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ABSTRACT

The stability analysis and control of a three-dimensional autonomous chaotic system that exhibits
hyperchaotic properties is presented in this paper. The system's algebraic structure consists of six variable
control parameters, three nonlinear terms and two cross-products which triggers hypersensitivity in its
dynamic state evolutions. Stability analysis and control via fuzzy modelling confirms the controllability of
its unstable orbits in well-tuned regions of stability using Lyapunov principles.
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1. INTRODUCTION

Interest in the control of chaotic systems continues to attract attention among researchers even as
their usefulness in modelling real systems continue to increase. The application of chaotic
dynamics in complex engineering systems has motivated the search for more chaotic systems to
match the complexities of these new challenges. In recent times, chaos has found applications in
various engineering and non-engineering designs such as in medical science [1], psychology [2],
economics and finance [3] and so on. Recently, chaos has been integrated into robotic systems to
evolve new motion paradigm [4] for applicability of the robots in real world tasks such as fire-
fighting devices [5], military operations [6]. In secure communications, chaos has found
application in signal masking [7]. For a system to be chaotic, the following conditions must be
satisfied. Firstly, it must be sensitive to perturbation in its initial conditions which should lead to
unpredictability of its future trajectories, secondly, it must be topologically mixing and thirdly,
the chaotic orbit must be dense [8]. Among some evolved chaotic attractors in the literature are
the Chen's [9], 3-D, 4-wing attractor [10], Sundarapandian-Pehlivan [11], morphous one-
parameter attractor [12], Rabinovich system [13]. When chaotic attractors possess one positive
Lyapunov exponent, it is termed a basic chaotic system. However, when the system possesses two
positive Lyapunov exponents it is a hyperchaotic system and becomes hypersensitive to small
perturbations in its system dynamics. Control of chaotic system has become a fascinating subject
of research because controllability and synchronizability of chaotic attractors are index of
usefulness in a variety of designs such as in secure communications and robotics [14][15]. In this
connection, various control strategies have been employed to stabilize chaotic regimes of
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attractors such backstepping [16], adaptive control [17], fuzzy control [18], passive control [19]
and impulsive control [20]. In the context of stability and stabilization, the Lyapunov stability
principles continued to enjoy wide usage and applications it can effectively stability issues in
dissipative systems.

In this paper, analysis and synthesis of a fuzzy controller designed to control the chaotic regimes
of a three-dimensional autonomous chaotic system that exhibits hyperchaotic properties is
reported. The conditions for asymptotic stabilization of each fuzzy rule are also outlined.

2. THE 3-D AI-YUAN-ZHI-HAO HYPERCHAOTIC SYSTEM

The chaotic attractor under study has been proposed in [21]. The hyperchaotic system is made up
of six control parameters and three nonlinear terms in the right equations. The system is
represented by the following equations = ( − ) + Ω= −= − +

(1)

Where , ,x y z are state variables and , Ω, , , and are control parameters. For values of= 10, Ω = 25, = 20, = 7, = 8 and = 3 , the system (1) exhibits the chaotic attractor
depicted in 2-D phase planes of Figure 1.
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Figure 1. Evolution of system states in 2-D phase plane

The qualitative and quantitative properties of the attractor have been lucidly elaborated in [].

3. FUZZY LOGIC CONTROLLER DESIGN AND LYAPUNOV
BASED SYNTHESIS

Chaotic system modelling based on fuzzy logic has long been practiced due to its to model
chaotic dynamic systems due to its capability to approximate chaotic dynamics [22] . Of all fuzzy
models, the Takagi-Sugeno (TS) fuzzy model [23] has played a dominant role in the modeling of
complex nonlinear systems that are deficient of exact descriptions and have mathematically
intractable dynamics. In the context of design approach, TS fuzzy modelling has relied on the
linear matrix inequality (LMI) approach or the direct Lyapunov based analysis and synthesis.
Although successful results based on LMI are replete in the literature, the stability analysis and
synthesis often involves rigorous mathematical proofs [24]. On the other hand, the Lyapunov
function based analysis and synthesis requires the selection of a Lyapunov function candidate
whose partial derivative in continuous time would be render negative definite or negative semi-
definite by a specified feedback control law [25].

3.1 T-S Fuzzy controller design and synthesis

A heuristic design methodology for a fuzzy controller that can guarantee stability was reported in
[26]. In this approach, a fuzzy subsystem is formed by each fuzzy rule of the controller and the
choice and distribution of membership function is not restrictive.

Definition 1 [27]: For any input ∈ ,  ( is the universe of discourse), if the degree of
membership ( ) corresponding to a fuzzy rule is zero, this fuzzy rule i is called an inactive
fuzzy rule, otherwise it is called an active fuzzy rule.

In the active fuzzy region, the membership functions ( ) ≠ 0, for all ∈ where ⊂
is the active region of the fuzzy rule. For proof (see [26]).
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3.2 Design of the TS fuzzy controller

Consider an autonomous nonlinear system comprising a plant and a Fuzzy Controller [27]
described by ̇ = ( ) + ( ) , ( ) = (2)

Where = [ , , … … ]T is a state vector, ( ) = [ ( ), ( ) … … ( )]T and ( ) =[ ( ), ( ) … … . . ( )]T are the function vectors related to the dynamics of the plant, u is a
control signal produced by the Fuzzy Controller. The Fuzzy Controller is made up of rules. The
aggregate control signal applied to the dynamic system is a function of and where is the
control signal produced by each fuzzy subsystem that is formed by the fuzzy rules. The −
fuzzy rule of the Fuzzy Controller is in the form of (3):

Rule :  IF is Ф is Ф … . . Ф , THEN = ( ) (3)

Where Ф , … . Ф , are inputs fuzzy labels, and = ( ) is the control output.. Each
fuzzy rule generates a degree of fulfillment ( ) given by:= min( , … ) ; ∈ [0,1], = 1,2 … (4)

Definition 2 [27]: A fuzzy subsystem having a fuzzy rule is a system with a plant of (2) and
controlled by only , which is the output of fuzzy rule in the form of (3). By using the
singleton- type fuzzifier with min-max inference type and the weighted sum defuzzification
method, the aggregate Fuzzy Controller output control signal applied to the plant is related by
equation (5): = ∑ ( ) ( )∑ ( ) (5)

The control scheme, triangular membership function and the fuzzy rule table are depicted below.

Figure 2. Plot of Lyapunov exponent

Figure 2. Fuzzy logic control scheme
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Figure 3: Triangular membership function for , ; ∈ [−100 100]; ∈ [−80 80]; ∈ ∅
Table 1. Fuzzy rule base

3.3 Stabilizing controller synthesis

In this section, we choose a Lyapunov function candidate ( , , ): → such that (0,0,0) =0; ( , , ) > 0 ∀ ( , , ) ≠ 0. ( , , ) is a continuous real-value function which also satisfies
the following conditions: ( , , , ) ≤ 0 ∀ ( , , ) ≠ 0. (6)

The controlled system of (1) is derived by adding a control variable to the first equation such
that = ( − ) + Ω +

= −
= − + (7)

We choose a Lyapunov function candidate:( , , ) = (2 + + ), = 1,2 … , = 9 (8)

(n is the number of fuzzy rules). The partial derivative of (8) is given aṡ ( , , ) = 2 ̇ + ̇ + ̇ (9)

Putting (7) into (8) and simplifying:
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̇ ( , , ) = 2 ( ( − ) + Ω + ) + ( − ) + (− + 2)= 2 − 2 2 + Ω + 2 + − − 2 + 2 (10)

State variable is assumed to be an empty set, i.e = 0 [27], therefore,̇ ( , , , ) = 2 − 2 + 2 + (11)

Rearranging equation (11) to conform to the format given in (2) and solving for [27] results in
(12) 2 − 2 + = −2= − − − 0.5 (12)

In order for eq. (11) to satisfy the condition for asymptotic stability stated in (6), the feedback
control law (12) must be manipulated to render ̇ ( , , , ) ≤ 0 ∀ ( , , ) ≠ 0. Thus, we choose= − − 0.5 (13)

Equation (13) is used to derive the control signal produced by each fuzzy subsystem [28]. In
general, we have = − ( + 0.5 ), = 1,2, … , = 9 (14)

is number of fuzzy rules. The conditions for local stability of each fuzzy subsystem are
summarized in Table 2.

Table 2. Stability conditions for fuzzy controller

4. SIMULATION RESULTS

The results of simulation of the closed-loop system using MATLAB software is given in this
section. The closed-loop system was simulated for initial conditions[x(0), y(0), z(0)] =[50, 50, −50]. The controlled trajectories are given in Figure 7.
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Figure 7. Controlled trajectories of the hyperchaotic Ai-Yuan-Zhi-Hao system

5. CONCLUSION

This paper presents the results of the simulation of a Fuzzy Logic Controller designed to control a
hyperchaotic AI-YUAN-ZHI-HAO system via Takagi-Sugeno fuzzy modelling approach. It also
presents the results of investigation of the stability bounds necessary for the asymptotic
stabilization of the hyperchaotic system based on Lyapunov stability criteria. Simulations results
show that the system is hypersensitive to perturbation in its initial conditions. Stability was
strongly dependence on the variation of the initial conditions and heuristic tuning of the gains of
the controller. For the set of controller gains used in this work, the initial conditions that
guarantees asymptotic stability lays within the range of −50 ≤ [x(0), y(0), z(0)] ≤ 50 for the
stability conditions tabulated in Table 2.
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