
DOI: 10.5121/ijsc.2012.3302                                                                                                                         13 

 

 

A COMPARISON OF PARTICLE SWARM 

OPTIMIZATION AND DIFFERENTIAL EVOLUTION 
 

Vu Truong Vu 
 

Ho Chi Minh City University of Transport, Faculty of Civil Engineering 

No.2, D3 Street, Ward 25, Binh Thanh District, HCMC, Viet Nam 
 vutruongvu@gmail.com  

 

ABSTRACT 

 
Two modern optimization methods including Particle Swarm Optimization and Differential Evolution are 

compared on twelve constrained nonlinear test functions. Generally, the results show that Differential 

Evolution is better than Particle Swarm Optimization in terms of high-quality solutions, running time and 

robustness. 
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1. INTRODUCTION 

 
As early as 1975, Holland [1] published the primary book of Genetic Algorithms, one of the most 

attractive modern optimization methods so far. Other modern methods have been introduced 

since then. Some well-known methods are listed chronologically here. Kirkpatrick et al. [2] with 

Simulated Annealing in 1983, Glover [3] with Tabu Search in 1986, Dorigo et al. [4] with Ant 

System  in 1991 and later version Ant Colony Optimization [5] in 1999, Kennedy and Eberhart 

[6, 7] with Particle Swarm Optimization in 1995, Storn and Price [8] with Differential Evolution 

in 1995. It should be noted that all modern optimization techniques in this study belong to 

stochastic class of optimization and have some common characteristics such as being based on 

nature, using probabilistic rules, and only using objective function information. The methods 

have proven their usefulness in real problems in which the objective functions and constraints are 

not continuous and non-differentiable.  
 

The “No Free Lunch” theorem [9] states that no algorithm is perfect or in another words, each 

method has its own advantages and disadvantages. As a result, each method is only effective in 

certain problems. However this does not mean that all comparisons are unnecessary. At most, a 

comparison provides insight into the algorithms. At least, it shows which type of problem is 

suitable for which algorithm. From this light, one can select the most suitable each algorithm for a 

particular situation. Two methods Swarm Optimization and Differential Evolution which are 

originally applied to continuous variables will be compared in this study. 

 

2. PARTICLE SWARM OPTIMIZATION 
 
Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart in 1995 [6, 7, 10], 

simulates the behaviour of bird flocks searching for targets. During searching, each individual 
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continuously adjusts its position/movement according to its own experience (its best position so 

far) and its neighbourhood experience (the best position obtained by its neighbourhood). This 

simulation was introduced to optimization of nonlinear, multi-dimensional functions with the 

similarity given in Table 1. 

 

In the original version of PSO [6, 7], each particle position and velocity are updated in the form: 
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where  i = 1, 2, . . ., N, and N is the size of the swarm  

j = 1, 2, . . ., D, and D is the number of dimensions of the problem 

k = 1, 2, . . ., Iter, and Iter is the maximum iteration number 
k

ijx  is the position of particle i, dimension j, at iteration k. The position is also parameter 

of the problem 
k

ijv  is the velocity (position change in a unit time step) of particle i, dimension j, at 

iteration k 

c is an acceleration constant, c = 2 

r1, r2 are independent random numbers, uniformly distributed in (0, 1) 
k

ijp  is the personal best position of particle i, dimension j, at iteration k 

k

gjp  is the neighbourhood’s best position, dimension j, at iteration k 

 

There are two models of PSO, one with a global neighbourhood and another with a local 

neighbourhood. In the global model, a particle has information of its own and of the entire 

population, whereas in the local model, a particle has information of its own and its nearest 

neighbours. The global model, which is faster than the local model [11], is described in the 

algorithm for a minimization  problem as shown in Fig. 1. Based on the basic Eq. (1), many 

variants of PSO are developed. Each part in the right-hand side of Eq. (1) has its own meaning.  

 

- The first term, vij, is a momentum. An attempt to remove this value from the algorithm leads to 

ineffectiveness at finding global optima, as Kennedy et al. [7] pointed out.  

 

- The second term is the cognitive component that relates to individual experience. This 

component represents the distance from current particle position to its best position so far. The 

cognitive component represents the natural tendency of individuals to return to environments 

where they experienced their best performance [12]. 

 

- The third term is the social component that shows the collaboration among particles. It 

represents the distance from a current particle position to the best position of the whole swarm (in 

global model) or its neighbourhood (in local model). This component represents the tendency of 

individuals to follow the success of other individuals [12].  

 

Two versions of PSO will be studied in the paper. They are Inertia weight variant introduced by 

Shi et al. [13, 14], and Constriction factor variant proposed by Clerc [15], Clerc et al. [16]. 
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Table 1 The similarity between bird flock’s properties and optimization problem in  

Particle Swarm Optimization 

 

Bird flock’s properties Optimization problem 

Particle (or Individual) Variable 

Swarm (or Population) Set of variables 

Neighbourhood Subset/Set of variables 

3 dimensions D dimensions 

Particle position Variable value 

Particle velocity Variable increment 

Search target Objective function 

 

2.1. Inertia weight variant (PSO-1) 

 
Shi et al.  [13] introduced a modified PSO in which the Eq. (1) is changed into 
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where, ω is the inertia weight; c1, c2 are two positive constants, called cognitive and social 

parameters respectively. 

 

The velocity in Eq. (3) is limited by a maximum velocity, vmax. This limit reduces the excessive 

step size in Eq. (2). The maximum velocity is computed as 

 

vmax = cv(xmax – xmin)                          (4) 

 

where cv is a maximum velocity coefficient, xmax and xmin are the maximum and minimum 

positions of a particle. 

 

The recommended choice in [7] for constants c1 and c2 is 2 since on average it makes the weights 

for cognitive and social parts to be 1. 

 

Coefficient ω is used to contain the explosion as particles velocities and positions move toward a 

boundary. While a large inertia weight ω favours a global search, a small value supports a local 

search. A suitable selection of the inertia weight can provide a balance between global and local 

exploration abilities [14]. Playing such a role, naturally its value should be large in early phase of 

search in order to reduce omitting potential targets. Once a search area is found, small value of ω 

may be suitable for refining the search. As proposed in [14], ω decreases linearly from 0.9 to 0.4 

combined with the limit of the velocity vmax. 

 

2.2. Constriction factor variant (PSO-2) 

 
Instead of using the inertia weight and velocity clamping, Clerc [15], Clerc et al. [16] introduced 

a constriction factor χ. In this case, the Eq. (1) becomes 
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where   
|42|

2
χ

2
ϕϕϕ −−−

= , φ = c1 + c2, and φ > 4 

 
 

This method can prevent explosion and more importantly induces particles to converge on a 

steady state. Unlike the inertia weight variant, this method does not need a velocity limit [16], 

although the use of it may improve performance, for example, in [17] and [18].  Comparing 

inertia weights and constriction factors can be seen in [17] where the conclusion is in favour of 

the constriction factor variant.  
 

2.3. Suggestions on choice of parameters  
 

Some authors investigated the optimal choice of parameters. Eberhart et al. [19] showed that 

population size N is problem-dependent. Sizes of 20-50 are most common. This size is usually 

smaller than that of other evolutionary algorithms. Carlisle et al. [18] showed that for general 

problems, the optimal value of φ is 4.1 along with c1 = 2.8, c2 = 1.3, population N = 30 and 

maximum velocity vmax is set to zero at maximum position xmax.  
 

For each particle xi, i = 1, N 

 Initialize random positions and velocities on D dimensions. 

 Evaluate objective function, f(xi) 

 Assign pi = xi and f(pi) = f(xi) 

 If f(xi) < f(pg) then  

f(pg) = f(xi) 

pg = xi 

End If 

End For 

Repeat  

For each particle xi, i = 1, N 

Update particle velocity and position using 
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Evaluate objective function, f(xi) 

Compare f(xi) with particle’s previous best value, f(pi) 

If f(xi) < f(pi) then  

f(pi) = f(xi) 

pi = xi 

End If 

Compare f(xi) with neighbourhood’s previous best, f(pg) 

If f(xi) < f(pg) then  

f(pg) = f(xi) 

pg = xi 

End If 

End For 

Until maximum iteration or minimum criterion is met. 
 

Fig. 1 Particle Swarm Optimization algorithm for minimization problem. 
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3. DIFFERENTIAL EVOLUTION 

 
Differential Evolution (DE), invented by Storn and Price [8, 20-22], is based on the idea of 

employing information within the vector population to alter the search space. This operation is 

called “mutation”. DE also borrows the idea from Evolution Strategy such as “population”, 

“crossover” in which components are mixed, and “selection” in which the best is reserved for the 

next generation. 

 

Let us consider a population of D-dimensional vectors xi,G i = 1, 2,…, N as a population for each 

generation G, vi,G+1 as a mutant vector in generation (G + 1) and ui,G+1 as a trial vector in 

generation (G + 1). Three operators in DE are described as follows. 

 

• Mutation: 

 

vi,G+1 = xr1,G + FM(xr2,G – xr3,G)  i = 1, 2,…, N                                 (6) 

 

where  r1, r2, r3 are random numbers in [1, N], integer, mutually different, and different from the 

running index i; FM is mutation constant in [0, 2] ], i.e. 0 ≤ FM ≤ 2. 

 

• Crossover: 

 

ui,G+1  = (u1i,G+1, u2i,G+1,…, uDi,G+1)                                           (7) 
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CR is the crossover constant in [0, 1], r is random number in (0, 1) ), i.e. 0 < r < 1,  k is a random 

integer number in [1, D] which ensures that ui,G+1 gets at least one component from vi,G+1. 

 

• Selection:  
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where f(xi,G+1) is the objective function.  

 

For this variant of DE, the notation DE/rand/1/bin (DE-1, for brevity) is introduced where rand 

denotes a randomly chosen population vector for mutation, 1 is the number of difference vectors 

used, and bin is the crossover scheme due to independent binomial experiments. Algorithm of this 

variant for a minimization problem is shown in Fig. 2.  

 

Another variant proved to be useful is DE/best/2/bin (DE-2, for brevity), where best means the 

vector of lowest objective function to be mutated, 2 is the number of difference vectors used [22].  

In this variant, Eq.  (6) becomes 

 

vi,G+1 = xbest,G + FM(xr1,G + xr2,G – xr3,G –  xr4,G)                                     (9) 

 

According to [23], variant DE-2 seems to be better than DE-1 because DE-2 can generate more 

different trial vectors than DE-1. For example, with a population of six individuals, 360 different 
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trial vectors can be generated by DE-2 but only 30 for DE-1. On the other hand, using the best 

vector in DE-2 makes the population tend to the local minimum.  

 

3.1. Suggestion on choice of parameters  

 
There are three parameters in DE with the range suggested as follows. 

 

• Population size N: N is at least 4 in DE-1 or at least 5 in DE-2 to make sure there are 

sufficient materials for mutation. It ranges between 5*D and 10*D in [20], or 

between 1.5*D and 2*D in [24], or from 3*D to 8*D in [23], from 1.5*D to 3.8*D in 

optimization of four nonlinear constrained functions [25]. 

 

• Mutation constant FM: It is normally between 0.4 and 1, with 0.5 as a good initial 

choice. If premature convergence occurs, N and/or FM should be increased [20]. 

Larger FM increases the probability of escaping a local minimum but for FM > 1 the 

convergence decreases. A good initial choice is 0.6 [23]. Choice of 0.9 in 

optimization of four nonlinear constrained functions [25] is reasonable. 

 

• Crossover constant CR: The larger the value of CR, the faster and riskier the 

convergence. A first good choice is 0.9 or 1 to quickly see the possible solution [20], 

a choice of 0.1 will slow down convergence but be more thorough. According to 

[23], CR varies form 0.3 to 0.9. A suitable value of 0.9 in optimization of four 

nonlinear constrained functions is given in [25].  

 

4. CONSTRAINT HANDLING TECHNIQUES  

 
The two optimization methods mentioned above were originally developed for unconstrained 

optimization problems. In order to apply them to constrained optimization problems, a typical 

form of most real-world problems, constraint-handling techniques are needed. Comprehensive 

overviews of the most popular constraint-handling techniques currently used with heuristic 

methods can be found in Michalewicz and Fogel [26], Coello [27]. In the paper, a method that 

makes a clear distinction between feasible solutions and infeasible solutions will be adopted.  

 

In this method, the comparison of two solutions follows the rule suggested by Jimenez et al. [28]: 

(i) for two feasible solutions, the one with better objective function value is chosen, (ii) for one 

feasible solution and one infeasible solution, the feasible solution is chosen, and (iii) for two 

infeasible solutions, the one with smaller constraint violation is chosen. This method requires no 

additional coefficient and gives a natural approach to the feasible zone from trials in the 

infeasible zone. Pulido et al. [29], Zavala et al. [30] applied the similar rule to PSO. Lampinen 

[25] and Montes et al. [31] also applied this rule to DE. 
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For i = 1, N 

 For j = 1, D 

  Initialize random values xji,G1 

 End For 

 Evaluate objective function, f(xi,G1) 

End For 

Repeat  

For i = 1, N 

 Generate 3 integer random numbers r1 ≠ r2 ≠ r3 ≠ i∈  [1, 

N] 

 Generate integer random number k∈[1, D]   

For j = 1, D 

 Generate random number r∈(0,1) 

 If ((r ≤ CR) or (j = D)) then 

uki,G2 = xjr1,G1 + FM(xjr2,G1 – xjr3,G1) 

 Else 

  uki,G2 = xji,G1 

 End If 

 k = (k + 1) modulo D 

End For 

Evaluate objective function, f(ui,G2) 

If f(ui,G2) < f(xi,G1) then  

xji,G2 = uji,G1 

  Else 

xji,G2 = xji,G1 

End If 

End For 

For i = 1, N 

For j = 1, D 

  Update xji,G1 = xji,G2 

 End For 

End For 

Until maximum iteration or minimum criterion is met. 

 
Fig. 2 Differential Evolution algorithm (DE-1) for minimization problem. 

 

5. SETTING NUMERICAL EXPERIMENTS 

 
5.1. The experimentation goals and performance measures 

 
The experimentation goals should be considered when assessing the effectiveness of algorithms 

and comparing them. Barr [32] suggested the following criteria: 

 

- Accurate: identifying higher-quality solutions than other approaches. 

- Fast: producing high-quality solutions quicker than other approaches. 

- Robust: less sensitive to differences in problem characteristics and choices of the 

initial variables than other approaches. 

- Simple: easy to implement (less number of code lines and parameters). 

 



International Journal on Soft Computing (IJSC) Vol.3, No.3, August 2012 

20 

 

5.2. Test functions  
 
A constrained optimization problem has the following type: 

 

  Minimise f(x)  x∈Rn                       (10) 

  Subject to gj(x) ≥ 0, j = 1, …, q     

    hk(x) = 0, k = 1, …, p     

    
u

ii

l

i xxx ≤≤ , i = 1, …, n    

 

where x is a vector of size n, f(x) is the objective function, gj(x) is the jth inequality constraint, 

hk(x) is the k
th
 equality constraints, and ]x,[x u

i

l

i  are the lower and upper bounds of the variable xi. 

 

Twelve test functions have been taken randomly from Hock and Schittkowski [33], Himmelblau 

[34]. Information on them is shown in Table 2 and details of functions can be seen in the 

appendix. Test functions are grouped in four objective function types: linear, quadratic, 

polynomial and general type. Each type in turn has three constraint types: quadratic, polynomial 

and general type. The published optimal or best-known solutions, xmin, of all test examples were 

found with constraint violations which are below a tolerance, ε, of 10-7.  For compatibility with 

published solutions, the tolerance will be the same, i.e., ε =10
-7

. 

 

Table 2 Information of test functions 

 
Function Objective 

function 

type 

Constraint 

type 

Inequality 

constraints 

Equality 

constraints 

No. of 

variables 

Best-known 

solution, fmin 

f1 Linear Quadratic 6 0 8 7049.330923 

f2 Linear Polynomial 2 0 4 727.67937 

f3 Linear General 2 0 3 0.5181632741 

f4 Quadratic Quadratic 6 0 5 -30665.53867 

f5 Quadratic Polynomial 1 0 2 1.0 

f6 Quadratic General 8 3 10 -1768.80696 

f7 Polynomial Quadratic 2 0 2 -6961.81381 

f8 Polynomial Polynomial 1 1 4 17.0140173 

f9 Polynomial General 2 3 4 5126.4981 

f10 General Quadratic 3 0 2 -7.804226324 

f11 General Polynomial 0 3 5 0.0539498478 

f12 General General 0 3 10 -47.76109026 

 

5.3. Setting parameters of methods  

 
Parameters are based on suggestions of each method as mentioned above. Combinations of 

parameters are also tried to find the best one. Each function will be tested with 50 independent 

runs. The number of trials for each run is fixed, Imax = 3x106. Parameters for variants of PSO and 

DE are used as follows. 

 

Population, N    30 

Maximum iteration, Iter 10
5
 (� No. of maximum trial Imax = N x Iter = 3x10

6
) 

For variant PSO-1 c1 = 2, c2 = 2, ω decreases linearly from 0.9 to 0.4, cv = 0.5 

For variant PSO-2 There are 9 pairs of (c1, c2) which satisfy the relation c1+c2 = 4.1 

to be used for determination of the best combination. They are 

(c1, c2) = (0.3, 3.8), (1.0, 3.1), (1.3, 2.8), (1.7, 2.4), (2.05, 2.05), 

(2.4, 1.7), (2.8, 1.3), (3.1, 1.0), (3.8, 0.3). 
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For variants DE-1, DE-2 There are 6 pairs of (CR, FM) to be used for determination of the 

best combination, including (CR, FM) = (0.1, 0.5), (0.1, 1.0), 

(0.5, 0.5), (0.5, 1.0), (1.0, 0.5), (1.0, 1.0) 

 

6. RESULTS 

 
6.1. Quality of solutions  

 

• As shown in Table 3, PSO-1 obtained 2 solutions better than best-known solutions while 

the corresponding values of PSO-2, DE-1, DE-2 are 3, 5 and 7 respectively.  Generally, 

the solution quality decreases in the order: DE-2, DE-1, PSO-2 and PSO-1. Therefore, 

two variants DE-2 and PSO-2 represented for the two methods will be discussed next. 

• For PSO-2, combinations with c1 ≥ c2 give better solutions than those with c1 < c2. For 

DE-2, in overall the combination (CR = 1.0, FM = 0.5) is the best. 

• For all test functions, the best solutions of DE are always better than or as good as those 

of PSO. In addition, other best results of DE are approximate to best-known solutions, 

except the function f6. Reason of discrepancy is still unknown and this makes the use of 

DE and PSO as global optimization methods with some carefulness. Best solutions of 

methods are listed in Table 4. Details of result are given in Table 5 and Table 6. 

 

6.2. Running time 

 
Besides the quality of solution which is the most important factor for evaluation of an algorithm, 

running time only has meaning if the solution quality is good enough.  In this light, the results in 

Table 7 show that running time of DE-2 is faster than that of PSO-2 from 1.1 to 4.4 times 

depending on problems, except for function f10.  

 

6.3. Robustness 

 

• From Table 7, it is seen that the number of runs which found best solutions of DE-2 are 

always higher than or equal to that of PSO-2. The rate of feasible trials is the ratio 

between the number of feasible trials and the total trials. In general, the rate of feasible 

trials of DE-2 is higher than that of PSO-2. Besides, number of runs in DE-2 which could 

not find any feasible solution is the least. 

• Again, from Table 5 and Table 6, combinations with c1 ≥ c2 give better rate of feasible 

trials than combinations with c1 < c2 in PSO-2; and the combination (CR = 1.0, FM = 0.5) 

is the best for the rate of feasible trials in DE-2. 

 

6.4. Simplicity 

 
DE-2 and PSO-2 have the same 4 parameters. For method complexity, there are about 40 code 

lines for PSO-2 and 70 code lines for DE-2 in the main loop.  

 

7. CONCLUSION  

 
Generally, DE-2 is better than PSO-2 in terms of solution quality, running time and chance of 

reaching the best solutions in a variety of problems. In the other hand, number of code lines of 

PSO-2 is the least. In the author’s viewpoint, the best method for the twelve test functions is DE-

2. It is also worth noting that this conclusion is based on results of test functions which cover a 
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variety of types such as linear, quadratic, polynomial and general functions; with given 

parameters and the constraint handling techniques associated with the algorithms. 
 

Table 3 Minimum values of objective function after 50 testing runs  

(Bold values mean that the solutions are equal to or better than best-known solutions) 
 

Func. 
Minimum value of objective functions 

PSO-1 PSO-2 DE-1 DE-2 Best-known   

f1 7469.04471 7053.817430 7049.246945 7049.246506 7049.330923 

f2 727.674508 727.674485 727.674443 727.674443 727.679370 

f3 0.5181667914 0.5436562994 0.5181631954 0.5181631954 0.5181632741 

f4 -30665.53902 -30665.53902 -30665.53902 -30665.53902 -30665.53867 

f5 0.9907383666 0.9907383666 0.9907383666 0.9907383666 1.0000 

f6 -1221.54117 -1477.62925 -1278.07878 -1690.00300 -1768.80696 

f7 -6961.81111 -6961.81111 -6961.81111 -6961.81111 -6961.81381 

f8 23.8848784 19.0024993 20.2730530 17.0140172 17.0140173 

f9 5126.6299 5126.9172 5126.5157 5126.4983 5126.4981 

f10 -7.802786736 -7.802786736 -7.802786736 -7.802786736 -7.804226324 

f11 0.4561284690 0.0645899015 0.4524708138 0.0539498394 0.0539498478 

f12 -42.67380277 -47.37065154 -47.67061450 -47.44572377 -47.76109026 

 

Table 4 Best solutions, xmin, of two methods 
 

Function PSO-2 DE-2 

f1 

(634.3674968, 1250.0134128, 

5169.4365273, 186.4438325, 

293.2225136, 213.5562164, 

293.2213678, 393.2225258) 

(579.4606149, 1359.8756712, 

5109.9102202, 182.0305765, 

295.6035661, 217.9694724, 

286.4270592, 395.6035784) 

f2 
(193.4090071, 179.5210305, 

185.0854729, 168.6589740) 

(193.4077513, 179.5462924, 

185.0160256, 168.7043735) 

f3 (0.0, 0.9999998, 2.7182814) (0.1841265, 1.2021678, 3.3273220) 

f4 
(78.0, 33.0, 29.9952492, 

45.0, 36.7758311) 

(78.0, 33.0, 29.9952492, 

45.0, 36.7758311) 

f5 (1.0046415, 0.0) (1.0046415, 0.0) 

f6 

(1746.9672310, 15995.7276777, 

63.2719138, 3071.2845436, 

2000.0, 87.3578034, 

94.0349684, 10.3011250, 

2.5096923, 150.6019638) 

(1648.4425610, 14406.1129388, 

57.2832896, 2935.8537982, 

1933.2991566, 90.7273299, 

95.0, 9.9120298, 

1.5640451, 153.5349454) 

f7 (14.0950011, 0.8429632) (14.0950011, 0.8429632) 

f8 (1.0, 3.4347215, 5.0, 1.4841454) (1.0, 4.7429996, 3.8211499, 1.3794082) 

f9 
(688.8741362, 1016.5435397, 

0.1125169, -0.3992564) 

(679.9453373, 1026.0671532, 

0.1188763, -0.3962335) 

f10 (13.5501432, 51.6599703) (13.5501432, 51.6599705) 

f11 
(-1.7130059, 1.5909154, 1.7775005, 

0.5445980, 1.0385103) 

(-1.7171435, 1.5957097, 1.8272457, 

0.7636430, 0.7636430) 

f12 

(-96.6741714, -98.6387642, 

-1.5556892, -6.5901656, 

-0.6945218, -100.0, 

-99.5173022, -99.9970261, 

-41.9674309, -15.1797737) 

(-3.2354681, -8.0191455, 

-0.0202026, -82.8016103, 

-0.6931470, -41.2589767, 

-92.5399330, -4.7868082, 

-5.1446518, -17.5464207) 
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Table 5 Results of PSO-2 with different combinations (c1, c2) 
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Table 6 Results of DE-2 with different combinations (CR, FM) 
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Table 7 Data after 50 testing runs, each test has 3x106 trials 

(Bold values mean that the solutions are equal to or better than best-known solutions) 
 

Func. 

Running time per test  

(s) 

Number of 

runs which 

found best 

solutions 

Rate of  

feasible trials 

(%) 

Number of  

runs which could 

not find any feasible 

solution 

PSO-2 

(t1) 

DE-2 

(t2) 
t1/t2 PSO-2 

DE-

2 
PSO-2 DE-2 PSO-2 DE-2 

f1 21.439 4.924 4.4 1 1 67.115 36.033 0 0 

f2 5.292 4.111 1.3 1 48 85.047 46.150 0 0 

f3 14.107 4.392 3.2 47 12 75.954 73.155 3 0 

f4 17.461 7.453 2.3 50 50 77.725 99.307 0 0 

f5 15.333 5.647 2.7 2 13 99.997 99.995 0 0 

f6 16.312 7.945 2.1 1 1 6.489 32.712 11 11 

f7 12.673 8.872 1.4 43 45 67.338 77.638 5 5 

f8 8.356 7.289 1.1 1 4 4.612 81.748 0 0 

f9 15.419 7.067 2.2 1 4 49.283 65.354 11 0 

f10 15.587 22.051 0.7 1 1 94.983 99.428 0 0 

f11 12.456 11.483 1.1 1 1 15.794 45.375 0 0 

f12 36.630 18.408 2.0 1 1 43.428 49.358 0 0 
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Appendix: 12 test functions 

 

f1 

Objective function:  f(x) = x1 + x2 + x3 

Constraints: 

1 – 0.0025(x4 + x6) ≥ 0 

1 – 0.0025(x5 + x7 – x4) ≥ 0 

1 – 0.01(x8 – x5) ≥ 0 

x1x6 – 833.33252x4 – 100x1 + 83333.333 ≥ 0 

x2x7 – 1250x5 – x2x4 + 1250x4 ≥ 0 

x3x8 – 1250000 – x3x5 + 2500x5 ≥ 0 

100 ≤ x1 ≤ 10000 

1000 ≤ xi ≤ 10000, i = 2, 3 

10 ≤ xi ≤ 1000, i = 4,…, 8 

Solution: 

f(xmin) = 7049.330923  

xmin = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979) 

 

f2 
Objective function: f(x) = 1 + x1 + x2 + x3 + x4 

Constraints: 

0.0401 – 4/x1 – 2.25/x2 – 1/x3 – 0.25/x4 ≥ 0 

0.010085 – 0.16/x1 – 0.36/x2 – 0.64/x3 – 0.64/x4 ≥ 0 

0.001 ≤ xi ≤ 100000(5 – i), i = 1,…, 4 

Solution: 

f(xmin) = 727.67937  

xmin = (193.4071, 179.5475, 185.0186, 168.7062) 

 

f3 

Objective function:  f(x) = 0.2x3 – 0.8x1 

Constraints: 

x2 – exp(x1) ≥ 0 

x3 – exp(x2) ≥ 0 

0 ≤ x1 ≤ 100 

0 ≤ x2 ≤ 100 

0 ≤ x3 ≤ 10 

Solution: 

f(xmin) = 0.5181632741 

xmin = (0.1841264879, 1.202167873, 3.327322322) 

 

f4 

Objective function:  f(x) = 5.3578547x3
2
 + 0.8356891x1x5 + 37.293239x1 – 40792.141 

Constraints: 

92 ≥ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 – 0.0022053x3x5 ≥ 0 

20 ≥ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x3
2
 – 90 ≥ 0 

5 ≥ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 – 20 ≥ 0 

78 ≤ x1 ≤ 102 

33 ≤ x2 ≤ 45 

27 ≤ xi ≤ 45, i = 3, 4, 5 
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Solution: 

f(xmin) = -30665.53867 

xmin = (78, 33, 29.99526, 45, 36.77581) 

 

f5  
Objective function: f(x) = (x1 – 2)

2
 + x2

2
  

Constraints: 

 (1 – x1)
3
 – x2 ≥ 0 

0 ≤ x1 ≤ 1000 

0 ≤ x2 ≤ 1000 

Solution: 

f(xmin) = 1 

xmin = (1, 0) 

 

f6 
Objective function: f(x) = 5.04x1 + 0.035x2 + 10x3 + 3.36x5 – 0.063x4x7 

Constraints: 

g1(x) = 35.82 – 0.222x10 – 0.9x9 ≥ 0 

g2(x) = –133 + 3x7 – 0.99x10 ≥ 0 

g3(x) = –g1(x) + x9(1/0.9 – 0.9) ≥ 0 

g4(x) = –g2(x) + (1/0.99 – 0.99)x10 ≥ 0 

g5(x) = 1.12x1 + 0.13167x1x8 – 0.00667x1x8
2
 – 0.99x4 ≥ 0 

g6(x) = 57.425 + 1.098x8 – 0.038x8
2
 + 0.325x6 – 0.99x7 ≥ 0 

g7(x) = –g5(x) + (1/0.99 – 0.99)x4 ≥ 0 

g8(x) = –g6(x) + (1/0.99 – 0.99)x7 ≥ 0 

g9(x) = 1.22x4 – x1 –x5 = 0 

g10(x) = 98000x3/(x4x9 + 1000x3) – x6 = 0 

g11(x) = (x2 + x5)/x1 – x8 = 0 

0.00001 ≤ x1 ≤ 2000 

0.00001 ≤ x2 ≤ 16000 

0.00001 ≤ x3 ≤ 120 

0.00001 ≤ x4 ≤ 5000 

0.00001 ≤ x5 ≤ 2000 

85 ≤ x6 ≤ 93 

90 ≤ x7 ≤ 95 

3 ≤ x8 ≤ 12 

1.2 ≤ x9 ≤ 4 

145 ≤ x10 ≤ 162 

Solution: 

f(xmin) = -1768.80696 

xmin = (1698.096, 15818.73, 54.10228, 3031.226, 2000, 90.11537, 95, 10.49336, 1.561636, 153.53535) 

 

f7 

Objective function: f(x) = (x1 – 10)
3
 + (x2 – 20)

3
 

Constraints: 

 (x1 – 5)
2
 + (x2 – 5)

2
 – 100 ≥ 0 

–(x2 – 5)2 – (x1 – 6)2 + 82.81 ≥ 0 

13 ≤ x1 ≤ 100 

0 ≤ x2 ≤ 100 

Solution: 

f(xmin) = -6961.81381 

xmin = (14.095, 0.84296079) 

 

f8 

Objective function: f(x) = x1x4(x1 + x2 + x3) + x3 

Constraints: 
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x1x2x3x4 – 25 ≥ 0 

x1
2
 + x2

2
 + x3

2
 + x4

2
 – 40 = 0 

1 ≤ xi ≤ 5, i = 1,…, 4 

Solution: 

f(xmin) = 17.0140173 

xmin = (1, 4.7429994, 3.8211503, 1.3794082) 

 

f9 

Objective function: f(x) = 3x1 + 1E-6x1
3
 + 2x2 + 2/3E-6x2

3
 

Constraints: 

x4 – x3 + 0.55 ≥ 0 

x3 – x4 + 0.55 ≥ 0 

1000sin(-x3 – 0.25) + 1000sin(-x4 – 0.25) + 894.8 – x1 = 0 

1000sin(x3 – 0.25) + 1000sin(x3 -x4 – 0.25) + 894.8 – x2 = 0 

1000sin(x4 – 0.25) + 1000sin(x4 –x3 – 0.25) + 1294.8 = 0 

0 ≤ xi ≤ 1200, i = 1, 2 

-0.55 ≤ xi ≤ 0.55, i = 3, 4 

Solution: 

f(xmin) = 5126.4981 

xmin = (679.9453, 1026.067, 0.1188764, -0.3962336) 

 

f10 

Objective function: f(x) = -75.196 + 3.8112x1 + 0.0020567x1
3
 – 1.0345E-5x1

4
 + 6.8306x2 – 0.030234x1x2 + 

1.28134E-3x2x1
2
 + 2.266E-7x1

4
x2 – 0.25645x2

2
 + 0.0034604x2

3
 – 1.3514E-5x2

4
 + 28.106/(x2 + 1) + 

5.2375E-6x1
2x2

2 + 6.3E-8x1
3x2

2 – 7E-10x1
3x2

3 – 3.405E-4x1x2
2 + 1.6638E-6x1x2

3 + 2.8673exp(0.0005x1x2) 

– 3.5256E-5x1
3
x2 – 0.12694x1

2
 

Constraints: 

x1x2 – 700 ≥ 0 

x2 – x1
2
/125 ≥ 0 

(x2 – 50)2 – 5(x1 – 55)  ≥ 0 

0 ≤ x1 ≤ 75 

0 ≤ x2 ≤ 65 

Solution: 

f(xmin) = -7.804226324 

xmin = (13.55010424, 51.66018129) 

 

f11 

Objective function: f(x) = exp(x1x2x3x4x5) 

Constraints: 

x1
2 + x2

2 + x3
2 + x4

2 + x5
2 – 10 = 0 

x2x3 – 5x4x5 = 0 

x1
3
 + x2

3
 + 1 = 0 

-2.3 ≤ xi ≤ 2.3, i = 1, 2  

-3.2 ≤ xi ≤ 3.2, i = 3, 4, 5 

Solution: 

f(xmin) = 0.0539498478 

xmin = (-1.717143, 1.595709, 1.827247, -0.7636413, -0.763645) 

 

f12 
Objective function:   

f(x) = ∑ ∑
= =

−+

10

1j

10

1k

kjjj )))exp(xln(x)(cexp(x  

c1 = -6.089, c2 = -17.164, c3 = -34.054, c4 = -5.914, c5 = -24.721, c6 = -14.986, c7 = -24.100, c8 = -10.708, c9 

= -26.662, c10 = -22.179 

Constraints: 

exp(x1) + 2exp(x2) + 2exp(x3) + exp(x6) + exp(x10) – 2 = 0 
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exp(x4) + 2exp(x5) + exp(x6) + exp(x7) – 1 = 0 

exp(x3) + exp(x7) + exp(x8) + 2exp(x9) + exp(x10) – 1 = 0  

-100 ≤ xi ≤ 100, i = 1,…, 10 

Solution: 

f(xmin) = -47.76109026 

xmin = (-3.201212, -1.912060, -0.2444413, -6.537489, -0.7231524, -7.267738, -3.596711, -4.017769, -

3.287462, -2.335582)       


