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ABSTRACT 
 

Fuzzy logic is shown to be a very promising mathematical approach for modelling traffic and 

transportation processes characterized by subjectivity, ambiguity, uncertainty and imprecision. The basic 

premises of fuzzy logic systems are presented as well as a detailed analysis of fuzzy logic systems developed 

to solve various traffic and transportation planning problems. Emphasis is put on the importance of fuzzy 

logic systems as universal approximators in solving traffic and transportation problems. This paper 

presents an analysis of the results achieved using fuzzy logic to model complex traffic and transportation 

processes. 
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1. INTRODUCTION 
 
Transportation planning is a wide human-oriented field with diverse and challenging problems 
waiting to be solved. Characteristics and performances of transport systems – services, costs, 
infrastructures, vehicles and control systems are usually defined on the basis of quantitative 
evaluation of their main effects. Most of the transport decisions take place under imprecision, 
uncertainty and partial truth. Some objectives and constraints are often difficult to be measured by 
crisp values. Traditional analytical techniques were found to be non-effective when dealing with 
problems in which the dependencies between variables are too complex or ill-defined. Moreover, 
hard computing models can not deal effectively with the transport decision-makers’ ambiguities 
and uncertainties. 
 
In the past several decades a variety of deterministic and stochastic models have been developed 
to solve complex traffic and transportation engineering problems. These mathematical models use 
different formulae and equations to solve such problems. During their education and training, 
engineers are most often directed to the use of exclusively objective knowledge (formulae and 
equations). However, when solving real-life engineering problems, linguistic information is often 
encountered that is frequently hard to quantify using ‘classical’ mathematical techniques. This 
linguistic information represents subjective knowledge (linguistic information).  
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The primary goal of this paper is the applications of fuzzy logic in traffic and transportation 
engineering, and to indicate the directions for future research in this area. 
 

2. FUZZY LOGIC SYSTEMS FOR TRANSPORTATION  
 
Basic results linked to the development of fuzzy logic date back to Zadeh (1973) [51] and 
Mamdani and Assilian (1975) [24]. Introducing a concept he called ‘Approximate Reasoning’, 
Zadeh successfully showed that vague logical statements enable the formation of algorithms that 
can use vague data to derive vague inferences. Zadeh assumed his approach would be beneficial 
above all in the study of complex humanistic systems.  
 
What is a fuzzy logic system? Mendel (1995) [25] explains the concept of a fuzzy logic system-a 
(FLS) as follows: ‘In general a FLS is a nonlinear mapping of an input data (feature) vector into a 
scalar output (the vector output case decomposes into a collection of independent multi-input/ 
single-output systems)’.  
 
Pappis and Mamdani (1977) [28] published the first paper in which a practical traffic and 
transportation problem was solved using fuzzy logic. In the mid- and late-1980s, a group of 
Japanese authors made a significant contribution to fuzzy set theory applications in traffic and 
transportation. Nakatsuyama et al. (1983) [27], Sugeno and Nishida (1985) [36] and particularly 
Sasaki and Akiyama, (1986, 1987, 1988) [33, 34, 35] solved complex traffic and transportation 
problems indicating the great potential of using fuzzy set theory techniques. At the end of the 
1980s and beginning of the 1990s, the fuzzy set theory in traffic and transportation became 
extensively used at American universities. The pioneering work of the research team of the 
University of Delaware deserves special attention, headed by Professor Shinya Kikuchi 
(Chakroborthy, 1990 [5]; Chakroborthy and Kikuchi, 1990 [6]; Perincherry, 1990 [29]; 
Perincherry and Kikuchi, 1990 [30]; TeodorovicÂ and Kikuchi, (1990, 1991) [41, 42]; Kikuchi et 
al.,(1991, 1993) [19, 20]; Kikuchi, 1992 [18]). In the early and mid-1990s, interest in fuzzy logic 
applications in traffic and transportation increased in other world universities. Different traffic 
and transportation problems successfully solved using fuzzy set theory techniques were presented 
in the works of Chen et al. (1990) [8], Tzeng et al. (1996) [44], Lotan and Koutsopoulos 
(1993a,b) [22, 23], Xu and Chan, 1993a,b) [49, 50], TeodorovicÂ and BabicÂ (1993) [38], 
Akiyama and Shao (1993) [1], Chang and Shyu (1993) [9], Chanas et al. (1993) [7], Akiyama 
amd Yamanishi (1993) [2], Deb (1993) [10], Perkinson (1994) [31], Hsiao et al. (1994) [12], 
VukadinovicÂ and TeodorovicÂ (1994) [47], TeodorovicÂ et al. (1994) [39], TeodorovicÂ 
(1994) [37], TeodorovicÂ and KalicÂ (1995) [40], MilosavljevicÂ et al. (1996) [26], Teodorovic 
and Pavkovic (1996) [43] and Tzeng et al. (1996) [44]. 
 
Let us try to explain why fuzzy logic systems were developed for transportation engineering. 
Great many of the problems in the field of transportation planning and traffic control are often ill 
defined, ambiguous and vague. As already mentioned, many traffic and transportation problems, 
phenomena and parameters are characterized by subjectivity. It is hard to disregard the fact that 
subjective judgment is present in problems dealing with the choice of route, mode of 
transportation and carrier, a driver's perceptions and reactions, an established level of service, 
defining safety standards, defining criteria to rank alternative transportation plans and projects, 
etc. It should also be emphasized that both deterministic and stochastic models that have been 
developed to solve a variety of complex traffic and transportation problems are characterized by 
mathematics based on binary logic. Without denying the importance of binary logic as the basis 
for the development of many scientific disciplines and technology leading to the prosperity of 
man's society, we must note that it cannot deal effectively with passengers’, dispatchers’ or 
drivers’ feelings of uncertainty, vagueness and ambiguity. Since the fuzzy set theory recognizes 
the vague boundary that exists in some sets, different fuzzy set theory techniques need to be used 
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in order to properly model traffic and transportation problems characterized by ambiguity, 
subjectivity and uncertainty.Some applications of Fuzzy Logic in transport planning are discussed 
below. 
 
2.1. Trip generation 
 
Trip generation constitutes the first stage in the traditional transportation planning process. Trip 
generation defines that how many people want to go out of their homes and what their purposes 
are. Researchers emphasized that more non-congestion trip generation models have better 
prediction and adaptation ability. So in many years to validate different ideas, experts have 
invented variety of models and they always try to estimate the number of generated trips in a 
better method helping newer model presentation. Also they try to decrease the previous models 
problems and defects as much as possible. 
 
Trip generation problem was solved using fuzzy logic by Kalic and Teodorovic (1997a, b) [16, 
17]. Fuzzy rule base was generated by learning from numerical examples. For this purpose, the 
procedure proposed by Wang and Mendel (1992a, b, c) [46, 47, 48] was used. Firstly, the 
available set of data was divided into two subsets: the first was used for generation of the fuzzy 
rule base, and the other was intended to be a control data subset. After the fuzzy rule base was 
created, the obtained fuzzy system was tested on both subsets of data. The estimate of the number 
of trips for the subsets was also determined using artificial neural networks, as well as by multiple 
linear regressions. The training of the neural network was done using simulated annealing 
technique. After the testing, the fuzzy logic approach proved to give the closest estimate of the 
actual number of trips generated in a given area. 
 
One of the most important problems in the field of transportation planning is the problem of 
Origin-destination estimation from link counts. In order to decrease the cost of passenger surveys, 
traffic count are undertaken on certain links of the transportation network. In the next phase an 
origin-destination matrix is estimated from the link counts. In the last two decades a greater 
number of models have been developed for origin-destination estimation from link counts. Xu 
and Chan (1993a, b) [49, 50] were the first to use the fuzzy set theory techniques when analyzing 
the problems arising from the poor quality of link count data. As known, traffic counts are often 
subject to errors. Xu and Chan (1993a, b) [49, 50]  particularly pointed out the problem of traffic 
counts in countries such as China in which mixed urban traffic flow with heavy bicycle volume is 
common. In such situations the heavy bicycle volume also makes precise vehicular counts very 
difficult. Xu and Chan (1993a, b) [49, 50] estimated an origin-destination matrix with fuzzy 
weights.  
 
2.2. Trip distribution 
 
Trip distribution constitutes the second stage in the traditional transportation planning process. 
Trip distribution models are used to determine the number of trips between pairs of zones when 
the number of trips generated attracted by particular zones is known. Thus, the prediction of trip 
distribution involves the prediction of flows in a network regardless of a possible transportation 
mode or travel route. 
 
Traffic flows and trip distribution resulted from human choices that are affected by social and 
individual variables of the commuters. Due to this fact that human decision making are more 
consistent with fuzzy logic in comparison with crisp mathematics, it seems that fuzzy logic could 
be a logical tool to map such areas. Modelling a trip distribution system with fuzzy inference 
systems would enjoy the exploration of subjective pattern of decision makers. Meanwhile, one of 
the most important parts of forecasting procedure is to predict the trips flow between a given 
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origin-destination pair. Different models have been developed to forecast trip flows in recent 
years. The key to a successful forecasting is to recognize the existing patterns correctly. Trip 
distribution problem was also solved using fuzzy logic by Kalic and Teodorovic (1996, 1997a, b 
[15, 16, 17] Like in the case of trip generation problem, Kalic and Teodorovic (1996) [15] 
generated fuzzy rule base by learning from numerical examples.  
 
A three phases fuzzy inference system (FIS) was proposed by Jassbi et al.(2011) [14] to map 
social and demographic variables to total number of trips between origin-destination (OD) pairs. 
Fuzzy rule bases in the model are in fact the exploration of transportation experts’ subjective 
patterns. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 1. Conceptual model of trip forecasting input-output space mapping 

 
Figure 1 illustrates the conceptual framework of the trip forecasting problem. The main concern 
of the problem was to approximate the transfer function that is capable of mapping trip attraction 
and generation variables to number of trips between two given regions. As it addressed in 
introduction section, Different kinds of transfer functions had been used in this problem. Here, a 
fuzzy inference system is used to map input space to output space. 
 
The process of fuzzy inference involves: 
 
i. Defining If-Then rules 
ii. Defining membership functions 
iii. Appling logical operations 
 
There are two types of fuzzy inference systems that usually can be implemented: Mamdani-type 
and Sugenotype. These two types of inference systems vary somewhat in the way outputs are 
determined.  
 
Input space is ‘Trip Generation variables and Trip attraction variables’. These are the variables 
that have direct impacts on the generation and attraction of trips of any given region. Output 
space is ‘the number of trips between two given regions’. The number of trips would be 
approximated by a transfer function that is formed based on the relations of trip generation 
capabilities of origin and trip attraction capacities of destination.  
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Table 1. Trip generation variables (input space variables) 
 
 

Input space variables Generation variables 

1I  Occupation in the residence area 

2I  Population 

3I  Residential space 

4I  Population density 

5I  Number of households 

6I  Car ownership rate 

7I  Average price of one square meter of land 

8I  Students population 

9I  Traffic zone space 

10I  Number of residential buildings 

11I  Distance to entertainment complexes 

 

 

Table 2. Trip attraction variables (input space variables) 
 

 

Input space variables Attraction variables 

1I  Occupation in the working area 

2I  Business/ Administrative/Agricultural/Industrial 
Land Space 

3I  Administrative building space 

4I  Number of Administrative/Business/Industrial 
Buildings 

5I  Schools’ space 

6I  Number of Students/Schools/Classes 
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7I  Number of Universities/Students 

8I  Number of Retailers 

9I  Number and Capacity of Cinemas/Mosques/ 
Exhibitions/ 

10I  Parks/Hospitals 

 

 
Figure 2. Conceptual fuzzy model: Mapping trip generation and attraction variables to total 

number of trips between two given regions 
 

To map input space to output space, different fuzzy scenarios could be considered. Figure 2 above 
illustrates the framework of conceptual fuzzy model that is used to forecast the number of trips in 
this work. As it illustrated in above, three independent fuzzy inference systems are used. The first 
FIS is aimed to map generation variables to number of generated trips by the given region 
(

iG ).The second FIS is designed to map attraction variables to number of attracted trips by the 

given region (
jA ). At the end, the third FIS is designed to combine the output of the first and 

second FIS for aggregation of two given regions 
iG and 

jA  and calculating the final total number 

of trips between two regions (
ijT ). 

2.3. Modal split 
 
The third phase of transport planning named as modal split is intended to know which modes of 
transportation (bus, train etc.) are used by how much fraction of people. Teodorovic and Kalic 
(1996) used fuzzy logic to solve the mode choice problem. The authors illustrated the possibilities 
of fuzzy logic in solving the mode choice problem using a hypothetical numerical example. The 
fuzzy rule base was generated using available numerical data on the differences between the 
travel times and travel costs of competitive modes. In other words, learning from examples 
generated the fuzzy rule base. The technique proposed by Wang and Mendel (1992a) was used to 
generate the fuzzy rule base by learning from examples. There was extremely good agreement 
between the results obtained using fuzzy logic and real results. 
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Quadrado and Quadrado (1996) [32] used fuzzy logic to determine the accessibility of different 
transportation modes in the Lisbon Metropolitan Area. The authors first pointed out that all 
variables used in the ‘classical’ way of calculating accessibility are characterized by fuzziness. A 
fuzzy rule base was developed for each mode of transportation. Accessibility was shown as a 
percentage between 0 and 100%. One of the typical rules to calculate accessibility reads: 
 
If the number of people involved in movements is VERY BIG and the time used in those 
movements is VERY SMALL 
 
Then the accessibility is HYPER BIG 
 
The authors thus put an end to the tradition of treating accessibility as a deterministic concept and 
offered the possibility of a better representation of accessibility.  
 
The purpose of modal split step is to determine the share of traffic of vehicle and Public 
transportation means in urban area. One of the most well-known model that called “Logit model” 
is often used.  
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1

rs

tran

rs

rs
CC

qq
−−+

=
θ

 

 
This is a sort of nonlinear function model that based on random utility theory. In this formulation, 
the share of mass transit between the OD pair (r-s) is determined by the general cost of mass 

transit  tran

rsC  and general cost of car rsC . 

The outline of the triangular fuzzy number for each link travel time is illustrated in Figure 8 
below. Figure 3 presents an example of a fuzzy number with a triangular member-ship function 
corresponding to the label “travel time difference is medium”. 

 

 
 

Figure 3. Description of fuzzy travel time difference 
rs

Transit

rs CCT −=∆  

 

where T∆ is the time difference on each OD pair, Transit

rsC  is mass transit travel time, rsC  is car 

travel time are denoted. 
 
As mentioned earlier, when attempting to represent a mode choice model that considers about 
human behavior, the fuzzy reasoning is applied. Here are three simple rules that used in this 
model: 
 
Rule 1: If T∆  is big, then Transit TransitP  is big. 

Rule 2: If T∆  is medium, then Transit TransitP is medium. 
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Rule 3: If T∆ is small, then Transit 
TransitP  is small. 

where 
TransitP  is the rate of transit. 

 
Here, in each OD pair, the value of the linguistic variable “big”, “medium” and “small” will be 
defined. Each membership function of linguistic variable is summarized in Figure 4. 
 

 
 

Figure 4. Membership function 
 

Each OD pair has a range of travel time difference, the ranges of some representative OD pairs is 
listed in table 3. Figure 9 shows the membership function of an OD pair and (-30, 30) is the range 
of travel time difference for the objective OD pair. In this description, the travel time difference is 
a crisp value. This is also the medium rule in fuzzy rule sets that supposed in this model. 
 

 
 

Figure 5.The share of mass transit 
 

Figure 5 presents the change of mass transit’s share and the time difference in one OD pair, 
assume that the range of travel time difference is (-20, 20). The results obtained from both 
models, logit mode choice model and Fuzzy mode choice model are shown in the figure, the 
share of mass transit share computed by logit mode choice model changes rapidly when the 
absolute value of travel time difference is small, in contrast to that computed by Fuzzy mode 
choice model. 
 
For each OD pair, the time different ( ∆ T) between mass transit travel time and car travel time of 
iteration number n will be calculated by the combine modal in loop number n –1, until the 
condition is met. For each OD pair, the range is defined before hand, and they are listed in table 3. 
Because it becomes too long to list the ranges of all the OD pairs in the network, in the table, only 
some representative OD pairs generated from origin zone 1, 11 are listed.  
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Table 3. Zone pairs and ranges 
 

As mentioned above, shares of Car and mass transit will be estimated by modal split with fuzzy 
reasoning, in this section, the “Min – Max – Gravity “method is applied. The method is simply 
represented as figure 6. For example, in this figure, the range of one OD pair is defined as 20 
minutes, the time different is 6 minutes, the share of Car is 63% and share of mass transit is 27%. 
 

 

 

Figure 6. The “Min – Max- Gravity” method 
 

2.4. Route choice 
 

In the past four decades, the route choice problem, along with the traffic assignment problem, has 
been considered by a large number of authors worldwide. Teodorovic and Kikuchi (1990) [41] 
were first to model the complex route choice problem using fuzzy logic. They used fuzzy 
inference techniques to study the binary route choice problem. Akiyama et al. (1993) [2] also 
developed a model for route choice behavior based on the fuzzy reasoning approach. Lotan and 
Koutsopoulos (1993a, b) [22, 23] developed models for route choice behavior in the presence of 
information based on concepts from approximate reasoning and fuzzy control. The research of 
Lotan and Koutsopoulos (1993a, b) [22, 23]  is particularly important within the context of 
ongoing research in Intelligent Vehicle Highway Systems (IVHS). Teodorovic and Kalic (1995) 
[40] developed an approximate reasoning algorithm to solve the route choice problem in air 
transportation. Akiyama and Tsuboi (1996) [4] studied route choice behavior by multi-stage fuzzy 
reasoning. 
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Let us consider the simplest case when the user is to choose one of two possible paths between 
the origin and destination of movement. Perceived travel time is very often ‘fuzzy’ and can be 
treated as a fuzzy set. In other words, when subjectively estimating travel time between two 
points, expressions are used such as ‘it takes about 20 minutes from point C to point D’, ‘you'll 
get there in about half an hour’, etc. it is assumed that users choose their paths based on a 
comparison of the characteristics of alternative paths. Despite the fact that travel time is a 
measurable parameter, a driver's notion of travel time when he/she makes the route choice is often 
fuzzy. Thus, driver's preference for a route is based on a comparison of two fuzzy numbers. As a 
result, his/her certainty of choosing a route is also not crisp. The route choice model can represent 
the decision process under two layers of uncertainty: driver's judgment of time and driver's 
preference (Teodorovic and Kikuchi, 1990) [41]. 
 
Let us denote by TA and TB, respectively, fuzzy sets representing estimated travel time (by one 
user) along path A and path B. When comparing travel times along paths A and B, the user might 
estimate, for example, that travel time along path A, TA is ‘much shorter than TB’, ‘shorter than 
TB’, ‘equal to TB’, ‘longer than TB’, and ‘much longer than TB’. These fuzzy sets are denoted in 
the following manner: MLTB-‘much less than TB’, LTB-‘less than TB’, GTB-‘greater than TB’, 
MGTB-‘much greater than TB’. Let us assume that a user has a specific preference regarding the 
choice of each of the possible paths through the network. This preference can be ‘stronger’ or 
‘weaker’. Let us introduce into the discussion a preference index that can take values on the 
interval from 0 to 1. When the user has an absolute preference for a specific path we consider the 
preference index to be equal to 1. 
 
This preference index decreases along with a decrease in the strength of the preference. Fuzzy 
sets such as ‘very strong’, ‘strong’, ‘medium’ can express the strength of the user's preference, 
‘weak’ and ‘very weak’. The following rules of approximate reasoning are proposed to establish 
the transport network user's preference strength: 
 
If  TA=MLTB   then  PA=VERY STRONG 
If  TA=LTB   then  PA=STRONG 
If TA=TB   then     PA=MEDIUM 
If  TA=GTB   then  PA=WEAK 
If  TA=MGTB             then  PA=VERY WEAK 

where PA is the preference index associated with path A. 
 
An approximate reasoning algorithm is used to establish the preference strength for every 
network user. Once the preference index has been determined for each network user, an algorithm 
must be developed that will determine the number of users along individual links. Such 
algorithms are known in the literature as network ‘loading’ algorithms developed a network 
‘loading’ algorithm is developed in which the basic input data are the preference indexes of 
individual network users. It is assumed that the perceived travel times are distributed around a 
previously measured most likely travel time. The ‘loading’ algorithm is based on the concept of 
hybrid numbers (Teodorovic and Kikuchi 1990) [41]. 
 
Multi-stage fuzzy reasoning is used to describe the driver decision making process on road 
networks. Their term paper considers the multi-route choice problem. The first step for multi-
route choice is made a survey and collected data. Experiment participants were asked about the 
number of alternative routes they use going from their origin to their destination (the authors 
asked the respondents to cite at most three alternatives they may use). For each route considered 
they defined its characterizing factors (travel time, degree of congestion and risk of accidents). 
All the participants estimated the values of all the factors using their own perception and 
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experience. Appropriate fuzzy numbers could then represent these values. The third survey 
question dealt with the values of the utilities of the nominated routes. The authors assumed the 
existence of two stages in the driver decision making process. The firrst approximate reasoning 
algorithm they proposed determined the utilities of the alternative routes (Akiyama and Tsuboi, 
1996) [4]. A typical rule in this approximate reasoning algorithm reads: 
 
If  T is large  and CR is small  and RA is medium  

Then  V is small 

where: 
 
(a) T=perceived travel time 
(b) CR=congestion of a route 
(c) RA=risk of accident 
(d) V=utility for the route. 

 
The first input variable DF in the second approximate reasoning algorithm is the difference 
between the utilities associated with the shortest path and the second shortest path. The second 
input variable DS is the difference in the utilities between the second shortest path and the third 
shortest path. The third input variable N refers to the number of alternative routes. When N=2, 
variable DS does not appear in the premises. A typical rule of the second approximate reasoning 
algorithm reads: 
 
If  N=3  and DF is medium  and DS is medium 

Then  FR(1) is large 
 FR(2) is medium 
 FR(3) is medium 

where: 
 
(a) DF=difference of utilities between the shortest path and the second shortest path 
(b) DS=difference of utilities between the second shortest path and the third shortest path 
(c) FR(i)=degree of frequency for route i 
 
In Fuzzy Logic Model, membership functions of input and output parameters are determined 
based on survey results of a particular area and by the help of an expert’s knowledge. For input 
parameters (travel time, traffic safety, congestion and environmental effects), triangular and 
trapezoidal membership functions are used, while for output parameter (route utility), triangular is 
used (Figure 7). Most convenient membership functions are defined by examination of statistical 
dispersion of the survey results and after some trials. 
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Figure 7. Fuzzy logic route choice model parameters and membership functions 
 

Input parameters that are obtained from survey study were used in the first stage, given values of 
these parameters are converted to fuzzy using membership functions in the second stage, the rule 
base was used for inference in the third stage, using rule base a fuzzy output that shows the utility 
of route was obtained and the fuzzy output was converted to crisp numbers using a 
deffuzzification method in the fourth stage. At the end, route utility was obtained as a crisp 
number. After these processes, choice probabilities of routes were determined by multinomial 
logit formula. 
 

Rule base used in the fuzzy logic model is formed after statistical analysis of the input and output 
parameters. Rule base consists of 3*3*3*3=81 rules; 3 for traffic safety; 3 for congestion, 3 for 
travel time and 3 for environmental effects. These IF-THEN rules are collated with AND 
operator. Samples of fuzzy logic route choice model rule base are: 
 

IF TT is Short and TS is High and Co is Low and EE is Good THEN RU is High 
IF TT is Short and TS is Med.and Co is Low and EE is Good THEN RU is High 
IF TT is Short and TS is Med. and Co is Med and EE is Med THEN RU is Medium 
IF TT is Long and TS is Med. and Co is Low and EE is Med THEN RU is Medium 
IF TT is Med. and TS is High and Co is Low and EE is Med.THEN RU is Med. 
IF TT is Long and TS is Low and Co is High and EE is Med THEN RU is Low 
 
The model output is gained where Mamdani inference mechanism is used. In order to compare 
fuzzy results of Fuzzy Logic Model with crisp results of mathematical models, fuzzy output is 
defuzzified using Centroid method as: 
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where, z= crisp value(value for x axis), 

cu =membership value for given crisp value. 

 
2.5. Traffic assignment 

 
Many papers devoted to the traffic assignment problem were published in world literature. There 
are two characteristics common to most of these papers: they are based on Wardrop's principle 
and they are travel time crisp. Akiyama et al. (1994) observed that ‘in real world, however, the 
driver can only use fuzzy traffic information even if several types of information are available’. 
These authors succeeded in formulating the fuzzy user equilibrium with fuzzy travel time. They 
confirmed their assumption about drivers' perception of time as triangular fuzzy numbers by 
organizing the survey on the network comprised of Hanshin Expressway and urban streets in the 
Osaka area. In their paper, the authors introduced ‘the descriptive method of route choice 
behavior to design the traffic assignment model’. They showed that ‘the state of user equilibrium 
is also generated even if fuzziness of travel time exists’. Akiyama et al. (1994) [3] developed 
Fuzzified Frank-Wolfe algorithm to solve the problem considered. This pioneer paper 
undoubtedly presents a significant study on the relationship between traffic information and 
drivers' behavior. 
 
2.5.1 Fuzzy Sets of Perceived Link Travel Time 
 
The main concern of drivers traversing in the road networks is travel time, travel time of each link 
is the basic component for assigning traffic. The fuzzy sets of perceived link travel time will be 
based on deterministic link travel time and actual link travel time 

a. Deterministic Link Travel Time 

 

Deterministic link travel time is determined by deterministic features of the link, like link length, 
capacity, etc., and also the current deterministic traffic conditions, like traffic flow on this link. 
The following equation (1) is usually chosen for computing the deterministic link travel time: 
 

a
x

x

C

u
Ttxtuctc

a

a

a

a

faaaaa ∀++== ])(1[)](),([)(
max,

,
αβ     (1) 

 
where α  and β  are coefficients; Ta f,  is the free flow travel time on link a; au is its inflow rate; 

Ca is its capacity; xa,max is its maximum holding capacity. 
 
b. Actual Link Travel Time 

 

In practice, it is difficult to formulate the equation for actual link travel time due to the 
tremendous factors that may impact the actual link travel time greatly, such as different time 
period we focused on, road condition, traffic signal, congestion, incident, construction, weather, 
special events, and so on. As mentioned above, this property is called the stochastic characteristic 
of traffic condition (link travel time). However, in order to provide a reasonable approximation of 
actual link travel time, some researchers using certain distribution to represent the stochastic part 
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of link travel time. Normal Distribution was applied in Liu and Ban’s paper [9] as shown in 
Equation (2) and (3): 
 

)()()( ttct aaa ξτ +=          (2) 

),(~)( 2σµξ Nta
         (3) 

 
where aτ  is actual link travel time and aξ  is its stochastic term. 

 
In this paper, equation (1), (2), (3) is used to estimate actual link travel time. 
 
c. Fuzzy Sets of Perceived Link Travel Time 
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Figure 8. Membership function for fuzzy sets of perceived link travel time 

 

� Fuzzy Sets for Perceived Link Travel Time 

 

Based on the actual link travel time, we can construct fuzzy sets for perceived link travel time. In 
this paper, we use linguistic descriptions to represent the fuzzy sets. Due to driver’s experience of 
similar links, several linguistic descriptions of perceived link travel time can be formulated as 
below: 
 

o “travel time is normal” --- NORMAL 
o “link is congested” --- CONGESTED 
o “link has incident” --- INCIDENT 
o “link has construction” --- CONSTRUCTION 
o “link has special event” --- SPECIALEVENTS 

 
These fuzzy sets represent different level of traffic conditions and more sets may be added if 
necessary. 
 
� Membership Function for Fuzzy Sets of Perceived Link Travel Time 

 

Generation of membership functions arouses a lot of interests in the literature. However, no 
standard method exists yet. The membership functions can be constructed based on a survey. To 
model driver’s perceptions, in most applications of fuzzy set theory, TFN (Triangular Fuzzy 
Numbers) or TrFN (Trapezoidal fuzzy Numbers) are usually used. In this paper, triangular 
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function is used to form the membership functions of the fuzzy sets in 2-3-1. Figure 13 shows the 
membership functions for NORMAL and CONGESTED fuzzy sets. 
 
� Fuzzy Rules for Perceived Link Travel Time 

 

Only one simple rule will be used for these fuzzy sets of link travel time. “If the travel time of link 

A is less than that of link B, link A will be chosen.” This rule implies that if link A is faster than 
link B, then link A, instead of link B, will be used by the driver. 
 

d. Fuzzy Sets of Perceived Path Travel Time 

 

In crisp case, path travel time equals to the summation of the travel time of those links that 
construct this path. However, for fuzzy case, we need to define how to formulate fuzzy sets of 
perceived path travel time based on fuzzy sets of perceived link travel time. Therefore, here we 
need to define fuzzy addition formulation. 
 
In this paper, Dubois and Prade’s method is used. Four steps are needed to perform fuzzy addition 
operation: Flattening, Decomposition, Operation * and Union. Here operation * is operation +. 
Generally, Dubois’s method is a little complex to compute. But for fuzzy sets with triangular 
membership function, it is quite simple. 
 
As shown in Figure 9, if we represent fuzzy set S that has triangular membership as S (L, M, R), 
its membership function can be expressed as: 
 














∉
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And from Dubois’s theory[12], the addition of fuzzy set S1(L1,M1,R1) and S2(L2,M2,R2) will be: 
 

),,( 2121212121 RRMMLLSSS +++=+=+      (5) 

 
From equation (4) and (5), we can easily get fuzzy path travel time and its membership function 
given the fuzzy travel time of those links that form this path. 
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Figure 9. Fuzzy Addition Illustration 

 

e. Fuzzy Shortest Path (FSP) Algorithm 

 

Under crisp case circumstances, after we find the travel time for paths connecting origin and 
destination, we can find the shortest path and assign all traffic to this path. However, under fuzzy 
case, it is difficult to find only path that is the “shortest” in term of fuzzy travel time. Therefore, 
we need some method to find a group of fuzzy “shortest” paths and assign traffic to all of them 
based on their membership functions.  
 
Several fuzzy shortest path algorithms have been proposed for solving the traffic assignment 
problem. In this paper, Blue’s method is used.  
 
According to Blue’s classification, the road networks we are working on are actually a pure Type 
V fuzzy graph with crisp nodes and links as well as fuzzy weights (travel time). Denote G is a 
Type V fuzzy graph, we can find the fuzzy shortest paths using the following three steps. 
 
Step 1: Converting Fuzzy Graph to Crisp Graph 

 

We first construct two crisp graphs G  and G that are identical to G, except that the link travel 

time is crisp. Link travel time for graph G is: 
 

)}supp(sup{ aττ =a          (6) 

 
where sup means least upper bound, and supp means support of fuzzy set. 
 
Equation (7) is the link travel time for graph G : 
 

)}supp(inf{ aττ =a          (7) 

 
where inf means greatest lower bound. 
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Step 2: Find Shortest Path in Graph G  

 

Find the shortest path in graph G . It is a traditional problem to find the shortest path in a crisp 
graph and various algorithms are available to solve it [14]. Denote K is the length of this shortest 
path. 
 

Step 3: Calculate Membership  

 

Denote S  is the set of paths inG , connecting origin to destination and with the length less than 
K.  
 
Denote S is a set of fuzzy paths in G. All paths in S are identical to those paths in S  respectively, 
except that the travel time is fuzzy. S is the set of fuzzy shortest paths found and will be assigned 
traffic. Calculate the membership of K for each of the fuzzy path in S. 
 
5. Fuzzy Traffic Assignment 

 

From 4, we can get the set of fuzzy shortest paths S. We assume that S has M elements as 
displayed below: 
 

},...,....,{ 21 Mm ppppS =         (8) 

 
where pm is the fuzzy shortest path. 
 
And the memberships of K in those fuzzy shortest paths are: 
 

Mmfpf mm ,..2,1)( ==         (9) 

 
Further, we assume the traffic flow from origin O to destination D is 

odT . In this paper, we assign 

the traffic flow to these paths in S proportionally to their membership using equation (10): 
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For dynamic traffic assignment (DTA), we have to consider the flow propagation. In this case, 
equation (11) is used for this purpose: 
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where p is the path a belongs to, p~ is the subpath from a to destination D. 
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3. CONCLUSION 

 
Many problems encountered when studying complex transportation systems are highly non- 
linear. As already noted, a fuzzy logic system is a nonlinear system that maps a crisp input vector 
into a crisp scalar output. When solving a large number of different traffic and transportation 
problems, this is what we actually do: map a crisp input vector into a crisp scalar output. 
 
Fuzzy logic could be used successfully to model situations in which people make decisions in an 
environment that is so complex that it is very hard to develop a mathematical model. Such 
situations for example often occur in the field of traffic and transportation when studying the 
work of dispatchers or modeling choice problems. Present experience shows that there is room for 
the development of different approximate reasoning algorithms when solving complex problems 
of this type. Until a few years ago the `trial and error' procedure was the customary method used 
to develop fuzzy logic systems, and so researchers designed fuzzy logic systems independently of 
numerical training data. Wang and Mendel (1992a,b) [46, 47]; Jang (1992) [13] and Horikawa et 
al. (1992) [11] proposed separately from each other to tune fuzzy logic system parameters using 
numerical training data. 
 
This idea was accepted by a great many researcher and in the past two or three years a large 
number of papers have appeared in which the fuzzy rule base and/or shape of the membership 
function are determined using numerical training data. Designing fuzzy logic systems using 
numerical training data is certainly one of the very important tasks in the area of fuzzy logic 
systems for transportation engineering as well. 
 
In the past several years, significant theoretical results have been achieved in the field of fuzzy 
logic systems. Wang and Mendel (1992c) [48] and Kosko (1992) [21]showed that fuzzy logic 
systems are universal approximators, which means that a fuzzy logic system `can uniformly 
approximate any real continuous nonlinear function to an arbitrary degree of accuracy' (Mendel, 
1995 [25]). This existence theorem shows us above all the possibilities offered by fuzzy logic, but 
does not indicate the manner in which to create fuzzy logic systems. In other words, the number 
of inputs, the number of fuzzy sets used to describe fuzzy variables, and the number of rules 
essentially influence the quality of the solution generated by a fuzzy logic system. It should be 
emphasized that feed-forward neural networks and fuzzy logic systems are techniques that can be 
used to solve the same class of problems. Since fuzzy logic system parameters can be initialized 
using expert knowledge, while weights in feed-forward neural networks are most often initialized 
randomly, fuzzy logic systems are tuned much more quickly than the tuning of feed-forward 
neural networks. 
 
Fuzzy logic systems provide two other very important advantages. They can use existing 
linguistic knowledge very successfully, and they treat uncertainty in an appropriate manner. 
The basic goal of this paper was to classify and analyze results in the application of fuzzy logic 
when modeling complex traffic and transportation processes. The results obtained show that 
fuzzy set theory and fuzzy logic present a promising mathematical approach to model complex 
traffic and transportation processes that are characterized by subjectivity, ambiguity, uncertainty 
and imprecision. As already noted, the benefits from the fuzzy logic will be more accurately 
assessed as the number of successful practical applications of the fuzzy logic in traffic control and 
transportation planning increases. 
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