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ABSTRACT 

 
Classical methods for classification of pixels in multispectral images include supervised classifiers such as 

the maximum-likelihood classifier, neural network classifiers, fuzzy neural networks, support vector 

machines, and decision trees.  Recently, there has been an increase of interest in ensemble learning – a 

method that generates many classifiers and aggregates their results. Breiman proposed Random Forestin 

2001 for classification and clustering.  Random Forest grows many decision trees for classification. To 

classify a new object, the input vector is run through each decision tree in the forest. Each tree gives a 

classification. The forest chooses the classification having the most votes. Random Forest provides a robust 

algorithm for classifying large datasets. The potential of Random Forest is not been explored in analyzing 

multispectral satellite images.   To evaluate the performance of Random Forest, we classified multispectral 

images using various classifiers such as the maximum likelihood classifier, neural network, support vector 

machine (SVM), and Random Forest and compare their results. 
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1. INTRODUCTION 
 
Remotely sensed data provides a wealth of information. Remote sensing satellites such as Landsat 

provide multispectral images of earth’s surfaces. The technique of remote sensing relies, to a 

great extent, on interaction of electromagnetic radiation with matter. The remotely measured 

signal expressed as a function of a wavelength is referred to as a spectral signature of the target 

object on which measurements have been made. In principle spectral signatures are unique, that is 

different objects have different spectral signatures. It is therefore possible to identify an object 

from its spectral signature. Multispectral images are used in many applications such as land use 

mapping, agriculture, water resources, and military reconnaissance. Landsat remote sensing 

began in earnest in with launching of the first remote sensing satellite in 1972. Today Landsat-8 is 

orbiting the earth. The Operational Land Imager (OLI) sensor on Landsat payload provides 

images in nine spectral bands. 

 
Multispectral images are oftenanalyzed using conventional statistical methods, and soft 

computing techniques such as neural networks, fuzzy inference systems and fuzzy neural 

systems. Conventional methods employed for classifying pixels in multispectral images include 

the maximum likelihood classifier, the minimum distance classifier, and various clustering 
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techniques such as isodata.In maximum likelihood classification, each pixel is tested for all 

possible classes and the pixel is assigned to the class with the highest posterior probability. With 

neural networks, once a neural network is trained it directly maps the input observation vector to 

the output category. Thus for large images neural networks are more suitable. Huang and 

Lippmann [1] have compared neural networks with conventional classifiers. Eberlein et al. [2] 

have used neural network models for data analysis by a back-propagation (BP) learning algorithm 

in a geological classification system. Cleeremans et al. [3] have used neural network models with 

a BP learning algorithm for Thematic Mapper data analysis which was available on previous 

versions of Landsat. Decatur [4] has used neural networks for terrain classification. Kulkarni and 

Lulla[5] have developed software to simulate three models: a three -layer feed forward network 

with back-propagation learning, a three-layer fuzzy-neural network model, and a four-layer 

fuzzy-neural network model. The models were used as supervised classifiers to classify pixels 

based on their spectral signatures. They considered two Landsat scenes. The first scene represents 

the Mississippi river bottomland area, and the second scene represents the Chernobyl area. Both 

scenes are of the size 512 by 512 pixels. Each pixel was represented by a vector of five gray 

values. Bands 2,3,4,5 and 7 were chosen as these bands showed the maximum variance and 

contained information needed to identify various classes. Kulkarni [6] has analyzed the 

Mississippi scene also with a self-organizing neural network with a competitive learning 

algorithm. Clustering algorithms such as the split-merge [7], fuzzy K-means [8], [9], and neural 

network based methods have been used for multispectral image analysis. Kulkarni and 

McCaslin[10] have used neural networksfor classification of pixelsin multispectral images and 

knowledge extraction. Mitra et al. [11] have considered a support vector machine (SVM) for 

classifying pixels in land use mapping. Decision trees represent another group of classification 

algorithms. Decision tree classifiers have not been used widely by the remote sensing community 

despite their non-parametric nature and their attractive properties of simplicity in handling the 

non-normal, non-homogeneous and noisy data [12]. 

 
The Random Forest algorithm has been used in many data mining applications, however, its 

potential is not fully explored for analyzing remotely sensed images. Random Forest is based on 

tree classifiers. Random Forest grows many classification trees. To classify a new feature vector, 

the input vector is classified with each of trees in the forest.  Each tree gives a classification, and 

we say that the tree “votes” for that class.  The forest chooses the classification having the most 

votes over all the trees in the forest. Among many advantages of Random Forest the significant 

ones are:  unexcelled accuracy among current algorithms, efficient implementation on large data 

sets, andan easily saved structure for future use of pre-generated trees [12]. In this paper, we 

consider Random Forest Algorithm proposed byBreiman[13]. The outline of the paper is as 

follows. Section 2 describes decision trees andRandom Forest algorithm. Section 3 provides 

implementation of Random Forest and examples of classification of pixels in multispectral 

images.We compare performance of the Random Forest algorithm with other classification 

algorithms such as the maximum likelihood, support vector machine, and neural network models. 

Section 4 provides discussion of the findings and concludes. 
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2. METHODOLOGY 
 

2.1. Decision Tree Classifiers 

 
Decision tree classifiers are more efficient than single-stage classifiers. With a decision tree 

classifier, decisions are made at multiple levels. Decision tree classifiers are also known as multi-

level classifiers. The basic concerns in a decision tree classifier are the separation of groups at 

each non-terminal node and the choice of features that are most effective in separating the group 

of classes. In designing a decision tree classifier it is desirable to construct an optimum tree so as 

to achieve the highest possible classification accuracy with the minimum number of calculations 

[14]. The binary tree classifier is considered a special case of a decision tree classifier. 

 
Appropriate splitting conditions vary among applications. A node is said to be a terminal node 

when it contains only one class decision. Three widely used methods include entropy, gini, and 

twoing. The expected information needed to classify an observation vector in D is given by: 

 

Where
i

p is the non-zero probability than an arbitrary observation vector in D belongs to class Ci 

[15]. Entropy is a basic measure of amount of information. This is the most widely used splitting 

condition as it attempts to divide the classes as evenly as possible giving the most information 

gain between child and parent nodes. Some applications may require that the data be split by the 

largest homogeneous group possible [16]. For this the gin information gain is used. Gini impurity 

is the probability that a randomly labelled class, taking into account class distribution and priors, 

is incorrectly labelled. Information gain using the gini index is defined as: 

where
i

p is the probability that an arbitrary observation vector in D belongs to class Ci[15]. 

Twoing uses a different strategy to find the best split among cases. It gives strategic splits by, at 

the top of the tree, grouping together classes that are largely similar in some characteristic. The 

bottom of the tree identifies individual classes. When twoing, classes are grouped into two super 

classes containing an as-equal-as-possible number of cases. The best split of the super classes is 

found and used as the split at the current node. This results in a reduction of class possibilities 

among cases at each child node and a reduction in impurity.Twoing is defined as: 

 

 

where L and R refer to the left and right children of a split at node t, p(i|D) is the proportion of 

cases in D that belong to class i, and PL and PR are the proportions of cases that go from D to the 
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left and right children respectively [17].The splitting of data at each node is recursive and 

continues until a stopping condition is met. 

 
An ideal leaf node is one that contains only records of the same class. In practice reaching this 

leaf node may require an excessive number of splits which are costly. Splitting too much results 

in nothing more than a lookup table and will perform poorly for noisy data while splitting too 

little prevents error in training data from being reduced, increasing the error of the decision tree 

[18]. The decision to continue splitting can be based on previously mentioned information gain. 

Less technical methods have also been employed. Node depth, that is length from root to node t, 

is used to identify leaf nodes. Similarly a stopping condition could also be satisfied by 

thresholding the depth of children of a certain node. Another common method is to threshold the 

number of existing cases at node t. If there are fewer cases than some threshold, splitting does not 

occur [12].  

 
A variation on the basic decision tree, the ID3 tree, has been found to be not only efficient but 

extremely accurate for large datasets with many attributes. The idea behind ID3 trees is that given 

a large training set, only a portion is used to grow a decision tree. The remaining training cases 

are then put down the tree and classified. Misclassified results are used to grow the tree further 

and the process repeats. When all remaining cases in the training set are accurately classified the 

tree is complete. This method will grow an accurate tree much more quickly than growing a tree 

using the entire training set however it should be noted that this method cannot guarantee 

convergence on a final tree[19]. 

 
In Quinlan’s original ID3 representation, entropy was used as a splitting condition and total node 

purity was used to determine if splitting should continue. The information gain was found by 

calculating the total amount of information needed for the tree and subtracting the information 

needed by a tree with a root node N being split with attribute A. The largest information gain 

using A determined the attribute on which to split at node N. The process is recursive. Using this 

Quinlan was able to build efficient and accurate trees very quickly without using the entirety of 

large training sets. 

 

2.2.Random Forest 

 
Breiman[20] introduced the idea of bagging which is short for “bootstrap aggregating”. The idea 

is to use multiple versions of a predictor or classifier to make an ultimate decision by taking a 

plurality vote among the predictors. Twenty five regression trees constructed from bootstrap 

samples of the training set gave a median error decrease of 40% from a single tree predictor over 

five datasets. In bagging, it has been proved that as the number of predictors increases, accuracy 

also increases until a certain point at which it drops off. Finding the optimal number of predictors 

to generate will yield the highest accuracy. Pal and Mather [21] were able to increase 

classification accuracy of remotely sensed data by bagging using multiple decision trees. 

 
Random Forest are grown using a collaboration of the bagging and ID3 principles. Each tree in 

the forest is grown in the following manner. Given a training set, a random subset is sampled 

(with replacement) and used to construct a tree which resembles the ID3 idea. However, every 

case in this bootstrap sample is not used to grow the tree. About one third of the bootstrap is left 
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out and considered to be out-of-bag (OOB) data. Also, not every feature is used to construct the 

tree. A random selection of features is evaluated in each tree. The OOB data is used to get a 

classification error rate as trees are added to the forest and to measure input variable (feature) 

importance. After the forest is completed a case can be classified by taking a majority vote among 

all trees in the forest resembling the bootstrap aggregating idea. 

 
For example, in judicial court a robber may be on trial for stealing. The jury members will 

classify the robber as guilty or innocent. They have been ‘trained’ by a random subset of every 

account of robbery in history. This subset contains all robberies a single juror has seen or heard 

about. Having been ‘trained’ by other accounts of robbery, each jury member will take different 

variables of the trial into consideration. One member might take into account the value of the 

object stolen, the victim of the robbery, and the robbers age while another jury member might 

classify the robber’s guilt based on gender, his/her religion, and the robber’s age. At the end of 

the trial all jury members vote on the classification of the robber. In this limited example, the jury 

is the forest, each member is a tree, the robber is the case to be classified, and the pieces of 

evidence of the trial are the features to be used for classification. 

 
The error rate of the forest is measured by two different values. A quick measurement can be 

made using the OOB data but, of course, a set of test cases can be put through to forest to get an 

error rate as well. Given the same test cases, the error rate depends on two calculations: 

correlation between any two trees in the forest and the strength, or error rate, of each tree. 

Returning to our jury metaphor, if every member of the jury took only the features of age, gender, 

and race into account for classification, showing high-correlation between jurors, the jury would 

come to a correct conclusion about half the time (randomly) as age, gender, and race have almost 

nothing to do with theft and are only three of the many facts of the trial. The goals are to establish 

a jury that considers every piece of evidence of the trial and to select jurors who, on their own, are 

usually right about the final outcome. If jury members are trees, how do we grow trees with low 

correlation to one another and high in strength? The answer lies in how many variables each tree 

must consider. If we have M input variables select m of them at random to grow a tree. As m 

increases correlation and individual tree accuracy also increase and some optimal m will give the 

lowest error rate. Each tree will be grown by splitting on m variables; m stays constant throughout 

the forest.  

 
Random Forest can also measure variable importance. This is done using OOB data. Each 

variable m is randomly permuted and the permuted OOB cases are sent down the tree again. 

Subtracting the number of correctly classified cases using permuted data from the number of 

correctly classified cases using non-permuted data gives the importance value of variable m. 

These values are different for each tree but the average of each value over all trees in the forest 

gives a raw importance score for each variable [22].We have implemented Random Forest using a 

software package in R language andanalyzed Landsat images. Implementation and results from 

our analysis are in the next section. 

 

3. IMPLEMENTATION AND RESULTS 
 
For our simulation, we utilized the Random Forest package of the Comprehensive R Archive 

Network (CRAN) implemented by Liaw and Wiener [23]. We considered two Landsat scenes. 
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The first scene is of the Mississippi bottomland at 34 19 33.7518 N latitude and 90 45 27.0024 W 

longitude. The second scene is of Yellowstone National Park at 44345.4761 N latitude and 110 

2736.1818 W longitude. Images were acquired by Landsat-8 Operational Land Imager(OLI) on 

23 September, 2014 and 18 October, 2014 respectively. The spectral bands for OLI are shown in 

Table 1[24]. Our tests consider bands 1 through 7. 

 

 
 

Figure 1. Mississippi and Yellowstone Scenes 

 

Table 1. Landsat Band Descriptions 

 

 

 

 

 

 

 

 

Bands Wavelength 

(micrometers) 

Band 1 - Coastal aerosol 0.43 - 0.45 

Band 2 - Blue 0.45 - 0.51 

Band 3 - Green 0.53 - 0.59 

Band 4 - Red 0.64 - 0.67 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 

Band 6 - SWIR 1 1.57 - 1.65 

Band 7 - SWIR 2 2.11 - 2.29 

Band 8 - Panchromatic 0.5 - 0.68 

Band 9 - Cirrus 1.36 - 1.38 
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Figure 2. Mississippi Spectral Signatures 

 

We selected subsets of the original scenes of size 512 rows by 512 columns. Both scenes are 

shown in Figure 1 as a color composite of bands 5, 6 and 7.In order to train each classifier we 

selected four classes: water, vegetation, soil, and forest. Two training sets for each class, 

consisting of 100 points each, were selected interactively by displaying the raw image on the 

computer screen and selecting a 10 x 10 homogeneous area. The classifiers were trained using the 

training samples and reflectance data for bands 1 through 7.In order to test the classifiers’ 

accuracy, we selected forty test samples and used the spectral signatures as mean vectors for the 

four classes as shown in Figure 2. The scenes were classified using a random forest, SVM, 

maximum likelihood classifier, and a neural network. We have assessed the accuracy of the 

classifiers in the same statistical manner as described by Congalton [25]. 

 

Our Random Forest contained 500 trees with an m value of 2. We found that when using a forest 

this large, the OOB error rate does not significantly change as m grows. The code to implement 

the Random Forest algorithm using the R package is shown in Figure 3. We used ERDAS 

Imagine software (version 14) and R Language to implement the other classifiers. Comparing the 

results of Random Forest with other classifiers yields results found in Table 2 and classified 

output images are shown in Figure 4. 
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#Import training data from csv 
#to train the Random Forest. 
>trainingData<-read.csv("200Samples.csv") 
>x<-trainingData[,1:7] 
>y<-trainingData[,8] 
 
#Create Random Forest with 500 Treesand an m value of 2. 
>rf<-randomForest(x,y, mtry=2, ntree=500) 
 
#Import test data, predict values with the RF. Outputconfusioin matrix 
>testData<- read.csv("HardBandValues.csv") 
>testResults<- predict(rf,testData[,1:7]) 
>results <- data.frame(correct = testData[,8], prediction=testResults) 
>confusionMatrix(results$prediction,results$correct) 
 
#Read pgm files and generate classified image.usingpixmap library 
 
#Function to extract band values for a given point 
>bandValues<- function(xc,yc) { 
>>c(band1[xc,yc], band2[xc,yc], band3[xc,yc], band4[xc,yc],  
band5[xc,yc], + band6[xc,yc], band7[xc,yc]) 
>>} 
 
#Iterate through entire image and classify each pixel 
>final<-array(,c(512,512)) 
 
>for (ix in 1:512){for (jy in 1:512) { 
>>val<-bandValues(ix,jy) 
>>cl<-predict(rf,val) 
>>final[ix,jy]<-cl } } 
 
#Write the final output to image file. 
 
#200Samples.csv is a data file containing all band values and expected  
#classifications for the chosen 200 samples of each class 
 
#HardBandValues.csv is a data file containing all band values and  
#expected classifications for the 40 well-chosen test points of each  
#class 

 

Figure 3. Random Forest Implementation in R 
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Figure 4. Mississippi Classified Outputs a)Maximum Likelihood, b)Neural Network, c)Support Vector 

Machine, d)Random Forest 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal on Soft Computing (IJSC) Vol.6, No. 1, February 2015 

 

10 

 

 

Table 3. Mississippi Accuracy Rates 

 

 
 

In the Yellowstone scene, we cross-referenced satellite images with forest fire history from the 

Yellowstone National Park website to give us classes of field, fire damage, forest, and water. The 

damage from fires Alum, Dewdrop, and Beach, occurring in 2013, 2012, and 2010 respectively, 

can all be seen in the original image in Figure 1 [26]. It can be seen that over time, the reflectance 

of a fire damage area will slightly change. We took 200 samples from the Alum fire and 200 

samples of the Dewdrop and Beach fires combined as a sample for the fire class. The test was 

carried out in a similar manner. Figure 5 shows the spectral signatures for the Yellowstone scene. 

Table 3 shows the accuracy of the various classifiers. The Random Forest grown for the 

Yellowstone scene contained 500 trees. We found that the OOB error rate was minimized with an 

m value of 4. Classified output images are shown in Figure 6. 

 

In the Yellowstone scene, we cross-referenced satellite images with forest fire history from the 

Yellowstone National Park website to give us classes of field, fire damage, forest, and water. The 

damage from fires Alum, Dewdrop, and Beach, occurring in 2013, 2012, and 2010 respectively, 

can all be seen in the original image in Figure 1[26]. It can be seen that over time, the reflectance 

of a fire damage area will slightly change. We took 200 samples from the Alum fire and 200 

samples of the Dewdrop and Beach fires combined as a sample for the fire class. The test was 

carried out in a similar manner. Figure 5 shows the spectral signatures for the Yellowstone scene. 

Table 3 shows the accuracy of the various classifiers. The Random Forest grown for the 

Yellowstone scene contained 500 trees. We found that the OOB error rate was minimized with an 

m value of 4. Classified output images are shown in Figure 6. 
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Figure 5. Yellowstone Spectral Signatures 

 

IV. DISCUSSION AND CONCLUSIONS 
 
In this research we developed simulation for four classifiers: the maximum likelihood, neural 

network, support vector machine and Random Forest and analyzed two Landsat scenes acquired 

with Landsat-8 OLI. The scenes were analyzed using ERDAS Imagine and the R package by 

Liaw and Wiener [23]. It can be seen from Table 2 that the performance of Random Forest was 

better than all other classifiers in terms of overall accuracy and kappa coefficient. Table 3 shows 

that Random Forest was outperformed by the neural network and support vector machine. This 

could be due to impure training sets. Random Forest works well given large homogeneous 

training data and is relatively robust to outliers  

 
As the Yellowstone scene contained dips in elevation, the reflectance of the bands altered as 

valleys became shadows. We found that training the forest with the shadowed areas increases the 

classification error of the forest. Generally, with a large number of training samples, Random 

Forest performs better [22]. The Mississippi scene was trained with homogeneous samples. This 

led to high accuracy of Random Forest that outperformed all other classifiers. 
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Figure 6. Yellowstone Classified Outputs a) Maximum Likelihood, b)Neural Network, c)Support 

Vector Machine, d)Random Forest 
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