable 

Following the membrane potential spike, the comparator generates a pulse, VB to open the 

of M8 and short duration of pulse VB ensures that the capacitance 
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Cu is not fully reset to Vd, but instead an extra amount of charge, controlled by Vd, is transferred 

onto Cu. Therefore each membrane spike provides a quick increase in the slow variable pot

which in turn increases the leakage current of the membrane potential and slow down the 

depolarization after the spike. This mechanism is used to provide the accommodation property of 

the spike train. 

 

2.3 Comparator 

 

 

 

 

 

 

                                                                  

 

The comparator circuit is shown in Fig. 4. The voltage Vth is the spike

membrane potential. The voltage Vbias controls the 

membrane potential increases above Vth, the voltage at VB is decreased and VA is increased, 

generating reset signals. Due to limited speed of comparator and switches the reset is delayed, so 

the membrane potential V continues to increase beyond Vth, and  onto VDD, but once VA is 

increased, the membrane potential is reset to Vc which is lower than Vth. Consequently, voltages 

VA and VB return to their reset voltage level, completing reset pulse. The transistor M14 

increases the comparator current during the spike, providing the required amplitude and duration 

of the reset pulse VB. 

 

3. SIMULATION RESULTS

Fig .3.1 Regular spiking pattern(RS)
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onto Cu. Therefore each membrane spike provides a quick increase in the slow variable pot

which in turn increases the leakage current of the membrane potential and slow down the 

depolarization after the spike. This mechanism is used to provide the accommodation property of 

 

                                                                               Fig.4  Comparator circuit 

The comparator circuit is shown in Fig. 4. The voltage Vth is the spike-detection threshold of the 

membrane potential. The voltage Vbias controls the bias current in the comparator. When the 

membrane potential increases above Vth, the voltage at VB is decreased and VA is increased, 

generating reset signals. Due to limited speed of comparator and switches the reset is delayed, so 

continues to increase beyond Vth, and  onto VDD, but once VA is 

increased, the membrane potential is reset to Vc which is lower than Vth. Consequently, voltages 

VA and VB return to their reset voltage level, completing reset pulse. The transistor M14 

eases the comparator current during the spike, providing the required amplitude and duration 
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Cu is not fully reset to Vd, but instead an extra amount of charge, controlled by Vd, is transferred 

onto Cu. Therefore each membrane spike provides a quick increase in the slow variable potential 

which in turn increases the leakage current of the membrane potential and slow down the 

depolarization after the spike. This mechanism is used to provide the accommodation property of 

detection threshold of the 

bias current in the comparator. When the 

membrane potential increases above Vth, the voltage at VB is decreased and VA is increased, 

generating reset signals. Due to limited speed of comparator and switches the reset is delayed, so 

continues to increase beyond Vth, and  onto VDD, but once VA is 

increased, the membrane potential is reset to Vc which is lower than Vth. Consequently, voltages 

VA and VB return to their reset voltage level, completing reset pulse. The transistor M14 

eases the comparator current during the spike, providing the required amplitude and duration 
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As the name suggests Regular Spiking (RS) gives a single spike output repeated at regular 

intervals. In the result shown above the spike repetition rate is once every 0.25ms. which in terms 

of frequency is 4KHz. The step input for this simulation is 2nA. It is seen that the firing pattern of 

VLSI neuron are on the millisecond scale of biological neuron. Regular spiking pattern Vd to be 

set to 2.07V. Threshold voltage at the comparator stage of the cortical neuron is set to 1.4V and 

the bias voltage Vc is set to 0.6V which is kept constant for all firing patterns . Single spike is 

necessary for the neuron to fire. It is generally observed in the mammalian neocortex. 

 

 

Fig.3.2  Intrinsic bursting spiking pattern(IB1 andIB2) 

Intrinsical Bursting (IB) is a pattern in which more than one spikes or a Burst is repeated at 

regular intervals. Top trace of Fig. 3.2 shows the output obtained when Vd is kept at 2.02V while 

the trace below it is for Vd=2.0V, the input remaining the same in both the cases. Once again the 

spike burst repetition rate is once every 0.25ms, which in terms of frequency is 4KHz. The step 

input for this simulation is 2nA. It is observed that when the Vd is 2.02 there is mixed type of 

spiking burst as well as single spike, this kind of patterns generally observed  in the mammalian 

neocortex.  
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Fig.3.3 Intrinsic bursting spiking pattern(IB3 and IB4) 

Intrinsical Bursting (IB3 and IB4) is a pattern in which more than two  spikes or a Burst is 

repeated at regular intervals. Top trace of Fig. 3.3 shows the output obtained when Vd is kept at 

1.6V while the trace below it is for Vd=1.4V, the input remaining the same in both the cases. 

Once again the spike burst repetition rate is once every 0.25ms, which in terms of frequency is 

4KHz. The step input for this simulation is 2nA. It is observed that as Vd goes on decreasing 

more number spikes are required to fire the neuron. Some neurons such as the chattering neuron 

in cat neocortex fire periodic burst of spikes when simulated. The interburst (between burst) 

frequency is very high and it is believed that such neurons contributes to the gamma frequency 

oscillation in the brain.  

 

Fig. 3.4 Chattering type spiking pattern(CH1 and CH2) 

Chattering type (CH1 and CH2) is a pattern in which more than five to ten  spikes or a Burst is 

repeated at irregular intervals. Accommodation period depend upon the number of spike required 

to fire the neuron. Top trace of Fig. 3.4 shows the output obtained when Vd is kept at 1.39V 
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while the trace below it is for Vd=1.35V, the input remaining the same in both the cases. Once 

again the spike burst repetition rate is once every 0.5ms which in terms of frequency is 2KHz. 

The step input for this simulation is 2nA. It is observed that as Vd goes on decreasing more 

number spikes are required to fire the neuron. The interburst (between burst) frequency is very 

high.  

Fast spiking cell fire repetitively at high frequency with less or no accommodation to a sustained 

suprathreshold current. Step input of 2nA is given to the cortical neuron with Supply voltage is 

set at 3V. Threshold voltage for comparison is set at 1.4V while biasing is 0.4V. The control 

voltage Vd is set to 1.3V for top trace and 1.0V for later trace. As Vd is decreased to sufficient 

low level compared to RS pattern it is observed that there is no accommodation for the spikes that 

capacitor Cu does not get sufficient time to get discharge and at the output fast spiking pattern is 

observed. 

 

Fig.3.5 Fast spiking pattern(FS1 and FS2) 

 

Table 1. Comparison of various spiking patterns of Cortical Neuron 
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The circuits have been designed in a 1.25um CMOS technology. The simulation results of the 

circuits illustrates various types of cortical neuron firing patterns, obtained by changing the value 

of circuit variable Vd  keeping Vc constant which are externally controllable. It is observed that 

with decreasing Vd the amount of charge transferred to slow variable capacitor decreases. Thus 

the capacitor charging time increases. The time till the capacitor voltage value reaches the 

threshold level fast spikes are continuously available at the output. Therefore decreasing Vd 

causes longer period of spikes and shorter duration of spike off or reset. Eventually at Vd=1.3 the 

capacitor no longer reaches the threshold value and hence the reset due to slow variable does not 

occur. This causes continuous spikes to be available at the output. The patterns of VLSI neurons 

are on the millisecond scale of biological neurons. For comparative purposes, all the 

classifications  are done in the time scaled domain in order to adopt biological classification 

method. 

 

Fig 3.6  Response of amplitude variation on the regular spiking of cortical neuron 

Another aspect of cortical neuron has been studied with the variation of the amplitude of the input 

signal. It is observed that amplitude of input signal (post synaptic signal) does influence the 

spiking pattern. An increase in input current not only causes an increase in spike repitition rate 

but also influences the slow variable circuit  capacitor charging time. Thus the output pattern is 

different than the one with constant input current.  

 

 At the input side of Cortical neuron step of 400nA and 50nA are given with the threshold voltage 

1.4V and supply voltage 3V. It is observed that for 400nA the frequency of spiking pattern is 10 

KHz while the frequency of spiking pattern for 50nA is 5 KHz. For both the input control voltage 

Vd is set to 2.07V. 

 

It is also observed that delay for lower amplitude is more than that for higher amplitude. The 

delay for 400nA is 0.25ms while delay for 50nA is 0.35ms. 

 



International Journal on Soft Computing ( IJSC ) Vol.2, No.4, November 2011 

55 

 

Fig 3.7  Response of amplitude variation on the intrinsic bursting of cortical neuron 

Another spiking pattern (CH2 and IB2) for different amplitude and different control voltage is 

studied. At the input side of Cortical neuron step of 400nA and 50nA are given with the threshold 

voltage 1.4V and supply voltage 3V. It is observed that for 400nA the frequency of spiking 

pattern is high while the inter-spike frequency of spiking pattern for 50nA is 6.6 KHz. For both 

the input control voltage Vd is set to 2.0V. It is also observed that delay for lower amplitude is 

less than that for higher amplitude. The delay for 400nA is 0.25ms while delay for 50nA is 

0.15ms. 

 

Fig 3.8  Response of amplitude variation on the fast spiking (FS1) of cortical neuron 

Another spiking pattern (FS1 and RS1) for different amplitude and different control voltage is 

studied.  At the input side of Cortical neuron step of 400nA and 50nA are given with the 

threshold voltage 1.4V and supply voltage 3V. It is observed that for 400nA the frequency of 

spiking pattern is high while the spike frequency of spiking pattern for 50nA is 6.6 KHz. For both 

the input control voltage Vd  is set to 1.39V. 

 
It is also observed that delay for lower amplitude is more than that for higher amplitude. The 

delay for 400nA is 0ms while delay for 50nA is 0.4ms. 
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Fig 3.9 Response of amplitude variation on the fast spiking (FS2) of cortical neuron 

Another spiking pattern (FS2 and RS2) for different amplitude and different control voltage is 

studied.  At the input side of Cortical neuron step of 400nA and 50nA are given with the 

threshold voltage 1.4V and supply voltage 3V. It is observed that for 400nA the frequency of 

spiking pattern is high while the spike frequency of spiking pattern for 50nA is 10 KHz. For both 

the input control voltage Vd  is set to 1.1V. 

 

It is also observed that delay for lower amplitude is more than that for higher amplitude. The 

delay for 400nA is 0ms while delay for 50nA is 0.15ms. 

 

It is observed that, if amplitude of input is increased  more spikes are needed to fire the circuit, 

slow variable capacitor doesn’t get sufficient time to discharge results in the fast spiking and if 

decrease the amplitude less spikes are needed to fire the circuit results towards the regular spiking 

keeping the Vd constant for both the magnitude. 

 

4. CONCLUSION 
 

The CMOS Neuron circuit presented is capable of generating spiking and bursting firing 

behaviors with a biologically plausible spike shapes. The circuit behavior has been verified via 

spice simulation. The single circuit mimics most of the electrophysiological cortical neuron types 

and is capable of producing a variety of different behaviors, with diversity similar to that of real 

biological neuron cells. The behavior of this universal cortical neuron cell can be adjusted by 

using only one external biasing voltage. The circuit is implemented using only 14 MOSFETs and 

occupies a small silicon area. Hence the circuit provides simple, compact and easily configurable 

cortical neuron for building massively parallel analog neuromorphic networks that closely 

resembles the circuit of neocortex. It is also possible to obtain each type of neuron with different 

characteristics (frequency of spiking & accommodation) by changing the width/length (W/L) 

ratio of the transistors M4 of membrane circuit and M6, M7of slow variable circuit. The circuit is 

capable of representing a wide variety of cell types, and with required accommodation and firing 

frequency by switching (W/L) of the key transistors. The circuit is designed using 1.25um 

technology. Apart from implementing different types of neuron, this circuit also enables the 
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designing of a variety of different behavioral cell clusters in each cortical neuron types, with 

diversity similar to that of biological neuron cells. The variety of behavior is obtained in a single 

circuit only requiring changing one bias voltage. This voltage can be set externally or could be 

stored/controlled locally enabling dynamic switching of spiking modes and characteristics. 
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