

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

DOI : 10.5121/ijsea.2012.3104 37

AGILE PROGRAMMING AND DESIGN PATTERNS IN

WEB DEVELOPMENT -A CASE STUDY

V.Dattatreya1, Dr K.V.Chalapati Rao1

1Department of Computer Science and Engineering, CVR College of Engineering,
Ibrahimpatnam, RR District, Andhra Pradesh, India

valiveti_vdt@rediffmail.com, chalapatiraokv@gmail.com

V.M. Rayudu2

2Software Engineer, Directorate of Treasuries and Accounts, Government of Andhra
Pradesh, Hyderabad.

madhava.rayudu@gmail.com

ABSTRACT

 Agile Programming Methodologies prioritize to minimize the risk by developing software in shorter time

boxes called iterations. They emphasize real –time communication, and give preference for working

Software which satisfies all stake holders. They give less prominence to documentation, as compared to

other methods. Design Patterns have received a lot of attention notably from the Object-Oriented world as

a technique for design reuse. Design Patterns make it easier to reuse successful designs and architectures

by providing solutions to common design problems at an intangible level. A list of Design Patterns are

available that can form the basis for creating designs useful for new designers and to deal with

reconfigurable design. By combining the application and implementation lessons to the expansion and

modifications of this list, one can make those lessons better applicable to the design community. The first

section of this paper outlines the Agile Development Methodologies, the second section relates to the

Design Patterns, the third section relates to Ruby on Rails, and in the last section we present a case study

about Ruby on Rails to a customized accounts package as an integrated approach of Agile Programming

and Design Patterns.

KEYWORDS

 Agile Development methodologies, Design Patterns, XP, Scrum, Rails, Ruby, Gem, ActiveRecord, MVC,

ORM.

1. INTRODUCTION

Most of the conventional software development methodologies like Waterfall Model, Spiral
Model, and Iterative Model follow a predefined structured approach. Typically they take long
time frames and the success rate to comply with the customer’s expectations is less than 50% [1].
Since most of the current software projects fail to be completed within the short time frames,
Agile Development Methodologies such as eXtreme Programming [2], Scrum [3], and Lean
Development [4] have been proposed in the literature for contemporary situations for faster
completion of software projects. Agile programming exploits the best feedback that comes from
users interacting with working software, and this promotes early and frequent delivery of well-
tested software. These methodologies mainly focus on real-time face-to-face communication.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

38

They put less weight on documentation, compared to conventional software development
methodologies.

Design Patterns facilitate reusability at design level for software as compared to Object Oriented
approach that enables only code level reusability. For the past 15 years Design Patterns have been
receiving attention for researchers and now several Design Patterns exist for varied application
areas. Usage of Design Patterns in project development introduces standardization and reduces
time frames of development. Integration of Design Patterns and Agile Programming is an ideal
approach to achieve significant results to reduce time frames. In the current competitive global
scenario, Web based software development requires faster product delivery. Further Web based
products normally demand faster reaction times to user demands. From these two points of view,
combination of the two important technologies is considered most appropriate for Web based
software development. Our paper presents a case study relating to applications in the area of
accounts making use of the integrated approach. In the next section we present important Agile
Development Methodologies which form the basis for our proposed approach.

2. AGILE DEVELOPMENT METHODOLOGIES

Generally Agile Development Methodologies consider three groups of stakeholders. One group is
the software customer, the decision maker with authority to pay for software [5]. Second group is
the software users, the persons or organizational units who directly either use the output of the
software, or provide the input to the software, or both. Third group is information systems
personnel who develop or maintain software. This group may be centralized or distributed within
the organization that has users working with systems implemented with software or external to it.
Software development creates new software, whereas software maintenance deals with existing
software. Software evolution is manifest in some kinds of changes over time in software [6].
While agile methods have been promoted for software development [7], their applicability in
software maintenance has been noted [8, p.135].

Out of all the agile methodologies, eXtreme Programming and Scrum are considered the most
popular ones, which are briefly described below.

2.1. eXtreme Programming [2]:

eXtreme Programming (XP) has evolved from traditional Software Development models which
cause the long development time frames. XP is organized around short iterations. The phases
that are involved in the eXtreme Programming are, Exploration phase, Planning, Iteration to
Release, Productionizing, Maintenance and Death phase. In the Exploration Phase, the
customers write out the user story/story card that they wish to be included in the first release.

A user story is a set of sentences that the end user wants to achieve. Planning Phase sets the
priority order for these stories, and an agreement on the contents of the first release. The
programmers estimate how much effort each story requires and accordingly give the schedule.
Iteration to Release phase includes several iterations of the system before the first release. The
scheduled set can be split into a number of iterations in Iteration and Release phase. In the
Productionzing phase, new changes may still be made and decision has to be taken on whether
they are to be included in the current release. Next is maintenance phase which may require
recruiting new people into the team. In the last phase, viz., Death phase, no new stories are to be
implemented.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

39

2.2. Scrum [3]:

Scrum is an agile method that focuses on project management. The main idea of the scrum is
that systems development contains environmental and technical variables that are likely to
change during the process. Scrum has three phases .1.Pregame 2. Game 3. Postgame.

Pregame: Pregame in turn contains two phases Planning and Architecture /High level design.
Planning phase includes the definition of the system being developed. Architecture/High level
design includes the high level design of the system including the software architecture based on
the current items in the product backlog.

Game: It is the development phase in which the system is developed in sprints. Sprints are
iterative cycles where the functionality is enhanced to produce new increments.

Postgame: It is the closure of the release which is entered when an agreement has been made
that environmental variables are completed. In the next section we explain the evolution and
main parts of Design Patterns.

3. DESIGN PATTERNS

The original concept of Design Patterns was conceived by the architect Christopher Alexander
[9]. According to him “A Pattern describes a problem, which occurs over and over again in our
environment, and then describes the core of the solution to that problem in such a way that one
can use the solution a million times over”. The concept of Design Patterns has been adopted in
Object-Oriented Software Development by identifying reusable patterns of design for various
existing applications. Since a pattern is a multifaceted concept, several answers can be given to
the question “What is a software Design Pattern?”. A Design Pattern is a common solution to a
recurring problem in design, and it names and specifies the design structure explicitly. A Design
Pattern tries to record a solution to a recurrent problem encountered during the design process.
By using a design pattern, it is not only possible to document design experience in a very simple
and comprehensible format, but also to reuse the same experience several times for different
applications. One of the main reasons that computer science researchers began to recognize
design patterns was to satisfy the need for good, simple, and reusable solutions. With respect to
design methods, design patterns are able to transcend the constraints of a predefined design
notation because they help to capture the essential, universal aspects of design problems and
their solutions. A pattern can be viewed as a working hypothesis; every pattern describes the
current understanding of the best game plan for solving a particular problem. The first pattern
conference –Pattern Language of Program Design (PLOP) in 1994 –made an impact in Software
Engineering industry and the publication of the first design patterns book “Design Patterns:
Elements of Reusable Object-Oriented Software” [10] in 1995 resulted in wide acceptance of
Design Patterns approach. A Software Design Pattern has four essential elements, which are
given below along with the purpose of each.
1. Pattern Name [10] to describe a design problem, its solutions, and consequences.

 2. The Problem [10] describes when to apply the pattern.

 3. The Solution [10] enumerates and explains the elements that form the design, along with the
relationships and collaborations among them.

4. Consequences [10] may address language and implementation issues as well.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

40

We discuss some of the issues related to Design Patterns in the following section:

3.1. Pattern Description

One of the contributions of Gamma et., al. is to propose a consistent format and set of contents
for the description of a design pattern. This particular description helps some important things
required to be known in order to understand and use a pattern. Their form includes [11]:

• Name – a standard name for the pattern; pattern names in SMALL CAPS to classify them.

• Intent – What problem is the pattern addressing? What is it trying to do?

• Motivation – Why do we want to use this pattern?

• Applicability – When can this pattern be used? The difference among the patterns is that there
are often different patterns for specialized contexts. What special property of the problem
would make this pattern applicable or even preferred? What properties might make this pattern
inappropriate?

• Participants – What are the elementary players in the pattern?

• Collaborations – How do the participants act together to solve the problem?

• Consequences – What are the advantages and disadvantages in using this pattern?

• Implementation – How do we implement this? What pitfalls should be avoided? Are there

hints for optimization?

• Known Uses – Common examples of usage of this pattern in a real system?

• Related Patterns – The list of patterns associated to this one, how they work together and
when to prefer one pattern over the other?

4. CASE STUDY ON RUBY ON RAILS

4.1. RUBY

In 1993 Ruby was introduced by Yukihiro Matsumoto (a.k.a Matz) as an alternative to Perl and
Python. Ruby is an interpreted language which has many useful features of various languages.
Ruby is an Object Oriented language and it supports only single inheritance. It also provides us
with the feature called mixins [12]. By the usage of mixins we can import methods from several
classes by using modules. Ruby has the scripting features similar to the older scripting languages
like Python and Perl. The Object Oriented concept taken from C++ and Java helps to maintain the
reliability of programming by providing the security of code. Ruby is freely available in the
world. Because of this feature, Ruby is used widely by most of the software developers. Ruby has
strict principles of Object Oriented programming languages (OOPS). The essential components of
OOPS are Classes, Instances, Objects, Portability, Methods, and Security. Objects are the real
world entities. These objects are used to apply for the real world problem that makes use of all
functionalities available in the classes. Ruby has classes and Instances. Instances of class become
objects. All algorithms based on objects are passed into the methods. A method can be defined as
a set of instructions and can be called by an object. In Ruby, the entire code consists of the

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

41

methods of one class or another. Ruby provides portability, using which the programmer can keep
his/her code available over the network. The Ruby language is so strong that the programmer has
no concern about the credibility and the safety of the code. Ruby provides the Data portability
which is the Lock Down property that enables the programmer to decide which part of his code or
data may be a risk to the remaining part of the code. We can also execute our Ruby programs
under a tight security check by enabling the security check option. We are using a variable
$SAFE which helps us to find out the safety level of the code.

4.2. Rails

Rails is a framework using Ruby language. It is designed to make programming Web applications
easier, a feature every developer needs to get started. Ruby on Rails is a framework that gives
support to develop, deploy, and maintain Web 2.0 applications. Rails applications gives use the
Model-View- Controller (MVC) architecture. Java developers are used to frameworks such as
Struts, which are based on MVC. When we are working with rails application there is a place for
each code. Rails applications are written in Ruby which is an object-oriented scripting language.
Any Developer can express ideas naturally and cleanly in Ruby code. Rails is based on three
philosophies: code is short and readable, DRY and convention over configuration. Using DRY
(Don’t Repeat Yourself) philosophy every piece of knowledge in a system should be expressed in
just one place. Convention Over Configuration – means that Rails makes assumptions about what
we want to do and how we are going to do it, rather than requiring us to specify every little thing
through endless configuration files. Rails supports ActiveRecord in the object-relational mapping
(ORM) layer. Applying ActiveRecord, it is possible to manage table relationships and in the
process create, read, update, and delete operations (commonly referred to in the industry as
CRUD methods) are covered [13]. Action Pack acts as core of Rails applications and it contains
three Ruby modules: Action Dispatch, Action Controller, and Action View. Action Dispatch
routes requests to controllers and Action Controller converts requests into responses. The Action
Controller makes use of Action View for the purpose of formatting the responses. Rails decodes
information in the request URL and uses a scheme called Action Dispatch to determine what
should be done with that request. At the end Rails determines the name of the controller that
handles the particular request, along with a list of any other request parameters. In this process
either of these parameters or the HTTP method itself is used to identify the action that has to be
invoked in the target controller. Rails supports features such as Ajax and Restful interfaces that
help the programmers in code integration.

4.3. Agile Approach in Rails

Agile Manifesto as a set of four preferences as given below:

a) Individuals and interactions over processes and tools: Rails is all about individuals and

interactions. Rails contains simple tool sets, no complex configurations, and no elaborate
processes. There are small groups of developers, their favorite editors, and chunks of Ruby
code which leads to transparency and what the developers do is reflected immediately in what
the customer sees. It is basically interactive process.

b) Working software over comprehensive documentation: Rails does not support documentation

and specifications. Rails delivers working software early in the development cycle.

c) Customer collaboration over contract negotiation: Rails project can quickly respond to

changes required by the customers, who are thereby convinced that the team can deliver what
is required, not just what has been requested.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

42

4.4. Rails MVC Architecture

Rails is a Model-View-Controller framework. Rails receives requests from a browser, decodes the
request and calls the corresponding method in the appropriate controller. The controller then
evokes a specific view to display the results to the user in Web Environment. Generally if we
want to create an application in Rails we need to code for a controller and view and make a route
between these two. To create a rails application use rails generate command, it will create some
files such as HTML files, and JavaScript files and so on. Any modification to the existing HTML
file can be done by opening the views directory and then modifying/adding the code to that
HTML file with .html.erb extension means extended ruby file. Fig 1 [14] explains how rails
process the user requests based on router.

Fig 1

4.5. Rails Support Object –Relational Mapping

Designing software to connect an object-oriented business system with a relational database is a
tedious task. Object-orientation and the relational paradigm differ quite a bit. An application that
maps between the two paradigms needs to be designed with respect to performance,
maintainability and cost to name just a few requirements. There are numerous patterns of
object/relational access layers, but looking at the body of pattern literature we will find that some
patterns are still to be mined, while there is no generative "one stop" pattern language for the
problem domain [15]. Object-relational mapping (ORM) is a programming technique for
converting data between incompatible type systems in object-oriented programming languages.
ORM libraries map database tables to classes. In Rails if a class is defined as Order then the
database has a table called orders. Rows in orders table are mapped to objects of the class—a
specific order is represented as an object of class Order. The individual columns are set making
use of the object attributes. ORM layer represents tables as classes, rows as objects, and columns
as attributes of those objects. Class methods are used to perform table-level operations, and
methods can perform operations on the individual rows of a table.

Fig 2 explains the concept of ORM, according to Martin Fowler from Patterns of Enterprise
Application Architecture (P of EAA) [16]

Fig 2

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

43

5. INTEGRATING AGILE DEVELOPMENT METHODOLOGIES AND DESIGN

PATTERNS IN WEB DEVELOPMENT:

Now we examine how to integrate the methodologies Agile Development methodologies and
Design Patterns to Accounts Package called IMPAct [17] in Directorate of Treasuries and
Accounts, Government of Andhra Pradesh. We are applying some of the agile principles such as
short development life cycles that pay attention to shorter time duration for completing the
project. It is different from the traditional Software Development Methodologies that involve
higher cost and time of development than the Agile model. Secondly we follow Testing each

iteration, as each iteration includes new features to project, we implement automated tests to
make sure they work right. This way we squash more bugs and have greater confidence the next
time we change or add features. We initially start with basic features, later on add some
requirements with minimal documentation.

ActiveRecord: ActiveRecord is the simplest of database design patterns originally published by
Martin Fowler in his book Patterns of Enterprise Application Architecture. David Heinemeier
Hansson (the creator of the Rails framework) took the concepts laid out by Fowler and
implemented them as a Ruby library called Active Record. ActiveRecord has been released with
the Rails framework to the public and is also available as a part of the core bundle with its own
Ruby Gem. ActiveRecord differs from other ORM Libraries because it makes a number of
configuration assumptions, without requiring any outside configuration files or mapping details.
With Rails, the model section is generally Active Record classes and other data-descriptive or
data communication code. The view section is mainly for the user interface which involves
elaborate HTML code in Rails applications. Fig 3 shows the Architecture of ActiveRecord.

Fig 3

We implement the existing system into ORM using ActiveRecord. The knowledge of how to
interact with the database is directly embeded into the class performing action, by making use of
ActiveRecord. It is the ORM layer supplied with Rails. We will build on the mapping data rows
and columns using Active Record to manage table relationships and in the implementation of
CRUD Methods. Instances of ActiveRecord classes correspond to rows in database table. The
Instances have attributes corresponding to the columns in the table. ActiveRecord determines the
columns of the corresponding class dynamically. The ActiveRecord object attributes in general

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

44

correspond to the data in the row of the corresponding table. Fig 4 shows one of the sample
screens of the project. Active Record is database-neutral, so it does not care which database
software we use, and it supports nearly every database. Since it is a high-level abstraction, the
code we write remains the same no matter which database we are using. For the present project
we use PostgreSQL.

6. CONCLUSIONS

Design Patterns help in faster and more effective deign for software, with reduction in effort
achieved through making use of existing/standard patterns in design. Agile programming is a
software development methodology better suited to the current demands of shorter time frames
and easily adaptable software. A combination of the two approaches, adopting Scrum [3] as the
Agile methodology is attempted in the work presented in this paper. Our proposed approach is
being applied to meet the application requirement where the Web pages are rapidly changing
based on the onsite customer demands. In this paper we have given the basic database Design
Pattern i.e. ActiveRecord. ActiveRecord follows the benefit of simplified configuration and
default assumptions, automated mapping between tables and classes and between columns and
attributes, database abstraction through adapters, direct manipulation of data as well as schema
objects. It can be integrated into other frameworks like Merb. Compared to traditional techniques
of exchange between an object-oriented language and a relational database, Object Relational
Mapper (ORM) using ActiveRecord often reduces the amount of code that needs to be written.
ActiveRecord attempts to provide a coherent wrapper as a solution for the inconvenience
involved in direct implementation of object-relational mapping. Object-Relational Mapping is
primarily used to minimize the amount of code needed to build a real-world model. The software
used is based on the Ruby on Rails and PostgreSQL.

References

[1] The Standish Group, “The Chaos Report,” West Yarmouth, MA: 1995.
[2] Beck .k, “Extreme Programming Explained –Embrace Change,” 2/e, Addison Wesley, Boston, MA,

2005
[3] Beedle .M, Schwaber. S, “Agile Software Development with SCRUM,” Prentice Hall, Upper Saddle

River, NJ, 2001
[4] Poppendieck. M, Poppendieck. T, “Lean Software Development: An Agile Toolkit,” Addison-Wesley,

Boston, MA, 2003

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

45

[5] Ned Chapin, “Agile Methods’ Contributions in Software Evolution,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance (ICSM’04)

[6] N. Chapin, et al., “Types of software evolution and software maintenance,” Journal of Software

Maintenance and Evolution, John Wiley & Sons, Chichester UK, January 2001, pp. 3–30.

[7] Agile Alliance, Manifesto for Agile Software Development, 2001. http://www.agilemanifesto.org/
[8] K. Beck, Extreme Programming Explained, Addison-Wesley, Boston MA, 2000.
[9] Alexander C., et al Pattern Language: Towns, Building and Construction. New York: Oxford

University Press, 1977.
[10] Erich Gamma. , et al. “Design Patterns Elements of Reusable Object-Oriented Software,” Singapore,

Pearson Education, 2003
[11] Andr´e DeHon., et.al. “Design Patterns for Reconfigurable Computing”. IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2004), April 20–23, 2004.
[12] http://www.rubyist.net/~slagell/ruby/
[13] Sam Ruby., et al. “Agile Web Development with Rails”, 4th Edition, The Pragmatic Bookshelf.
[14] http://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/
[15] Wolfgang Keller, “Object/Relational Access Layers A Roadmap, Missing Links and More Patterns" in

Proceedings of the 3rd European Conference on Pattern Languages of Programming and Computing,
1998.

[16] http://martinfowler.com/eaaCatalogindex.html
[17] http://treasury.ap.gov.in

Authors

Mr. V.Dattatreya is currently working with CVR College of Engineering in the
Department of Computer Science and Engineering as an Asst Professor. He is
pursuing his part time PhD from Jawaharlal Nehru Technological University. He
received his M.Tech in Computer S cience and Engineering from I.E.T.E. His area of
interest includes Databases, Software Engineering, Software Architecture and Design
patterns, Web Technologies.

Dr K.V. Chalapati Rao is a Professor of Computer Science & Engg., and Dean,
Academics at CVR College of Engineering. Prior to joining the CVR, he served
Osmania University as a Professor & Head, Department of CSE and Dean of Eng
ineering. After obtaining his PhD, Dr. Rao joined Electronics Corporation of India
Limited and worked in various capacities for 16 years, before joining the Osmania
University. He guided number of PhD scholars in areas of Real time systems,
Operating Systems, Software Engineering, Distributed Systems, Knowledge and Data
Engineering.

Mr. V.M.Rayudu is working as Software Engineer in AP Techno logy Services Ltd (A
Government of Andhra Pradesh Enterprise), now on Treasuries & Accounts Department
projects. His job role includes Rapid Deployment of Web Applications using Agile
techniques, Vulnerability Assessment of Applications, Networks and Systems Software
and Intrusion Detection.

