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ABSTRACT 

 
We provide a scheme for the synchronization of two chaotic mobile robots when a mismatch between the 

parameter values of the systems to be synchronized is present.  We have shown how meta-heuristic 

optimization can be used to adapt the parameters in two coupled systems such that the two systems are 

synchronized, although their behavior is chaotic and they have started with different initial conditions and 

parameter settings. The controlled system synchronizes its dynamics with the control signal in the periodic 

as well as chaotic regimes.  The method can be seen also as another way of controlling the chaotic 

behavior of a coupled system.  In the case of coupled chaotic systems, under the interaction between them, 

their chaotic dynamics can be cooperatively self-organized.  A synergistic approach to meta-heuristic 

optimization search algorithm is developed.  To avoid being trapped into local optimum and to enrich the 

searching behavior, chaotic dynamics is incorporated into the proposed search algorithm.  A chaotic Levy 

flight is firstly incorporated in the proposed search algorithm for efficiently generating new solutions.  And 

secondly, chaotic sequence and a psychology factor of emotion are introduced for move acceptance in the 

search algorithm.  We illustrate the application of the algorithm by estimating the complete parameter 

vector of a chaotic mobile robot. 
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1. INTRODUCTION 
 

The first chaotic mobile robot that can navigate following a chaotic pattern was proposed by 

Nakamura and Sekikuchi [1], where the Anorld's equation was used to generate the desired 

motions.  Further investigations on chaotic trajectories of the same type of the robot using other 

equations were carried out in [2-12].  To scan the whole connected workspace, the main goal for a 

chaotic mobile robot is to increase and take advantage of the coverage areas resulting from its 

travelling paths.  For many applications of mobile robots such as cleaning, patrolling, and grass-

cutting tasks, large coverage areas are desirable for the mobile robots designed for 

implementation of navigating behaviors.  As in single robot coverage, the objective is to 

completely cover the whole work area with shortest time.  In the context of multiple robots, the 

key problem to be solved is to reduce the repetition times so that they simultaneously cover 

different parts of the environment.  The use of collaborative robots is often suggested to have 

advantages over single robot systems.  It is generally believed that proper organization of 

cooperating mobile robots provides significant benefits over single robot approaches for various 

missions.  Cooperating robots have the capability to accomplish the same coverage work faster 

than a single robot.  Synchronization of chaos is a cooperative behavior of coupled nonlinear 
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systems with chaotic uncoupled behavior.  This behavior appears in many physical and biological 

processes.  In most of the analysis done on two coupled chaotic systems, the two systems are 

assumed to be identical.  In practical implementations this will not be the case.  Chaos 

synchronization may seem unlikely due to the extreme sensitivity of chaos to initial conditions as 

well as small random disturbances and parameter variation.  However, it has been realized that 

even chaotic systems may be coupled in a way such that their chaotic oscillations are 

synchronized.  Mutual synchronization can be considered as a form of cooperative self-

organization of interacting systems.  In contrast to the case of coupled periodic systems, even in 

the case of coupled chaotic systems, under the interaction between them their chaotic dynamics 

can be cooperatively self-organized.  When this phenomenon occurs there is complete or almost 

complete coincidence of regular or chaotic realizations generated by identical or almost identical 

systems with different initial conditions.  We consider the case of synchronized chaos where two 

coupled systems evolve identically in time.  In this paper, we investigate the synchronization of 

two coupled chaotic mobile robots which are not identical.  We illustrate how adaptive controllers 

can be used to adjust the parameters of the systems such that the two chaotic mobile robots will 

synchronize.  We proposed a simple yet effective meta-heuristic optimization algorithm for the 

synchronization of chaotic mobile robots. 

 

2. META-HEURISTIC CUCKOO SEARCH ALGORITHM 
 

Cuckoo search for the optimization problem is a meta-heuristic search algorithm which has been 

proposed by Yang and Deb [13, 14].  This search algorithm is inspired by the reproduction 

strategy of cuckoos.  The cuckoo bird lays her egg in the nest of other host birds, which may be of 

different species.  The host bird may discover that the egg is not her own and either throw this 

alien egg away or simply abandons the nest all together and then build a new nest elsewhere to 

increase the hatching probability of her own egg.  The cuckoo breeding analogy is represented by 

a set of host nests.  Each nest carries an egg (a solution).  A new nest is generated by performing a 

random walk from some current nest.  The new nest is then evaluated and compared to a current 

nest chosen at random.  The new solution is formed by modifying only one solution with a 

random move (i.e., the solution is improved by generating a new solution via a random move 

from an existing solution).  If the new solution is found to be better than another randomly chosen 

existing solution then the old solution is replaced with the new one.  Furthermore, for each 

generation of evolution a new solution is generated with a certain probability and the lowest fit 

solution is replaced by this solution (i.e., the worst nests are removed with some probability and 

replaced with random nests.). 

 

The foraging trajectory of an animal is essentially a random walk in that the next step is based on 

the current location and the probability of moving to the next location.  One type of random walk 

is Lévy flights [15, 16] in which the step lengths are distributed according to a heavy-tailed 

probability distribution.  Many studies have shown that flight behaviour of many animals has 

demonstrated the typical characteristics of Lévy flights.  The cuckoo search implements Levy 

flight type of search behaviour by employing heavy tailed probability distribution.  Due to the 

heavy tailed nature of the Lévy distribution, motion based on Lévy flights is able to search large 

areas very quickly.  When exploring the area around a given solution, the search will mostly stay 

local, but will move a great distance occasionally, helping faster explore the space.  Figure 1 

shows the pseudo code for the basic steps involved in the cuckoo search proposed by Yang and 

Deb [14].   The cuckoo search use Levy flights for both local and global searching.  The scale of 

this random search is controlled by multiplying the generated Levy flight by a step size α .  Yang 

and Deb [14] found that the convergence rate for this search algorithm was not effected strongly by 

the value 
aP  and they suggested setting 25.0=aP . 
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Cuckoo Search Algorithm 

---------------------------------------------------------------------------- 

begin  

Objective function )(xf , T

dxxx ),,( 1 L= ; 

Initial a population of n host nests 
ix  ( ni ,,1 L= ); 

while ( t  < Maximum Generation) or (stop criterion); 

Get a cuckoo (say i ) randomly 

and generate a new solution by Levy flights; 

Evaluate its quality/fitness; 
iF  

Choose a nest among n (say j )  randomly; 

if  (
ji FF > ), 

Replace j  by the new solution; 

end 

Abandon a fraction (
aP ) of worse nests 

[build new ones at new locations by Levy flights]; 

Keep the best solutions (nests with quality solutions); 

Rank the solutions and find the current best; 

end while 

Post process results and visualization; 

end 

---------------------------------------------------------------------------- 
Figure 1.Pseudo code for the Cuckoo Search optimization search algorithm 

 

3. MOVE-GENERATION WITH CHAOTIC LEVY FLIGHTS 
 

The trajectory of chaotic dynamics can travel ergodically over the whole search space.  Generally, 

the chaotic variable has special characters including pseudo-randomness, irregularity and 

ergodicity.    In general, the parameter α   in Levy flight for the cuckoo search algorithm described 

in the previous section is the key factor to affect the convergence of the search algorithm.  

However, it cannot ensure the ergodicity of optimization entirely in phase space in that they are 

absolutely random in the cuckoo search algorithm.  The ergodicity property asserts that a system 

having a number of possible states will visit each one with equal frequency over a finite time [17].  

Here we incorporate the chaotic Levy flight for the improved cuckoo search.  We introduced a new 

neighbor selection by focusing on the concept of chaos.  With the characteristic of nonlinear 

systems, chaos has a bounded unstable dynamic behavior that includes infinite unstable periodic 

motions and exhibits sensitive dependence on initial conditions.  It appears to be stochastic, but it 

occurs in a deterministic nonlinear system under deterministic conditions.  The well-known 

logistic map which exhibits the sensitive dependence on initial conditions is employed in this 

paper to generate the chaotic sequence sc  for the parameter in Levy flight:  

 

))(1()(0.4)1( tctctc sss −××=+ , 1)0(0 ≤≤ sc .                                                                       (1) 

 

By Levy flights with the infinite variance of Levy distribution, it permits occasionally large steps 

of the previous solution.  Large steps are needed to avoid being trapped into local optimum.  Thus, 

a synergy of a chaotic sequence and Levy flights may result in better solutions.  For the proposed 

algorithm, a new method to search a solution is introduced.  The new solution generation method 

is shown in the following equation: 
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)()()1( λLevycxx s

t

i

t

i ⊗+=+                                                                                                         (2) 

 

A chaotic sequence and Levy distribution are used to generate 
sc  and )(λLevy  respectively.  The 

product ⊗  means entry-wise multiplications.  The Levy flights essentially provide a random walk, 

while their random steps are drawn from a Levy distribution for large steps 

 
λ−= tuLevy ~ , ( 31 ≤≤ λ )                                                                                                           (3) 

 

which has an infinite mean and an infinite variance.  Specifically, the distribution used is a power 

law of the form in equation (3), and therefore has an infinite variance.  Because the chaotic 

sequence can generate several neighborhoods of suboptimal solutions to maintain the variability 

in the solutions, it can prevent the search process from becoming premature [18].  That is, the 

algorithm probably converges to a space in the search space with denser good solutions. 

 

4. MOVE-ACCEPTANCE BY A PSYCHOLOGY FACTOR OF EMOTION AND 

CHAOTIC SEQUENCE 
 

Among most computational intelligence algorithms for optimization problem including meta-

heuristic search algorithms, the solution is drawn like a moth to a flame and cannot keep away.  To 

avoid being trapped into local optimum and to enrich the searching behavior, chaotic sequence and 

a psychology factor of emotion are proposed for move acceptance decision in the improved cuckoo 

search algorithm.  In the context of psychology, emotion is considered a response to stimulus that 

involves characteristic physiological changes such as rise in body temperature and increase in 

pulse rate.  By Weber-Fechner Law, the relationship between perception and stimulus is 

logarithmic [19].  This relationship means that if the perception is altered in an arithmetic 

progression the corresponding stimulus varies as a geometric progression.  In other words, if the 

weight is 1 kg, an increase of a few grams does not be noticed.  And when the mass is increased by 

a certain factor, an increase in weight will be perceived.  Further, if the mass is doubled, the 

threshold will be also doubled.  This relationship can be described by a differential equation as: 

 

dS
dp k

S
=

 
(4) 

  

where dp  is the differential change in perception, S  is the stimulus at the instant and dS  is the 

differential increase in the stimulus.  A constant factor k  is to be determined experimentally.  By 

integrating the above equation, 

 
lnp k S C= +        (5)

 

with C  is the constant of integration, ln  is the natural logarithm.  In order to determine C , let 

0=p , that is,  no perception, then 

 

0lnC k S= −
 

(6) 

  

where 
0S  is the Absolute Stimulus Threshold.  The equation then becomes: 

 

0

ln
S

p k
S

= −

 
(7) 
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For the proposed emotional chaotic cuckoo search algorithm, we define only two emotions 

cuckoos could have, positive and negative, and correspond to two reactions to perception 

respectively as follow: 

 

IF ( ss ec < )  THEN positive 

                         ELSE negative 

 

where sc  is the chaotic sequence number.  The emotion of cuckoos can determine by pes = .  The 

perception of cuckoo can be described by following: 

 

0

))()((
ln

S

xFxFS
ke

ji

s

−
−=                                                                                                            (8) 

 

Here S  means stimulus function and 
0S  means stimulus threshold.  )(•F  is a fitness function.  A 

candidate move is generated by chaotic Levy flight, and the system must decide whether to accept 

that move, based upon the chaotic sequence number and the emotion factor.  This process of move 

generation with chaotic Levy flight and move acceptance is repeated.  This mechanism enables a 

system to transcend fitness barriers, thereby moving from one valley in the fitness landscape to 

another.  The decision to accept new solutions is based on the acceptance criterion.  We apply the 

psychology factor of emotion, which is given by (8): 

 

),1min(}{ seacceptP =                                                                                                                        (9) 

 

This criterion produce real numbers in )1,0[ interval as the acceptance probability, which are used 

in the algorithm in the decision making process.  Random numbers are replaced by chaotic 

sequence.  The proposed algorithm compares the value of }{acceptP  with a value from a chaotic 

sequence.  The proposed emotional chaotic cuckoo search algorithm is shown in Figure 2.  The 

chaotic sequence used in this part produces not just a gradual divergence of the sequences of 

values, but also an exponential divergence, bringing the complexity and unpredictability features 

of chaotic theory into the proposed algorithm.  Hence, the probability of evading local minima 

increases dramatically.  The distinctive characteristics of the emotional chaotic cuckoo search 

algorithm are listed below to recapitulate the main proposal: 

 

� Improved quality of the neighborhood search, and neighbor selection, using a chaotic 

sequence and a Levy random number generator. 

� Increased probability of escaping from local minima by using the new acceptance criterion 

and the new method of space search. 

 

Emotional Chaotic Cuckoo Search Algorithm 

---------------------------------------------------------------------------- 

begin  

Objective function )(xf , T

dxxx ),,( 1 L= ; 

Initial a population of n host nests 
ix  ( ni ,,1 L= ); 

while ( t  < Maximum Generation) or (stop criterion); 

Get a cuckoo (say i ) randomly 

and generate a new solution by Chaotic Levy flights; 

Evaluate its quality/fitness; 
iF  

Choose a nest among n (say j ) randomly; 
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if  (
ji FF > ), 

Replace j  by the new solution; 

else if  (
ss ec < ) , 

Replace j  by the new solution; 

end 

Abandon a fraction (
aP ) of worse nests 

[and build new ones at new locations via Chaotic Levy flights]; 

Keep the best solutions (nests with quality solutions); 

Rank the solutions and find the current best; 

end while 
Post process results and visualization; 

end 

---------------------------------------------------------------------------- 
Figure 2.Pseudo code of the proposed Emotional Chaotic Cuckoo Search Algorithm 

 

5. SYNCHRONIZATION OF CHAOTIC MOBILE ROBOTS 
 

The chaotic dynamics of the mobile robot is achieved by incorporating nonlinear equations into 

the robot kinematic equations, such as Arnold, Lornez, and the Chua’s circuit equations, that are 

well known equations with chaotic dynamics. 

 

5.1. Incorporating Arnold Equation into Robot Kinematic Equation 

 

The Arnold's equation can be described in the form of 
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where 
1A , 

2A , 
3A  are constants.  The Arnold equation behaves periodic orbit when one of the 

constants, for example 
3A , is small or 0, and behaves chaotic orbit when 

3A  is large.  Incorporating 

the Arnold equation into the controller of the mobile robot by adopting the methodology in [1], we 

can describe the state equation of two-wheel mobile robots as 
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where v  [m/s] is the velocity of the robot and ϖ  [rad/s] is the angular velocity input of the system.  

Therefore, the state equation of the mobile robot becomes 
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Equation (12) includes the Arnold equation.  The Arnold equation has chaotic dynamics or not, 

depending on the initial states.  With some values of initial states for the Arnold equation,  the 

trajectory behave chaotically.  It is guaranteed that a chaotic dynamics of the Arnold equation is 

not attracted to a limit cycle or a quasi-periodic orbit.  As seen in equation (12), the whole states 

evolve in a 5-dimensional space which includes a 3-dimensional subspace of the Arnold equation.  

The state evolution in the 2-dimensional complementary space is highly coupled with that in the 3-

dimensional subspace.  This coupled system can be interpreted physically by the fact that the 

mobile robot moves with a constant velocity and is steered by the third variable of the Arnold 

equation.  Therefore, the trajectory in x-y space of the mobile robot should also behave chaotic 

likely.  The integrated system with appropriate initial conditions and adjusting parameters 

guaranteed that the trajectories of the Arnold’s equation behave chaotically. The resultant 

trajectory of the mobile robot with 1=v , 25.01 =A  , 25.02 =A , 5.03 =A  and initial conditions 

41 =x , 5.32 =x , 03 =x , 5=x , 5=y  is shown in Figure 3.  The initial conditions were selected 

from a domain where the Poincare section do not construct a closed trajectory.  The trajectory of 

the robot is highly sensitive dependence on the initial conditions and unpredictable. 

 
Figure 3. Trajectory of the chaotic mobile robot controlled by Arnold equation in θ−− yx . 

 

5.2. Synchronization Through Parameter Adaptation 
 

Consider two chaotic systems with evolution equations ),( 111 µXfX =& , ),( 222 µXfX =& , where 

1µ , 
2µ  are parameters of the systems.  Complete synchronization between the primary and 

secondary can be realized by matching the parameters of the response to that of the drive through a 

loop of adaptive control.  This is implemented by augmenting the evolution equation for the 

dynamical system by an additional equation for the evolution of the parameter(s) as described 

below. 

 

),( 111 µXfX =&  

),(),( 21222 XXFXfX += µ&                                                                                                    (13) 

)(2 •= Gµ&  

 

Here, ),( 21 XXF  denotes coupling between the primary system (
1X ) and the secondary system 

(
2X ).  The function G acts on the meta-heuristic optimization as presented in the previous section.  

The scheme is adaptive since in the above procedure the parameters which determine the nature 

of the dynamics self-adjust or adapt themselves to yield the desired dynamics.  Using such an 

adaptive control function the primary system and the secondary system eventually synchronized, 

although their behavior is chaotic and they have started with different initial conditions and 

parameter settings.  Our aim is to devise an algorithm to adaptively adjust the parameters in the 

secondary system,
2µ , until the system variables, Y, and the parameters themselves converge to 
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their counterparts in the primary system, i.e., both 
12 XX →  and 

12 µµ → .  In this way, 

synchronization between both systems is achieved and the parameters of the primary system are 

identified.  Let TyxxxxX ],,,,[ 321=  be the state vector of the chaotic mobile robot, X&  is the 

derivative of the state vector X.  Based on the measurable state vector X  , for individual i, we 

define the following fitness function  
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where t = 0,…,k. Therefore, the problem of synchronization is transformed to that of using the 

meta-heuristic optimization to search for the suitable value of the parameter 
2µ  such that the 

fitness function is globally minimized. 

 

6. SIMULATION RESULTS 
 

In order to evaluate the proposed chaos synchronization strategy, the integrated systems of the 

Arnold equation with the mobile robot equation are employed in the simulation study.  Let us 

consider a primary system ),( 111 µXfX =& , where TyxxxxX ],,,,[ 3211 = is the dynamic system state 

and T
AAA ],,[ 3211 =µ  contains the parameters.  The system is in the chaotic state when 25.01 =A  , 

25.02 =A , 5.03 =A .  The secondary systems is ),( 222 µXfX =& , where 
2X  are the state variables 

and 
2µ  are the parameters that can be adjusted in order to estimate 

1µ  and attain synchronization.  

In order to observe nonlinear dynamical searching process of the emotional chaotic cuckoo search 

algorithm as a whole, we plot search values of all the individuals for parameters 
1A ,

2A ,
3A  in Fig. 

4-6.  Fig. 7 shows the identification of the parameters 
1A ,

2A ,
3A  in chaotic mobile robot for the 

best fitness evolution.  Fig. 8 shows the evolution of fitness function.  We can see that the 

trajectories of the identification of the parameters converge at the real values of the parameters, 

indicating that the model of our proposed emotional chaotic cuckoo search algorithm can be used 

as an effective optimization model.  Preliminary simulation results show that the proposed method 

can provide greater efficiency and satisfactory accuracy. 

 

 
Figure 4. Identification of the parameter 3A  in chaotic mobile robot 
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Figure 5. Identification of the parameter 2A  in chaotic mobile robot 

 

 
Figure 6. Identification of the parameter 1A in chaotic mobile robot 

 

 

 
Figure 7. Identification of the parameters 1A (‘------‘), 2A (‘……’), 3A (‘.-.-.-‘) in chaotic mobile robot for 

the best fitness evolution 
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Figure 8. Fitness function evolution 

 

 

7. CONCLUSIONS 
 

We have proposed a new approach to optimization search algorithm in meta-heuristics for the 

synchronization of chaotic mobile robots.  The proposed method includes both effects of chaotic 

dynamics and psychology factor of emotion for optimization search.  In this paper, we have 

shown how meta-heuristic optimization can be used to adapt the parameters in two coupled 

systems such that the two systems are synchronized.  The parameters of the secondary system are 

adaptively optimized by the proposed emotional chaotic cuckoo search algorithm to make it 

follow the dynamics of the primary system.  Simulation results have been presented to show the 

effectiveness and feasibility of this approach. 
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