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ABSTRACT

In a Power plant with a Distributed Control System ( DCS ), process parameters are continuously stored in
databases at discrete intervals. The data contained in these databases may not appear to contain valuable
relational information but practically such a relation exists. The large number of process parameter values
are changing with time in a Power Plant. These parameters are part of rules framed by domain experts for
the expert system. With the changes in parameters there is a quite high possibility to form new rules using
the dynamics of the process itself. We present an efficient algorithm that generates all significant rules
based on the real data. The association based algorithms were compared and the best suited algorithm for
this process application was selected. The application for the Learning system is studied in a Power Plant
domain. The SCADA interface was developed to acquire online plant data.
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1. INTRODUCTION

Machine Learning Technique is a scientific discipline that is concerned with the design and
development of algorithms that allow computers to evolve behaviors based on empirical data,
such as from sensor data or databases. A major focus of machine learning research is to
automatically learn to recognize complex patterns and make intelligent decisions based on data;
the difficulty lies in the fact that the set of all possible behaviors given all possible inputs is too
large to be covered by the set of observed examples (training data). Hence the learner must
generalize from the given examples, so as to be able to produce a useful output in new
cases[1][2].

Knowledge Based System (KBS) has an important role to play, particularly in fault diagnosis of
process plants, which involve lot of challenges starting from commonly occurring malfunctions to
rarely occurring emergency situations.

Machine Learning is discovering new knowledge from large databases (Data Mining). The field
of machine learning is concerned with methods that can automatically learn from experience. The
experience is usually given in the form of learning examples from which machine learning
methods can automatically learn a model. Sometimes it is very important that the learned model
can be read by human, and one of the most understandable types of models are rule sets[3][4].

Expert systems are Knowledge-Based Systems(KBS) in which The Knowledge Base(KB) holds
information and logical rules for performing inference between facts. The KBS approach is
promising as it captures efficient problem-solving of experts, guides the human operator in rapid
fault detection, explains the line of reasoning to the human operator, and supports modification
and refinement of the process knowledge as experience is gained. Real time Expert System Shell
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is a software development environment containing the basic components of expert systems. The
Shell Toolkit can be used to develop Intelligent System for Diagnosis and Root Cause Analysis
and operator guidance in process plants etc. The Expert System when enhanced  with Learning
Engine, updates the KB with new learned rules & thus improves the efficiency of the system in
root cause analysis of faults.

Figure. 1 Expert System Components

2. KNOWLEDGE REPRESENTATION

Knowledge Base (KB): The system uses a Hybrid Knowledge base, the main components of
which are Meta Rules, Rules & Frames. The Knowledge Base can be built with Domain specific
information using the web based, user friendly Knowledge Base Editor GUI. A web based
Knowledge Base Editor (KBE) provides facility to input different rules of an application by the
domain expert using user-friendly GUI. Rules and other application specific attributes will be
represented using Frames and Production rules.

Knowledge base consists of domain specific information that is fed into the system through GUI.
This information is used to interpret and diagnose real-time data received from controllers and
sensors. The structures used to store knowledge consist of:

Meta-rule: Structure - If Complaint Then Hypothesis

Meta-Rules are the supervisory rules to categorize Sub-rules in broad areas or nodes. Meta rules
decide what domain rules should be applied next or in what order they should be applied. Rules:
Structure - If Condition Then Action

Rules are basic components of the ‘Knowledge base’. The condition and action parts of the rules
are defined as parameters. The condition and action parts can have more than one parameter
separated by logical operators. The parameters are specific data variables, which are configurable
by the user.

Frames: Frames are general data structure holding the static information about any equipment or
unit.

3. INFERENCE ENGINE

The Inference Engine is the heart of the expert system. Since the expert system is intended for
diagnosis of faults, a Backward Chaining inference strategy is preferred. This inference engine
will use knowledge stored in Production Rules and Frames for arriving at a conclusion or a goal
while performing a fault diagnosis using backward reasoning method
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Figure. 2 Internal Block Diagram of Inference Engine

Working Principle of Inference Engine: The critical alarms are made as Meta-rules and sub-
causes are depicted as rules in the knowledgebase. When the critical alarm occurs in the system,
the relevant meta-rule will be fired; consequently the rules having the condition part true will get
fired in sequence till the final root cause of the failure is reached. The inference engine algorithms
is as follows:

Backward reasoning: Backward chaining involves, working back from possible conclusions of
the system to the evidence, using the rules and frames. Thus backward chaining behaves in a
goal-driven manner. One needs to know which possible conclusions of the system one wishes to
test for. In frame based systems rules play an auxiliary role. Frames represent here a major source
of knowledge both ‘methods’ and ‘demons’ are used to add actions to the frames. Goal can be
established either in a method or in a demon.

Inference Manager is used for processing of all rules based on the user input or SCADA input.
Meta Rule Interpreter search through the Meta Rule set for finding out the complaints part
(antecedent) which matches the user defined complaint/Alarm. Inference Manager gets the
hypothesis list (in the consequent part of Meta Rule) and Load it into the Working memory. Then
Inference Manager will process hypothesis based on the certainty factor one by one (Hypothesis
with the highest CF processed first).Then Inference Manager searches through the Rule set for
finding out the action part which matches the hypothesis (THEN) part of the Meta rule. Rule
Interpreter gets the condition part of Rule and evaluate each parameter in it. For this Parameter
Interpreter checks the parameter type. Parameter can be database type or (within the working
memory) or frame type or GUI or Computed. Evaluated parameters are added to working
memory. This process is repeated till all rules are evaluated. Fired rules and parameters evaluated
are logged into the database for generating explanation by the Explanation module

4. Learning Engine Developement For Enhancing Expert System

The Learning Engine is an extension of the Expert systems where new rules have to be learned by
the shell for any domain.  For this we need to do data preprocessing and data mining of the
historic Data. The new rules generated have to be validated by the expert and then can be updated
to the knowledge base. In our work we used Association based Learning methods for generating
new rules from data[5].

To enhance the inferencing capability of Real time Expert System Shell new rules have to be
found from the historic data. The parameter name and values from the historic data are used as
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input for Learning Engine. For learning,  the association between parameters at different time has
to be found. The major Machine Learning Techniques are as below:

Classification – Supervised data mining. Forms unseen classification.

Numerical prediction – Subgroup of Classifier. Formed outcome is a numeric quantity and not a
discrete class or classifier.

Clustering – Unsupervised learning.

Association – Any association of one or more than one attribute at a time.

Figure 3: Architecture Diagram of Expert System with  Learning Engine

The output of Machine Learning algorithms can be of the form of Decision tables, Decision trees,
Association rules, Clustering Diagrams etc. Association rule learning (Dependency modeling) -
Searches for relationships between variables. Thus we have studied and compared the Association
algorithms.

4.1 Association rule learning

Association Mining is finding frequent patterns, associations, correlations or causal structures
among sets of items or objects in transaction databases and other information repositories. When
given a set of transactions, this will find rules that will predict the occurrence of an item based on
the occurrences of other items in the transaction.

Association rules are usually required to satisfy a user-specified minimum support and a user-
specified minimum confidence at the same time. Association rule generation is usually split up
into two separate steps:

1. First, minimum support is applied to find all frequent item sets in a database.

2. These frequent item sets and the minimum confidence constraint are used to form rules.
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In Association rule learning following algorithms were compared & results summarized:

1. Apriori
2. Predictive Apriori
3. FPGrowth
4. Tertius

4.1.1 Apriori

In computer science and data mining, Apriori is a classic algorithm for learning association rules.
Apriori is designed to operate on databases containing transactions (for example, collections of
items bought by customers, or details of a website frequentation).

Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a
step known as candidate generation), and groups of candidates are tested against the data. The
algorithm Apriori, suffers from a number of inefficiencies or trade-offs, which have spawned
other algorithms. Candidate generation generates large numbers of subsets (the algorithm
attempts to load up the candidate set with as many as possible before each scan). Bottom-up
subset exploration (essentially a breadth-first traversal of the subset lattice) finds any maximal
subset S only after all 2 | S | − 1 of its proper subsets.

4.1.2 Predictive Apriori

It searches with an increasing support threshold for the best 'n' rules concerning a support-based
corrected confidence value. When evaluating association rules, rules that differ in both support
and confidence have to be compared; a larger support has to be traded against a higher
confidence.

The constraint of Predictive Apriori is that it also creates transaction database before rule making
and the time required for rule making was much high compared to other algorithms.

4.1.3 FP Growth

FP Growth allows frequent itemset discovery without candidate itemset generation. It has two
step approach:

Step 1: Build a compact data structure called the FP-tree

Built using 2 passes over the data-set.

Step 2: Extracts frequent itemsets directly from the FP-tree

Traversal through FP-Tree

FP-Tree is an efficient algorithm for finding frequent patterns in  transaction databases

●  A compact tree structure is used
●  Mining based on the tree structure is significantly more efficient than Apriori transaction
databases

The constraint of FP Tree is that it supports only binary attributes and also creates transaction
database before rule making.
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4.1.4 Tertius

Tertius uses a top-down search algorithm when creating the association rules. The search first
starts with an empty rule.  Next, Tertius iteratively refines the rule by adding new-attribute values.
Tertius continues to refine the rule as long as such refinements increase the confidence value.
Finally, Tertius adds the rule and restarts the search to create new rules.  Tertius ends when no
additional rules can be created with sufficient confidence values.  Afterwards, it returns the set of
rules along with their confidence values.

Tertius does not create itemset and transaction databases. It starts directly from creating rules thus
the algorithm implementation of Tertius requires less memory compared to the other association
algorithms.

4.2 The Learning Module Implementation: Working Principle

Knowledge discovery in databases is the process of identifying valid, novel, potentially useful,
and ultimately understandable patterns or models in data. Data mining is a step in the knowledge
discovery process consisting of particular data mining algorithms that, under some acceptable
computational efficiency limitations, find patterns or models in data. This Learning Engine was
developed as an enhancement module to the Real Time Expert System for Root Cause Analysis
of alarms in Plants. The development is done using Java and Flex languages and uses MySql
database. In power plants application we have to take into consideration the historic data, online
data for updating the knowledge base with the new knowledge acquired. Figure 4 shows the
general architecture of the Learning Engine Module.

The Learning Engine Module mainly consists of the following sub modules:

User Interface
Preprocessor
Algorithm implementer
Post processor
Rule Validator
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Figure 4: Block  Architecture Diagram of Learning Engine

The administrator/user can initiate the Learning process from the GUI. The data has to be selected
from the history by configuring the start time/date to end time/date for Learning Engine. Figure 5
shows the start/end date and parameter selection configuaration.

4.2.1 Preprocessor

This data in the historian data base has to be preprocessed and the suitable output structure has to
be created before feeding to the Learning algoritm model to get the output.

The history data preprocessing involves the following methods.

1. Data cleaning - The historic data contains the field ‘Quality’ with data 1(good) and 0 (bad).
Filter out or discard instances with quality attribute value 0.

2. Data transformation- Data Transformation involves conversion of the data value (Parameter
Value) using alarm code mapping to corresponding nominal values

3. Data reduction –The unwanted columns in the historic data are to be removed.

The historic data after preprocessing has to be fed to the Learning algorithms.
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Figure 5: Learning Engine- Prepocessor

4.2.2 Algorithm Implementer

The pre-processed learning data table in database is the input to Algorithm Implementer module.
This module is using Tertius algorithm as found most suitable among the association algorithms
for this domain of application. Tertius does a complete top-down A* search over the space of
possible rules. If you have ‘A’ attributes with on the average ‘V’ values and search for rules with
up to ‘n’ literals, the number of possible rules is of the order (AV)n. The output is the set of rules
from the Rule generator block. The parameters which are configurable for Tertius algorithm are
Confirmation Threshold and Frequency Threshold whose default values are set as 0.3 and 0.1
respectively.

Figure 6: Learning Engine- New rules formation

4.2.3 Post processor Module

The input to this module is the set of rules generated from the rule generator(Algorithm
Implementer) module. The rules generated have to be post processed so that it is in the same
format as the Knowledge Base(KB) Rules. The rules with normal conditions (in both head and
body) have to be discarded as only rules for alarm conditions  are present in Knowledge Base.
The duplicate rules have to be removed as part of post processing i.e with literals reverse in head



International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.3, No. 2, May 2014

21

and body. The rules shall be in the if-then format as in the KB. Post processor module converts
the rules generated to if-then format.

4.2.4 Rule Validator

The input to the Rule Validator module is the Postprocessor module output rules. The Rule
Validator compares the input rules with the existing Knowledge Base Rules. If the rule already
exists in Knowledge Base, it is discarded. The new rules are output to the GUI. After
confirmation from domain expert, the Knowledge Base. is updated with the new rules.

Figure 7: Learning Engine- Rule added to Knowledgebase

5. APPLICATION

The data used for the testing is generated from a Plant Test Setup using Analog and Digital Input
cards connected to suitable sources. The interface between Plant Distributed Control System
(DCS) and Expert System is via OPC DA. The alarm “MS Header Temp LO” is considered for
testing. This is an actual alarm studied from NTPC Plant.
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Figure 8: Fault Tree for Alarm: MS Header Temp low

Historic data is read from database and analog values are converted to nominal type for inputting
to association algorithms. Here 13 attributes (6 analog and 7 digital) and 70 instances are used for
testing. The test data is given as shown below.

attribute 1- AI-3 {LO,NORMAL} attribute 2- AI-2 {LO,NORMAL}
attribute 3- DI-7 {TRUE,FALSE}attribute 4- DI-6 {TRUE,FALSE}
attribute 5- DI-5 {TRUE,FALSE}attribute 6- DI-4 {TRUE,FALSE}
attribute 7- DI-3 {TRUE,FALSE}attribute 8- DI-2 {TRUE,FALSE}
attribute 9- DI-1 {TRUE,FALSE}attribute 10-AI-7 {LO,NORMAL}
attribute 11-AI-6 {LO,NORMAL}attribute 12-AI-5 {LO,NORMAL}
attribute 13-AI-4 {HI,NORMAL}

Existing Knowledge Base Rules

If  AI-3<30(LO) OR DI-1=True OR AI-7<45(LO) OR DI-4=True Then AI-2<50(LO)
If  AI-4>25(HI) OR AI-6<20(LO) OR DI-4=TRUE Then AI-3<30(LO)
If AI-5 < 28(LO)  OR DI-7 = True Then AI-4>25(HI)
If DI-6 = True Then AI-5<28(LO)
If DI-5 = True Then AI-6<20(LO)
If DI-2 = True Then DI-1=True
If DI-3 = True Then AI-7<45(LO)

Algorithm Run Outputs

FW temp at
econ I/L

low?(AI-5<
28)

MS header
temperature
low? (AI-

2<50)

L/R system
temperature
control on

Manual? (DI-1)

CV position
difference from
control signal?

(AI-7< 45)

L/R spray
CV closed?
(AI-3< 30)

Oxygen in
FG

low?(AI-6<
20)

No fault

System temperature
control on manual

(DI-2)

Control Valve Stuck
(DI-3)SH Tubes soot deposit/

Running Burners trip (DI-
4)

RH/SH Soot
deposit(DI-7)

FWHtrs
Problems (DI-

6)

FW diff
temp across

econ
high?(AI-
4< 25)

Low excess
air (DI-5)

No

Yes
No

No

No

No

Yes

Yes

No

Yes

Yes

Yes
Yes



International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI), Vol.3, No. 2, May 2014

23

1. Apriori

Configuration
No of rules=100000 , Minimum support: 0.25 (17 instances)
confidence: 0.1, Instances:    70, Attributes:   13
AI-3, AI-2, DI-7, DI-6, DI-5, DI-4, DI-3, DI-2, DI-1, AI-7, AI-6, AI-5, AI-4
Best rules found:
Seven best rules are found using Apriori algorithm. One sample rule is shown below
AI-3=LO 40 ==> AI-2=LO 40    conf:(1)

2. Predictive Apriori

Configuration
No of rules=100000, Instances:    70, Attributes:   13
AI-3, AI-2, DI-7, DI-6, DI-5, DI-4, DI-3, DI-2, DI-1, AI-7, AI-6, AI-5, AI-4
Best rules found:
Twenty three best rules are found using Predictive Apriori algorithm. One sample rule is shown
below
AI-4=HI 20 ==> AI-3=LO AI-2=LO 20    acc:(0.99454)

3. FPGrowth

Configuration, No of rules=100000, Minimum support: 0.25 (17 instances)
Minimum confidence: 0.1, Instances:    70, Attributes:   13
AI-3, AI-2, DI-7, DI-6, DI-5, DI-4, DI-3, DI-2, DI-1, AI-7, AI-6, AI-5, AI-4
FPGrowth found 47458 rules
Rules without NORMAL and FALSE attribute values are only displayed and no such rules are
found
FPGrowth supports only binary attribute values.

4. Tertius

Instances:    70, Attributes:   13
AI-3, AI-2, DI-7, DI-6, DI-5, DI-4, DI-3, DI-2, DI-1, AI-7, AI-6, AI-5, AI-4
Thirty two best rules are found using Tertius algorithm. Some sample rules is shown below.
AI-4 = HI ==> DI-7 = TRUE or DI-6 = TRUE
AI-5 = LO ==> AI-4 = HI
AI-4 = HI ==> DI-7 = TRUE
AI-4 = HI ==> DI-6 = TRUE
AI-4 = HI ==> AI-5 = LO
Highlighted rules are existing KB rules.
Number of hypotheses considered: 73507
Number of hypotheses explored: 38490

6. COMPARISON OF ASSOCIATION ALGORITHMS

Comparison of Machine learning Association algorithms was required to find the pros and cons
of each algorithm.   The Table 1 shows that out of these four algorithms Apriori and Tertius give
satisfactory results with respect to this application. The Apriori Association Algorithm requires
more time and memory if the number of attributes are high (more than 20 attributes).  The
FPGrowth Association Algorithm supports only binary attribute values. The Predictive
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Association Algorithm takes more time and will not work with more attributes. Tertius
Association Algorithm has been tested up to 250 attributes and got acceptable results. So it is
concluded that Tertius Association Algorithm is more suitable for our application as it can
support quite high number of attributes with highest number of valid results.

Table 1: Association Algorithms output comparison

7. CONCLUSIONS

The Learning Engine enhances the Expert System by forming new rules dynamically. The new
rules formed are validated by the domain expert and then the rules are updated to the
knowledgebase. The association based learning algorithms are compared and it was found that the
Tertius Algorithm is most suitable for this process application as it generates maximum number
of valid rules in shortest possible time. Hence this algorithm has been  used for implementing the
Learning Engine.
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