
DOI: 10.5121/ijsc.2012.3302 13

A COMPARISON OF PARTICLE SWARM

OPTIMIZATION AND DIFFERENTIAL EVOLUTION

Vu Truong Vu

Ho Chi Minh City University of Transport, Faculty of Civil Engineering

No.2, D3 Street, Ward 25, Binh Thanh District, HCMC, Viet Nam
 vutruongvu@gmail.com

ABSTRACT

Two modern optimization methods including Particle Swarm Optimization and Differential Evolution are

compared on twelve constrained nonlinear test functions. Generally, the results show that Differential

Evolution is better than Particle Swarm Optimization in terms of high-quality solutions, running time and

robustness.

KEYWORDS

Particle Swarm Optimization, Differential Evolution

1. INTRODUCTION

As early as 1975, Holland [1] published the primary book of Genetic Algorithms, one of the most

attractive modern optimization methods so far. Other modern methods have been introduced

since then. Some well-known methods are listed chronologically here. Kirkpatrick et al. [2] with

Simulated Annealing in 1983, Glover [3] with Tabu Search in 1986, Dorigo et al. [4] with Ant

System in 1991 and later version Ant Colony Optimization [5] in 1999, Kennedy and Eberhart

[6, 7] with Particle Swarm Optimization in 1995, Storn and Price [8] with Differential Evolution

in 1995. It should be noted that all modern optimization techniques in this study belong to

stochastic class of optimization and have some common characteristics such as being based on

nature, using probabilistic rules, and only using objective function information. The methods

have proven their usefulness in real problems in which the objective functions and constraints are

not continuous and non-differentiable.

The “No Free Lunch” theorem [9] states that no algorithm is perfect or in another words, each

method has its own advantages and disadvantages. As a result, each method is only effective in

certain problems. However this does not mean that all comparisons are unnecessary. At most, a

comparison provides insight into the algorithms. At least, it shows which type of problem is

suitable for which algorithm. From this light, one can select the most suitable each algorithm for a

particular situation. Two methods Swarm Optimization and Differential Evolution which are

originally applied to continuous variables will be compared in this study.

2. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart in 1995 [6, 7, 10],

simulates the behaviour of bird flocks searching for targets. During searching, each individual

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

14

continuously adjusts its position/movement according to its own experience (its best position so

far) and its neighbourhood experience (the best position obtained by its neighbourhood). This

simulation was introduced to optimization of nonlinear, multi-dimensional functions with the

similarity given in Table 1.

In the original version of PSO [6, 7], each particle position and velocity are updated in the form:

)x-p(cr+)x-p(cr+v=v k

ij

k

gj

k

j2

k

ij

k

ij

k

j1

k

ij

1+k

ij (1)

1+k

ij

k

ij

1+k

ij v+x=x (2)

where i = 1, 2, . . ., N, and N is the size of the swarm

j = 1, 2, . . ., D, and D is the number of dimensions of the problem

k = 1, 2, . . ., Iter, and Iter is the maximum iteration number
k

ijx is the position of particle i, dimension j, at iteration k. The position is also parameter

of the problem
k

ijv is the velocity (position change in a unit time step) of particle i, dimension j, at

iteration k

c is an acceleration constant, c = 2

r1, r2 are independent random numbers, uniformly distributed in (0, 1)
k

ijp is the personal best position of particle i, dimension j, at iteration k

k

gjp is the neighbourhood’s best position, dimension j, at iteration k

There are two models of PSO, one with a global neighbourhood and another with a local

neighbourhood. In the global model, a particle has information of its own and of the entire

population, whereas in the local model, a particle has information of its own and its nearest

neighbours. The global model, which is faster than the local model [11], is described in the

algorithm for a minimization problem as shown in Fig. 1. Based on the basic Eq. (1), many

variants of PSO are developed. Each part in the right-hand side of Eq. (1) has its own meaning.

- The first term, vij, is a momentum. An attempt to remove this value from the algorithm leads to

ineffectiveness at finding global optima, as Kennedy et al. [7] pointed out.

- The second term is the cognitive component that relates to individual experience. This

component represents the distance from current particle position to its best position so far. The

cognitive component represents the natural tendency of individuals to return to environments

where they experienced their best performance [12].

- The third term is the social component that shows the collaboration among particles. It

represents the distance from a current particle position to the best position of the whole swarm (in

global model) or its neighbourhood (in local model). This component represents the tendency of

individuals to follow the success of other individuals [12].

Two versions of PSO will be studied in the paper. They are Inertia weight variant introduced by

Shi et al. [13, 14], and Constriction factor variant proposed by Clerc [15], Clerc et al. [16].

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

15

Table 1 The similarity between bird flock’s properties and optimization problem in

Particle Swarm Optimization

Bird flock’s properties Optimization problem

Particle (or Individual) Variable

Swarm (or Population) Set of variables

Neighbourhood Subset/Set of variables

3 dimensions D dimensions

Particle position Variable value

Particle velocity Variable increment

Search target Objective function

2.1. Inertia weight variant (PSO-1)

Shi et al. [13] introduced a modified PSO in which the Eq. (1) is changed into

)x(prc)x(prcωvv k

ij

k

gj

k

2j2

k

ij
k

ij

k

1j1

k

ij

1k

ij −+−+=
+

 (3)

where, ω is the inertia weight; c1, c2 are two positive constants, called cognitive and social

parameters respectively.

The velocity in Eq. (3) is limited by a maximum velocity, vmax. This limit reduces the excessive

step size in Eq. (2). The maximum velocity is computed as

vmax = cv(xmax – xmin) (4)

where cv is a maximum velocity coefficient, xmax and xmin are the maximum and minimum

positions of a particle.

The recommended choice in [7] for constants c1 and c2 is 2 since on average it makes the weights

for cognitive and social parts to be 1.

Coefficient ω is used to contain the explosion as particles velocities and positions move toward a

boundary. While a large inertia weight ω favours a global search, a small value supports a local

search. A suitable selection of the inertia weight can provide a balance between global and local

exploration abilities [14]. Playing such a role, naturally its value should be large in early phase of

search in order to reduce omitting potential targets. Once a search area is found, small value of ω

may be suitable for refining the search. As proposed in [14], ω decreases linearly from 0.9 to 0.4

combined with the limit of the velocity vmax.

2.2. Constriction factor variant (PSO-2)

Instead of using the inertia weight and velocity clamping, Clerc [15], Clerc et al. [16] introduced

a constriction factor χ. In this case, the Eq. (1) becomes

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

16

))x(prc)x(prcχ(vv k

ij

k

gj

k

2j2

k

ij

k

ij

k

1j1

k

ij

1k

ij −+−+=
+

 (5)

where
|42|

2
χ

2
ϕϕϕ −−−

= , φ = c1 + c2, and φ > 4

This method can prevent explosion and more importantly induces particles to converge on a

steady state. Unlike the inertia weight variant, this method does not need a velocity limit [16],

although the use of it may improve performance, for example, in [17] and [18]. Comparing

inertia weights and constriction factors can be seen in [17] where the conclusion is in favour of

the constriction factor variant.

2.3. Suggestions on choice of parameters

Some authors investigated the optimal choice of parameters. Eberhart et al. [19] showed that

population size N is problem-dependent. Sizes of 20-50 are most common. This size is usually

smaller than that of other evolutionary algorithms. Carlisle et al. [18] showed that for general

problems, the optimal value of φ is 4.1 along with c1 = 2.8, c2 = 1.3, population N = 30 and

maximum velocity vmax is set to zero at maximum position xmax.

For each particle xi, i = 1, N

 Initialize random positions and velocities on D dimensions.

 Evaluate objective function, f(xi)

 Assign pi = xi and f(pi) = f(xi)

 If f(xi) < f(pg) then

f(pg) = f(xi)

pg = xi

End If

End For

Repeat

For each particle xi, i = 1, N

Update particle velocity and position using

)-()-(21

1 k

ij

k

gj

k

j

k

ij

k

ij

k

j

k

ij

k

ij xpcrxpcrvv ++=
+

, j = 1, D
1+k

ij

k

ij

1+k

ij v+x=x

Evaluate objective function, f(xi)

Compare f(xi) with particle’s previous best value, f(pi)

If f(xi) < f(pi) then

f(pi) = f(xi)

pi = xi

End If

Compare f(xi) with neighbourhood’s previous best, f(pg)

If f(xi) < f(pg) then

f(pg) = f(xi)

pg = xi

End If

End For

Until maximum iteration or minimum criterion is met.

Fig. 1 Particle Swarm Optimization algorithm for minimization problem.

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

17

3. DIFFERENTIAL EVOLUTION

Differential Evolution (DE), invented by Storn and Price [8, 20-22], is based on the idea of

employing information within the vector population to alter the search space. This operation is

called “mutation”. DE also borrows the idea from Evolution Strategy such as “population”,

“crossover” in which components are mixed, and “selection” in which the best is reserved for the

next generation.

Let us consider a population of D-dimensional vectors xi,G i = 1, 2,…, N as a population for each

generation G, vi,G+1 as a mutant vector in generation (G + 1) and ui,G+1 as a trial vector in

generation (G + 1). Three operators in DE are described as follows.

• Mutation:

vi,G+1 = xr1,G + FM(xr2,G – xr3,G) i = 1, 2,…, N (6)

where r1, r2, r3 are random numbers in [1, N], integer, mutually different, and different from the

running index i; FM is mutation constant in [0, 2]], i.e. 0 ≤ FM ≤ 2.

• Crossover:

ui,G+1 = (u1i,G+1, u2i,G+1,…, uDi,G+1) (7)

where 2,...D 1, j ,
k j and CR)(r if x

k jor CR) (r if v
u

Gji,

1Gji,

1Gji, =





≠>

=≤
=

+

+

CR is the crossover constant in [0, 1], r is random number in (0, 1)), i.e. 0 < r < 1, k is a random

integer number in [1, D] which ensures that ui,G+1 gets at least one component from vi,G+1.

• Selection:

otherwise x

)f(x)f(u if u
 x

Gi,

Gi,1Gi,1Gi,

1Gi,



 <

=
++

+
 (8)

where f(xi,G+1) is the objective function.

For this variant of DE, the notation DE/rand/1/bin (DE-1, for brevity) is introduced where rand

denotes a randomly chosen population vector for mutation, 1 is the number of difference vectors

used, and bin is the crossover scheme due to independent binomial experiments. Algorithm of this

variant for a minimization problem is shown in Fig. 2.

Another variant proved to be useful is DE/best/2/bin (DE-2, for brevity), where best means the

vector of lowest objective function to be mutated, 2 is the number of difference vectors used [22].

In this variant, Eq. (6) becomes

vi,G+1 = xbest,G + FM(xr1,G + xr2,G – xr3,G – xr4,G) (9)

According to [23], variant DE-2 seems to be better than DE-1 because DE-2 can generate more

different trial vectors than DE-1. For example, with a population of six individuals, 360 different

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

18

trial vectors can be generated by DE-2 but only 30 for DE-1. On the other hand, using the best

vector in DE-2 makes the population tend to the local minimum.

3.1. Suggestion on choice of parameters

There are three parameters in DE with the range suggested as follows.

• Population size N: N is at least 4 in DE-1 or at least 5 in DE-2 to make sure there are

sufficient materials for mutation. It ranges between 5*D and 10*D in [20], or

between 1.5*D and 2*D in [24], or from 3*D to 8*D in [23], from 1.5*D to 3.8*D in

optimization of four nonlinear constrained functions [25].

• Mutation constant FM: It is normally between 0.4 and 1, with 0.5 as a good initial

choice. If premature convergence occurs, N and/or FM should be increased [20].

Larger FM increases the probability of escaping a local minimum but for FM > 1 the

convergence decreases. A good initial choice is 0.6 [23]. Choice of 0.9 in

optimization of four nonlinear constrained functions [25] is reasonable.

• Crossover constant CR: The larger the value of CR, the faster and riskier the

convergence. A first good choice is 0.9 or 1 to quickly see the possible solution [20],

a choice of 0.1 will slow down convergence but be more thorough. According to

[23], CR varies form 0.3 to 0.9. A suitable value of 0.9 in optimization of four

nonlinear constrained functions is given in [25].

4. CONSTRAINT HANDLING TECHNIQUES

The two optimization methods mentioned above were originally developed for unconstrained

optimization problems. In order to apply them to constrained optimization problems, a typical

form of most real-world problems, constraint-handling techniques are needed. Comprehensive

overviews of the most popular constraint-handling techniques currently used with heuristic

methods can be found in Michalewicz and Fogel [26], Coello [27]. In the paper, a method that

makes a clear distinction between feasible solutions and infeasible solutions will be adopted.

In this method, the comparison of two solutions follows the rule suggested by Jimenez et al. [28]:

(i) for two feasible solutions, the one with better objective function value is chosen, (ii) for one

feasible solution and one infeasible solution, the feasible solution is chosen, and (iii) for two

infeasible solutions, the one with smaller constraint violation is chosen. This method requires no

additional coefficient and gives a natural approach to the feasible zone from trials in the

infeasible zone. Pulido et al. [29], Zavala et al. [30] applied the similar rule to PSO. Lampinen

[25] and Montes et al. [31] also applied this rule to DE.

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

19

For i = 1, N

 For j = 1, D

 Initialize random values xji,G1

 End For

 Evaluate objective function, f(xi,G1)

End For

Repeat

For i = 1, N

 Generate 3 integer random numbers r1 ≠ r2 ≠ r3 ≠ i∈ [1,

N]

 Generate integer random number k∈[1, D]

For j = 1, D

 Generate random number r∈(0,1)

 If ((r ≤ CR) or (j = D)) then

uki,G2 = xjr1,G1 + FM(xjr2,G1 – xjr3,G1)

 Else

 uki,G2 = xji,G1

 End If

 k = (k + 1) modulo D

End For

Evaluate objective function, f(ui,G2)

If f(ui,G2) < f(xi,G1) then

xji,G2 = uji,G1

 Else

xji,G2 = xji,G1

End If

End For

For i = 1, N

For j = 1, D

 Update xji,G1 = xji,G2

 End For

End For

Until maximum iteration or minimum criterion is met.

Fig. 2 Differential Evolution algorithm (DE-1) for minimization problem.

5. SETTING NUMERICAL EXPERIMENTS

5.1. The experimentation goals and performance measures

The experimentation goals should be considered when assessing the effectiveness of algorithms

and comparing them. Barr [32] suggested the following criteria:

- Accurate: identifying higher-quality solutions than other approaches.

- Fast: producing high-quality solutions quicker than other approaches.

- Robust: less sensitive to differences in problem characteristics and choices of the

initial variables than other approaches.

- Simple: easy to implement (less number of code lines and parameters).

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

20

5.2. Test functions

A constrained optimization problem has the following type:

 Minimise f(x) x∈Rn (10)

 Subject to gj(x) ≥ 0, j = 1, …, q

 hk(x) = 0, k = 1, …, p

u

ii

l

i xxx ≤≤ , i = 1, …, n

where x is a vector of size n, f(x) is the objective function, gj(x) is the jth inequality constraint,

hk(x) is the k
th
 equality constraints, and]x,[x u

i

l

i are the lower and upper bounds of the variable xi.

Twelve test functions have been taken randomly from Hock and Schittkowski [33], Himmelblau

[34]. Information on them is shown in Table 2 and details of functions can be seen in the

appendix. Test functions are grouped in four objective function types: linear, quadratic,

polynomial and general type. Each type in turn has three constraint types: quadratic, polynomial

and general type. The published optimal or best-known solutions, xmin, of all test examples were

found with constraint violations which are below a tolerance, ε, of 10-7. For compatibility with

published solutions, the tolerance will be the same, i.e., ε =10
-7

.

Table 2 Information of test functions

Function Objective

function

type

Constraint

type

Inequality

constraints

Equality

constraints

No. of

variables

Best-known

solution, fmin

f1 Linear Quadratic 6 0 8 7049.330923

f2 Linear Polynomial 2 0 4 727.67937

f3 Linear General 2 0 3 0.5181632741

f4 Quadratic Quadratic 6 0 5 -30665.53867

f5 Quadratic Polynomial 1 0 2 1.0

f6 Quadratic General 8 3 10 -1768.80696

f7 Polynomial Quadratic 2 0 2 -6961.81381

f8 Polynomial Polynomial 1 1 4 17.0140173

f9 Polynomial General 2 3 4 5126.4981

f10 General Quadratic 3 0 2 -7.804226324

f11 General Polynomial 0 3 5 0.0539498478

f12 General General 0 3 10 -47.76109026

5.3. Setting parameters of methods

Parameters are based on suggestions of each method as mentioned above. Combinations of

parameters are also tried to find the best one. Each function will be tested with 50 independent

runs. The number of trials for each run is fixed, Imax = 3x106. Parameters for variants of PSO and

DE are used as follows.

Population, N 30

Maximum iteration, Iter 10
5
 (� No. of maximum trial Imax = N x Iter = 3x10

6
)

For variant PSO-1 c1 = 2, c2 = 2, ω decreases linearly from 0.9 to 0.4, cv = 0.5

For variant PSO-2 There are 9 pairs of (c1, c2) which satisfy the relation c1+c2 = 4.1

to be used for determination of the best combination. They are

(c1, c2) = (0.3, 3.8), (1.0, 3.1), (1.3, 2.8), (1.7, 2.4), (2.05, 2.05),

(2.4, 1.7), (2.8, 1.3), (3.1, 1.0), (3.8, 0.3).

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

21

For variants DE-1, DE-2 There are 6 pairs of (CR, FM) to be used for determination of the

best combination, including (CR, FM) = (0.1, 0.5), (0.1, 1.0),

(0.5, 0.5), (0.5, 1.0), (1.0, 0.5), (1.0, 1.0)

6. RESULTS

6.1. Quality of solutions

• As shown in Table 3, PSO-1 obtained 2 solutions better than best-known solutions while

the corresponding values of PSO-2, DE-1, DE-2 are 3, 5 and 7 respectively. Generally,

the solution quality decreases in the order: DE-2, DE-1, PSO-2 and PSO-1. Therefore,

two variants DE-2 and PSO-2 represented for the two methods will be discussed next.

• For PSO-2, combinations with c1 ≥ c2 give better solutions than those with c1 < c2. For

DE-2, in overall the combination (CR = 1.0, FM = 0.5) is the best.

• For all test functions, the best solutions of DE are always better than or as good as those

of PSO. In addition, other best results of DE are approximate to best-known solutions,

except the function f6. Reason of discrepancy is still unknown and this makes the use of

DE and PSO as global optimization methods with some carefulness. Best solutions of

methods are listed in Table 4. Details of result are given in Table 5 and Table 6.

6.2. Running time

Besides the quality of solution which is the most important factor for evaluation of an algorithm,

running time only has meaning if the solution quality is good enough. In this light, the results in

Table 7 show that running time of DE-2 is faster than that of PSO-2 from 1.1 to 4.4 times

depending on problems, except for function f10.

6.3. Robustness

• From Table 7, it is seen that the number of runs which found best solutions of DE-2 are

always higher than or equal to that of PSO-2. The rate of feasible trials is the ratio

between the number of feasible trials and the total trials. In general, the rate of feasible

trials of DE-2 is higher than that of PSO-2. Besides, number of runs in DE-2 which could

not find any feasible solution is the least.

• Again, from Table 5 and Table 6, combinations with c1 ≥ c2 give better rate of feasible

trials than combinations with c1 < c2 in PSO-2; and the combination (CR = 1.0, FM = 0.5)

is the best for the rate of feasible trials in DE-2.

6.4. Simplicity

DE-2 and PSO-2 have the same 4 parameters. For method complexity, there are about 40 code

lines for PSO-2 and 70 code lines for DE-2 in the main loop.

7. CONCLUSION

Generally, DE-2 is better than PSO-2 in terms of solution quality, running time and chance of

reaching the best solutions in a variety of problems. In the other hand, number of code lines of

PSO-2 is the least. In the author’s viewpoint, the best method for the twelve test functions is DE-

2. It is also worth noting that this conclusion is based on results of test functions which cover a

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

22

variety of types such as linear, quadratic, polynomial and general functions; with given

parameters and the constraint handling techniques associated with the algorithms.

Table 3 Minimum values of objective function after 50 testing runs

(Bold values mean that the solutions are equal to or better than best-known solutions)

Func.
Minimum value of objective functions

PSO-1 PSO-2 DE-1 DE-2 Best-known

f1 7469.04471 7053.817430 7049.246945 7049.246506 7049.330923

f2 727.674508 727.674485 727.674443 727.674443 727.679370

f3 0.5181667914 0.5436562994 0.5181631954 0.5181631954 0.5181632741

f4 -30665.53902 -30665.53902 -30665.53902 -30665.53902 -30665.53867

f5 0.9907383666 0.9907383666 0.9907383666 0.9907383666 1.0000

f6 -1221.54117 -1477.62925 -1278.07878 -1690.00300 -1768.80696

f7 -6961.81111 -6961.81111 -6961.81111 -6961.81111 -6961.81381

f8 23.8848784 19.0024993 20.2730530 17.0140172 17.0140173

f9 5126.6299 5126.9172 5126.5157 5126.4983 5126.4981

f10 -7.802786736 -7.802786736 -7.802786736 -7.802786736 -7.804226324

f11 0.4561284690 0.0645899015 0.4524708138 0.0539498394 0.0539498478

f12 -42.67380277 -47.37065154 -47.67061450 -47.44572377 -47.76109026

Table 4 Best solutions, xmin, of two methods

Function PSO-2 DE-2

f1

(634.3674968, 1250.0134128,

5169.4365273, 186.4438325,

293.2225136, 213.5562164,

293.2213678, 393.2225258)

(579.4606149, 1359.8756712,

5109.9102202, 182.0305765,

295.6035661, 217.9694724,

286.4270592, 395.6035784)

f2
(193.4090071, 179.5210305,

185.0854729, 168.6589740)

(193.4077513, 179.5462924,

185.0160256, 168.7043735)

f3 (0.0, 0.9999998, 2.7182814) (0.1841265, 1.2021678, 3.3273220)

f4
(78.0, 33.0, 29.9952492,

45.0, 36.7758311)

(78.0, 33.0, 29.9952492,

45.0, 36.7758311)

f5 (1.0046415, 0.0) (1.0046415, 0.0)

f6

(1746.9672310, 15995.7276777,

63.2719138, 3071.2845436,

2000.0, 87.3578034,

94.0349684, 10.3011250,

2.5096923, 150.6019638)

(1648.4425610, 14406.1129388,

57.2832896, 2935.8537982,

1933.2991566, 90.7273299,

95.0, 9.9120298,

1.5640451, 153.5349454)

f7 (14.0950011, 0.8429632) (14.0950011, 0.8429632)

f8 (1.0, 3.4347215, 5.0, 1.4841454) (1.0, 4.7429996, 3.8211499, 1.3794082)

f9
(688.8741362, 1016.5435397,

0.1125169, -0.3992564)

(679.9453373, 1026.0671532,

0.1188763, -0.3962335)

f10 (13.5501432, 51.6599703) (13.5501432, 51.6599705)

f11
(-1.7130059, 1.5909154, 1.7775005,

0.5445980, 1.0385103)

(-1.7171435, 1.5957097, 1.8272457,

0.7636430, 0.7636430)

f12

(-96.6741714, -98.6387642,

-1.5556892, -6.5901656,

-0.6945218, -100.0,

-99.5173022, -99.9970261,

-41.9674309, -15.1797737)

(-3.2354681, -8.0191455,

-0.0202026, -82.8016103,

-0.6931470, -41.2589767,

-92.5399330, -4.7868082,

-5.1446518, -17.5464207)

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 23

Table 5 Results of PSO-2 with different combinations (c1, c2)

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 24

Table 6 Results of DE-2 with different combinations (CR, FM)

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 25

Table 7 Data after 50 testing runs, each test has 3x106 trials

(Bold values mean that the solutions are equal to or better than best-known solutions)

Func.

Running time per test

(s)

Number of

runs which

found best

solutions

Rate of

feasible trials

(%)

Number of

runs which could

not find any feasible

solution

PSO-2

(t1)

DE-2

(t2)
t1/t2 PSO-2

DE-

2
PSO-2 DE-2 PSO-2 DE-2

f1 21.439 4.924 4.4 1 1 67.115 36.033 0 0

f2 5.292 4.111 1.3 1 48 85.047 46.150 0 0

f3 14.107 4.392 3.2 47 12 75.954 73.155 3 0

f4 17.461 7.453 2.3 50 50 77.725 99.307 0 0

f5 15.333 5.647 2.7 2 13 99.997 99.995 0 0

f6 16.312 7.945 2.1 1 1 6.489 32.712 11 11

f7 12.673 8.872 1.4 43 45 67.338 77.638 5 5

f8 8.356 7.289 1.1 1 4 4.612 81.748 0 0

f9 15.419 7.067 2.2 1 4 49.283 65.354 11 0

f10 15.587 22.051 0.7 1 1 94.983 99.428 0 0

f11 12.456 11.483 1.1 1 1 15.794 45.375 0 0

f12 36.630 18.408 2.0 1 1 43.428 49.358 0 0

REFERENCES

[1] Holland, J. H., (1975), Adaptation in natural and artificial systems, University of Michigan Press Ann

Arbor.

[2] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., (1983), "Optimization by Simulated Annealing,"

Science, Vol. 220, No. 4598, pp. 671-680.

[3] Glover, F., (1986), "Future paths for integer programming and links to artificial intelligence,"

Computers and Operations Research, Vol. 13, No. 5, pp. 533-549.

[4] Dorigo, M., Maniezzo, V., and Colorni, A., (1991), "Positive feedback as a search strategy,"

Technical Report 91-016, Dipartimento di Elettronica, Politecnico de Milano, Italy.

[5] Dorigo, M., and Caro, G. D., (1999), "The ant colony optimization meta-heuristic," New Ideas in

Optimization, D. Corne, M. Dorigo, and F. Glover, eds., McGraw-Hill, Maidenhead, UK.

[6] Eberhart, R., and Kennedy, J., (1995), "A new optimizer using particle swarm theory," Proc.

Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya,

Japan, Piscataway, NJ: IEEE Service Center, pp. 39-43.

[7] Kennedy, J., and Eberhart, R., (1995), "Particle swarm optimization," Proc. Proceedings of IEEE

International Conference on Neural Networks, Piscataway, NJ, pp. 1942-1948.

[8] Storn, R., and Price, K., (1995), "Differential Evolution - A simple and efficient adaptive scheme for

global optimization over continuous spaces," Technical Report TR-95-012, International Computer

Science Institute, Berkeley.

[9] Wolpert, D. H., and Macready, W. G., (1997), "No free lunch theorems for optimization," IEEE

Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 67-82.

[10] Kennedy, J., Eberhart, R. C., and Shi., Y., (2001), Swarm intelligence, Morgan Kaufmann Publishers,

San Francisco.

[11] Hu, X., and Russell, C. E., (2002), "Solving constrained nonlinear optimization problems with

particle swarm optimization," Proceedings of the 6th World Multiconference on Systemics,

Cybernetics and Informatics (SCI 2002) Orlando, USA.

[12] Van Den Bergh, F., and Engelbrecht, A. P., (2006), "A study of particle swarm optimization particle

trajectories," Information Sciences, Vol. 176, No. 8, pp. 937-971.

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 26

[13] Shi, Y., and Eberhart, R., (1998), "A modified particle swarm optimizer," Proc. Proceedings of the

IEEE Conference on Evolutionary Computation, pp. 69-73.

[14] Shi, Y., and Eberhart, R. C., (1998), "Parameter selection in particle swarm optimization," Proc.

Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary

Programming,, V. W. Porto, N. Saravanan, D. E. Waagen, and A. E. Eiben, eds., Springer-Verlag,

NewYork, pp. 591-600.

[15] Clerc, M., (1999), "The swarm and the queen: Towards a deterministic and adaptive particle swarm

optimization," Proc. Proceedings of the 1999 Congress on Evolutionary Computation, P. J. Angeline,

Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, eds., pp. 1951-1957.

[16] Clerc, M., and Kennedy, J., (2002), "The particle swarm-explosion, stability, and convergence in a

multidimensional complex space," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1,

pp. 58-73.

[17] Eberhart, R. C., and Shi, Y., (2000), "Comparing inertia weights and constriction factors in particle

swarm optimization," Proc. Proceedings of the IEEE Conference on Evolutionary Computation, San

Diego, CA., pp. 84-88.

[18] Carlisle, A., and Dozier, G., (2001), "An off-the-shelf PSO," Proc. Proceedings of the Workshop on

Particle Swarm Optimization, Indianapolis, IN, pp. 1-6.

[19] Eberhart, R. C., and Shi, Y., (2001), "Particle swarm optimization: Developments, applications and

resources," Proc. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, pp. 81-

86.

[20] Storn, R., and Price, K., (1997), "Differential Evolution - A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces," Journal of Global Optimization, Vol. 11, No. 4, pp. 341-359.

[21] Storn, R., and Price, K., (1996), "Minimizing the real functions of the ICEC'96 contest by differential

evolution," Proc. Proceedings of the IEEE Conference on Evolutionary Computation, Nagoya, Japan,

pp. 842-844.

[22] Price, K. V., (1996), "Differential evolution: a fast and simple numerical optimizer," Proc. Biennial

Conference of the North American Fuzzy Information Processing Society - NAFIPS,, M. Smith, M.

Lee, J. Keller, and J. Yen, eds., IEEE Press, New York, pp. 524-527.

[23] Gamperle, R., Muller, S. D., and Koumoutsakos, P., (2002), "A parameter study for differential

evolution," Proc. Advances in Intelligent Systems, Fuzzy Ststems, Evolutionary Computation,, A.

Grmela, and N. E. Mastorakis, eds., WSEAS Press, pp. 293-298.

[24] Mayer, D. G., Kinghorn, B. P., and Archer, A. A., (2005), "Differential evolution - An easy and

efficient evolutionary algorithm for model optimisation," Agricultural Systems, Vol. 83, No. 3, pp.

315-328.

[25] Lampinen, J., (2001), "Solving problems subject to multiple nonlinear constraints by the differential

evolution," Proc. Proceedings of MENDEL 2001, 7th International Conference on Soft Computing,

R. Matousek, and P. Osmera, eds., Brno, Czech Republic, pp. 50-57.

[26] Michalewicz, Z., and Fogel, D. B., (2000), How to solve it : modern heuristics, Springer, Berlin.

[27] Coello Coello, C. A., (2002), "Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: a survey of the state of the art," Computer Methods in Applied Mechanics

and Engineering, Vol. 191, No. 11-12, pp. 1245-1287.

[28] Jimenez, F., Verdegay, J. L., and Gomez-Skarmeta, A. F., (1999), "Evolutionary techniques for

constrained multiobjective optimization problems," Proc. Proceedings of the workshop on multi-

criterion optimization using evolutionary methods held at genetic and evolutionary computation

conference (GECCO-1999), pp. 115-116.

[29] Pulido, G. T., and Coello, C. A. C., (2004), "A constraint-handling mechanism for particle swarm

optimization," Proc. Proceedings of the 2004 Congress on Evolutionary Computation, Piscataway,

NJ, pp. 1396-1403.

[30] Zavala, A. E. M., Aguirre, A. H., and Villa Diharce, E. R., (2005), "Constrained optimization via

Particle Evolutionary Swarm Optimization algorithm (PESO)," Proc. GECCO 2005 - Genetic and

Evolutionary Computation Conference, Washington, DC, pp. 209-216.

[31] Mezura-Montes, E., Coello, C. A. C., and Tun-Morales, E. I., (2004), "Simple feasibility rules and

differential evolution for constrained optimization," Proc. Lecture Notes in Artificial Intelligence

(Subseries of Lecture Notes in Computer Science), pp. 707-716.

[32] Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C., and Stewart, W. R., (1995), "Designing

and reporting on computational experiments with heuristic methods," Journal of Heuristics, Vol. 1,

No. 1, pp. 9-32.

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 27

[33] Hock, W., and Schittkowski, K., (1981), Test Examples for Nonlinear Programming Codes, Lecture

notes in economics and mathematical systems, Springer-Verlag New York, Secaucus.

[34] Himmelblau, D. M., (1972), Applied Nonlinear Programming, McGraw-Hill Book Company, New

York.

Appendix: 12 test functions

f1

Objective function: f(x) = x1 + x2 + x3

Constraints:

1 – 0.0025(x4 + x6) ≥ 0

1 – 0.0025(x5 + x7 – x4) ≥ 0

1 – 0.01(x8 – x5) ≥ 0

x1x6 – 833.33252x4 – 100x1 + 83333.333 ≥ 0

x2x7 – 1250x5 – x2x4 + 1250x4 ≥ 0

x3x8 – 1250000 – x3x5 + 2500x5 ≥ 0

100 ≤ x1 ≤ 10000

1000 ≤ xi ≤ 10000, i = 2, 3

10 ≤ xi ≤ 1000, i = 4,…, 8

Solution:

f(xmin) = 7049.330923

xmin = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)

f2
Objective function: f(x) = 1 + x1 + x2 + x3 + x4

Constraints:

0.0401 – 4/x1 – 2.25/x2 – 1/x3 – 0.25/x4 ≥ 0

0.010085 – 0.16/x1 – 0.36/x2 – 0.64/x3 – 0.64/x4 ≥ 0

0.001 ≤ xi ≤ 100000(5 – i), i = 1,…, 4

Solution:

f(xmin) = 727.67937

xmin = (193.4071, 179.5475, 185.0186, 168.7062)

f3

Objective function: f(x) = 0.2x3 – 0.8x1

Constraints:

x2 – exp(x1) ≥ 0

x3 – exp(x2) ≥ 0

0 ≤ x1 ≤ 100

0 ≤ x2 ≤ 100

0 ≤ x3 ≤ 10

Solution:

f(xmin) = 0.5181632741

xmin = (0.1841264879, 1.202167873, 3.327322322)

f4

Objective function: f(x) = 5.3578547x3
2
 + 0.8356891x1x5 + 37.293239x1 – 40792.141

Constraints:

92 ≥ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 – 0.0022053x3x5 ≥ 0

20 ≥ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x3
2
 – 90 ≥ 0

5 ≥ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 – 20 ≥ 0

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ xi ≤ 45, i = 3, 4, 5

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 28

Solution:

f(xmin) = -30665.53867

xmin = (78, 33, 29.99526, 45, 36.77581)

f5
Objective function: f(x) = (x1 – 2)

2
 + x2

2

Constraints:

 (1 – x1)
3
 – x2 ≥ 0

0 ≤ x1 ≤ 1000

0 ≤ x2 ≤ 1000

Solution:

f(xmin) = 1

xmin = (1, 0)

f6
Objective function: f(x) = 5.04x1 + 0.035x2 + 10x3 + 3.36x5 – 0.063x4x7

Constraints:

g1(x) = 35.82 – 0.222x10 – 0.9x9 ≥ 0

g2(x) = –133 + 3x7 – 0.99x10 ≥ 0

g3(x) = –g1(x) + x9(1/0.9 – 0.9) ≥ 0

g4(x) = –g2(x) + (1/0.99 – 0.99)x10 ≥ 0

g5(x) = 1.12x1 + 0.13167x1x8 – 0.00667x1x8
2
 – 0.99x4 ≥ 0

g6(x) = 57.425 + 1.098x8 – 0.038x8
2
 + 0.325x6 – 0.99x7 ≥ 0

g7(x) = –g5(x) + (1/0.99 – 0.99)x4 ≥ 0

g8(x) = –g6(x) + (1/0.99 – 0.99)x7 ≥ 0

g9(x) = 1.22x4 – x1 –x5 = 0

g10(x) = 98000x3/(x4x9 + 1000x3) – x6 = 0

g11(x) = (x2 + x5)/x1 – x8 = 0

0.00001 ≤ x1 ≤ 2000

0.00001 ≤ x2 ≤ 16000

0.00001 ≤ x3 ≤ 120

0.00001 ≤ x4 ≤ 5000

0.00001 ≤ x5 ≤ 2000

85 ≤ x6 ≤ 93

90 ≤ x7 ≤ 95

3 ≤ x8 ≤ 12

1.2 ≤ x9 ≤ 4

145 ≤ x10 ≤ 162

Solution:

f(xmin) = -1768.80696

xmin = (1698.096, 15818.73, 54.10228, 3031.226, 2000, 90.11537, 95, 10.49336, 1.561636, 153.53535)

f7

Objective function: f(x) = (x1 – 10)
3
 + (x2 – 20)

3

Constraints:

 (x1 – 5)
2
 + (x2 – 5)

2
 – 100 ≥ 0

–(x2 – 5)2 – (x1 – 6)2 + 82.81 ≥ 0

13 ≤ x1 ≤ 100

0 ≤ x2 ≤ 100

Solution:

f(xmin) = -6961.81381

xmin = (14.095, 0.84296079)

f8

Objective function: f(x) = x1x4(x1 + x2 + x3) + x3

Constraints:

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 29

x1x2x3x4 – 25 ≥ 0

x1
2
 + x2

2
 + x3

2
 + x4

2
 – 40 = 0

1 ≤ xi ≤ 5, i = 1,…, 4

Solution:

f(xmin) = 17.0140173

xmin = (1, 4.7429994, 3.8211503, 1.3794082)

f9

Objective function: f(x) = 3x1 + 1E-6x1
3
 + 2x2 + 2/3E-6x2

3

Constraints:

x4 – x3 + 0.55 ≥ 0

x3 – x4 + 0.55 ≥ 0

1000sin(-x3 – 0.25) + 1000sin(-x4 – 0.25) + 894.8 – x1 = 0

1000sin(x3 – 0.25) + 1000sin(x3 -x4 – 0.25) + 894.8 – x2 = 0

1000sin(x4 – 0.25) + 1000sin(x4 –x3 – 0.25) + 1294.8 = 0

0 ≤ xi ≤ 1200, i = 1, 2

-0.55 ≤ xi ≤ 0.55, i = 3, 4

Solution:

f(xmin) = 5126.4981

xmin = (679.9453, 1026.067, 0.1188764, -0.3962336)

f10

Objective function: f(x) = -75.196 + 3.8112x1 + 0.0020567x1
3
 – 1.0345E-5x1

4
 + 6.8306x2 – 0.030234x1x2 +

1.28134E-3x2x1
2
 + 2.266E-7x1

4
x2 – 0.25645x2

2
 + 0.0034604x2

3
 – 1.3514E-5x2

4
 + 28.106/(x2 + 1) +

5.2375E-6x1
2x2

2 + 6.3E-8x1
3x2

2 – 7E-10x1
3x2

3 – 3.405E-4x1x2
2 + 1.6638E-6x1x2

3 + 2.8673exp(0.0005x1x2)

– 3.5256E-5x1
3
x2 – 0.12694x1

2

Constraints:

x1x2 – 700 ≥ 0

x2 – x1
2
/125 ≥ 0

(x2 – 50)2 – 5(x1 – 55) ≥ 0

0 ≤ x1 ≤ 75

0 ≤ x2 ≤ 65

Solution:

f(xmin) = -7.804226324

xmin = (13.55010424, 51.66018129)

f11

Objective function: f(x) = exp(x1x2x3x4x5)

Constraints:

x1
2 + x2

2 + x3
2 + x4

2 + x5
2 – 10 = 0

x2x3 – 5x4x5 = 0

x1
3
 + x2

3
 + 1 = 0

-2.3 ≤ xi ≤ 2.3, i = 1, 2

-3.2 ≤ xi ≤ 3.2, i = 3, 4, 5

Solution:

f(xmin) = 0.0539498478

xmin = (-1.717143, 1.595709, 1.827247, -0.7636413, -0.763645)

f12
Objective function:

f(x) = ∑ ∑
= =

−+

10

1j

10

1k

kjjj)))exp(xln(x)(cexp(x

c1 = -6.089, c2 = -17.164, c3 = -34.054, c4 = -5.914, c5 = -24.721, c6 = -14.986, c7 = -24.100, c8 = -10.708, c9

= -26.662, c10 = -22.179

Constraints:

exp(x1) + 2exp(x2) + 2exp(x3) + exp(x6) + exp(x10) – 2 = 0

International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012

 30

exp(x4) + 2exp(x5) + exp(x6) + exp(x7) – 1 = 0

exp(x3) + exp(x7) + exp(x8) + 2exp(x9) + exp(x10) – 1 = 0

-100 ≤ xi ≤ 100, i = 1,…, 10

Solution:

f(xmin) = -47.76109026

xmin = (-3.201212, -1.912060, -0.2444413, -6.537489, -0.7231524, -7.267738, -3.596711, -4.017769, -

3.287462, -2.335582)

