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ABSTRACT 

 
In this paper, implementation of a genetic algorithm has been described to store and later, recall of some 

prototype patterns in Hopfield neural network associative memory. Various operators of genetic algorithm 

(mutation, cross-over, elitism etc) are used to evolve the population of optimal weight matrices for the 

purpose of storing the patterns and then recalling of the patterns with induced noise was made, again using 

a genetic algorithm. The optimal weight matrices obtained during the training are used as seed for starting 

the GA in recalling, instead starting with random weight matrix. A detailed study of the comparison of 

results thus obtained with the earlier results has been done. It has been observed that for Hopfield neural 

networks, recall of patterns is more successful if evolution of weight matrices is applied for training 

purpose also.  
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1. INTRODUCTION 
 

There are numerous examples which demonstrate that a human brain can learn, understand and 

remember certain things completely, partially and sometimes not at all. Our learning capacity 

decides what information is stored in our brain. Incomplete or partially learned information loses 

its strength with time and does not get retained in the brain. But through continuous practice or 

training, selected things can be hard coded in our brain [1].  
 

The Artificial neural networks (ANN) attempt the modeling of the human brain in a serial 

machine and are nowadays well-established computational structures which use simple 

elementary units connected together with appropriate weighted connections [2-5]. Neural 

Networks are massive parallel computing systems consisting of an extremely large number of 

simple processors with many interconnections. The main characteristics of neural networks are 

that they have the ability to learn complex nonlinear input-output relationships, use sequential 

training procedures, and adapt themselves to the data [6]. 
 

Our memories function in an associative or content-addressable fashion. That means, a memory is 

not located in a particular net of neurons in isolation. The Hopfield neural network is a simple 
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recurrent artificial network which is capable of storing certain patterns in a manner similar to the 

brain - the full pattern can be recovered if the network is presented with only partial, occluded or 

noisy version of it. This is just because of the stability of the system, if few of the 

interconnections of the nodes are changed, the recalled pattern is not too badly corrupted, the 

network can respond in a way what is called the “best guess”.   

 

2. BACKGROUND AND RELATED WORK 
 
Neural networks have been widely used for pattern recognition and classification problems [7-8]. 

Pattern recognition is a very broad area in neural networks and a very common task realized by 

NN is in handwriting or character recognition [9-10]. Hopfield [11] proposed a fully connected 

neural network model of associative memory in which information can be stored by distribution 

of it among the various nodes in the architecture, and later can be recalled when system is in 

dynamically relaxed state. Hopfield used the Hebbian learning rule [12], to prescribe the weight 

matrix. This type of network will most likely be trapped in non-optimal local minima close to the 

starting point, which is not desired. The presence of false minima will increase the probability of 

error in recall of the stored pattern. The problem of false minima can be reduced by adopting the 

any evolutionary algorithm to accomplish the search for global minima. Genetic algorithm is such 

an evolutionary search technique and has traditionally been used in optimization [7-8]. In this, a 

random initial population of individuals is generated, each of which represents a potential 

solution to the problem. Each member of that population’s fitness as a solution to the problem is 

evaluated against some known criteria. Members of the population are then selected for 

reproduction based upon that fitness, and a new generation of potential solutions is generated 

from the offspring of the fit individuals. The process of evaluation, selection, and recombination 

is iterated until the population converges to an acceptable solution. 

 

A lot of work can be found in literature [13-15] regarding the evolution in neural networks. 

Evolution has been introduced in neural networks at three levels: architectures, connection 

weights and learning rules [16]. Our focus here is exploring the evolution at connection weights 

level. Earlier work of evolution of connection weights in Hopfield neural network with GA can 

be found in [17-19] and [20-23]. We do not find much references of training the network and then 

recalling of patterns - both by evolutionary technique simultaneously. 

 

In the present approach, we have made an effort to implement the evolution of weight matrices 

for both training and recall purposes simultaneously; using a genetic algorithm. The advantage of 

using this approach is that it is minimizing the randomness from the genetic algorithms because, 

instead of starting from the random solution, it starts from approximate optimum solution. 

Therefore, the process of recall is more efficient and relatively faster compared to earlier 

implementations. 
 

3.  METHODOLOGY AND IMPLEMENTATION DETAILS 
 

For testing the above discussed approach, an architecture of symmetric Hopfield neural network 

of size 36 (i.e. 6X6) nodes was created. The patterns used for the experiment were randomly 

generated using bipolar values +1 and -1. The total numbers of patterns taken for the experiment 

were 10.  
 

3.1 EVOLUTION OF WEIGHT MATRICES USING HYBRID APPROACH 

(GENETIC ALGORITHM AND HEBB’S LAW) FOR STORING PATTERNS  
 

For storing a pattern, there must be a stable state which should satisfy the following activation 

dynamics equation given by Hebb: 
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Here initial weights have been considered as 
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Now the updation of weight matrices takes place as follows: 
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After storing one pattern a weight matrix of the order N is obtained. Now, we apply population 

generation technique to evolve a population of weight matrices from the above original parent 

weight matrix. The original weight matrix remains unchanged during the evolution. Total N + 1 

numbers of chromosomes are produced after using the mutation and elitism. Each chromosome is 

having a fixed length of NN ×  alleles and can be represented as follows:  
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Each component of the original weight matrix ijw
 i.e. jiSS

 is multiplied by one of these alleles. 

We denote the ith allele of the nth chromosome as
n

iA
. Each chromosome modifies the original 

weight matrix and produces N  weight matrices slightly different from the original one.  

 

For each of these N weight matrices, we try to store the remaining patterns in the taken Hopfield 

architecture using Hebb’s equation and filter in those weight matrices with which storing of 

patterns remains successful. This process is repeated until one (or more) optimal weight 

matrix(ces) are obtained at which all patterns are stored successfully.   
 

3.2 GENETIC ALGORITHM IMPLEMENTATION FOR RECALLING 

PROTOTYPE PATTERNS 

 
In recalling process, a population of weight matrices is produced randomly from the parent 

weight matrix(ces) those obtained after the storing process. Same population generation technique 

is used which is discussed above. 

 

Fitness Evaluation 

 
Selection of better or efficient next generation of weight matrices, fitness evaluation function has 

been used.  When one of the stored patterns
LX  is given to the network as an initial state, the 

state of neurons varies from time to time until 
LX  becomes a fixed point. In order to store the 

pattern in the network, these two states must be similar. The similarity as a function of time is 

defined by, 
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Here 
)(tS L

i is the state of the ith neuron at time t. The fitness function is evaluated as follows: 
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If the value of f is 1, it implies that all the initial patterns have been stored as fixed points. Thus, 

we consider only the generated weight matrices those consist with fitness evaluation value 1. 

Thus filtered new population will be used for generating the next better population of weight 

matrices with the crossover operator. 

 

Crossover Operator 

 
Crossover is an operation which is responsible for the recombination of the selected population of 

weight matrices. This operator forms a new solution by taking some parameters from one parent 

and exchanging it with another at the very same point. Hence, on applying this crossover operator 

with the constraint that the number of chromosomes or components selected for exchange should 

be equal from both the weight matrices. Newly generated weight matrices are again evaluated 

against the fitness function defined above. 

 

This process will continue for all the weight matrices from the population. It is possible to obtain 

more than one optimal weight matrices for the prototype pattern recalling. 

 

The different parameters used in experiments are summarized below in Table 1 and Table 2: 
 

Table 1: Parameters used in training 
 

Parameter Value 

initial states of neurons randomly generated values 

either -1 or +1 

threshold value  0.00 

 

Table 2: Parameters used in GA implementation 

Parameter Value 

initial states of neurons randomly generated values 

either -1 or +1 

threshold value  0.00 

mutation probability 0.5 

mutation population size N+1 

crossover population size N*N 

 

4. RESULTS AND DISCUSSION 
 

The results being discussed in this section show that there is a significant improvement in 

recalling success rate of the given patterns with induced error while ‘evolution of weight 

matrices’ has been used for storing the patterns. 

 

Each experiment constitute of 1000 runs of recalling each pattern with different level of errors, 

after storing them by both methods. In recalling, the success is considered only if the recalling of 

a pattern is made within 20 iterations (i.e. mutation, elitism, crossover operation and fitness 

evaluation function). The errors have been induced in the patterns randomly by flipping bits at 

different positions. 
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Table 3: Recalling Success results while there was no error, 1-bit error and 2-bits error induced in 

prototype input patterns 
 

 Pattern No. #1 #2 # 3 # 4  #5 #6 #7 #8 #9 #10 
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Table 4: Recalling Success results while there was 3-bits error induced in prototype input patterns 
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Table 5: Recalling Success results while there was 4-bits error induced in prototype input patterns 
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Table 3 shows that the results of recalling are perfectly same for both methods – either we store 

the patterns by simple Hebb’s law or by evolution of weight matrices followed by Hebb’s law. In 

both cases, patterns were correctly recalled 100% time. But significant changes have been 

observed (table 4 and 5) while the induced error in the presented prototype input patterns has 

been 3-bits and 4-bits. This shows that within the given framework of the simulation, if the 

training of the network has been done using evolution it produces better results in recalling the 

erroneous patterns. 

 

Figure 1: Comparison Graph of Recalling Success with 3-bits error induced in prototype input 

patterns using both approaches – storing with evolution and without evolution of weight matrices  

 
 

Figure 2: Comparison Graph of Recalling Success with 4-bits error induced in prototype input 

patterns using both approaches – storing with evolution and without evolution of weight matrices  
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Figure 1 and 2 are presenting the comparison chart of performance of two approaches (i.e. recall 

by GA after storing without and with evolution of weight matrices methods) graphically based on 

results provided in Tables 4 and 5.  

 

The simulation program was developed in MATLAB 7.0. Due to limitation of resources, we 

could execute only 5-runs (i.e. for no error, 1-bit error, 2-bit error, 3-bit error and 4-bit error) and 

could not go beyond that.  
 

5.  CONCLUSION 
 
In the present paper, we have implemented a genetic algorithm for storing the patterns in 

Hopfield Neural Network Associative Memory and later recalling these patterns with induced 

noise again using GA. The implementation yielded encouraging results but the work is still in 

early stage and the model is to be tested on a larger data set with a larger induced errors. Also, 

due to the limited computational power, the network size tested has been limited to 36 nodes 

which may be increased to the higher side. 
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