

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

DOI : 10.5121/ijsea.2012.3113 181

Risk Assessment Techniques and Survey Method
for COTS Components

Rashmi Gupta

1
 and Shalini Raghav

2

1
Department of Computer Science, RGPV University, TIT, Bhopal

rgupta6773gmail.com

2
Department of Computer Application, GBTU University, HRIT, Ghaziabad

shalini1182@gmail.com

Abstract

The Rational Unified Process a software engineering process is gaining popularity nowadays. RUP

delivers best software practices for component software Development lifecycle It supports component-

based software development. Risk is involved in every component development phase .neglecting those risks

sometimes hampers the software growth and leads to negative outcome. In Order to provide appropriate

security and protection levels, identifying various risks is very vital. Therefore Risk identification plays a

very crucial role in the component based software development This report addresses incorporation of

component based software development cycle into RUP phases ,assess several category of risk encountered

in the component based software. It also entails a survey method to identify the risk factor and evaluating

the overall severity of the component software development in terms of the risk. Formula for determining

risk prevention cost and finding the risk probability is also been included. The overall goal of the paper is

to provide a theoretical foundation that facilitates a good understanding of risk in relation to component-

based system development.

Keywords

 Component Based Software Development, Components, Interfaces RUP, Risk

1 .Introduction

Component-based software development (CBSD) is an emerging development paradigm that

promises to accelerate software development and reduces development costs by assembling

systems from pre-fabricated components [2,14] .Component based development provides the way

of purchasing the components from the market rather than building the components from scratch

[14]. It facilitates two techniques “Either building new components in house or buying the

components from the third parties”. By using Component-based software development (CBSD)

development time of the software decreases dramatically, leads to increase in the usability of the

products, and decrease in the production costs [13] .CBSE liberated the programmer from

thinking about details, as it shifts the emphasis from programming to composing software

systems using several components [17].Component-based software development provides a rapid

mechanism for increasing the functionality and efficiency of a system, But component-based

development carries significant risk throughout the system life cycle. Rational Unified Process is

a software Engineering process that supports component based development activities.

Component-based software development faces several risks during the entire software

development life cycle. These risks are associated with the behavior of COTS, vendor support,

technologies and the development process [15]. Risk is a factor that involves uncertain danger

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

182

and can obstruct the development of the software. Therefore risk identification techniques and

categorizing risk across the several phases of the component based software development are

extreme important so that the severity of the risk can be reduced. Risk identification mechanism

plays a vital role in estimating the probability of the risk occurrence

1.1 Components

Software component is a module that encapsulates related data and functions, software package

or can be the web service. It can also be used as a building block to create larger, more complex

software systems. Data and various functions encapsulated in the components are semantic

related to each other. Components interact as well as use the services of each other through

interfaces. Inner functionality or the structure of the components is encapsulated or is not known

to the client [10].

1.2. RUP Phases

1.2.1. Inception phase is the first phase of the RUP that defines objectives as well as the scope of

the project. In this phase the features like planning project, risk assessment techniques and project

description features like requirements of the project, various checks are established. It deals with

recognition of the requirements of the users [11]. Various quality levels are defined establishment

of the cost and budget is also done during this phase. During this phase a baseline will be

established that will compare actual expenditures versus planned expenditures .Business plan like

market research, business context is also defined during this phase A basic use case model that

define functionality of the system is generated .Inception phase incorporate component selection

activity process [2] that encompass market survey for finding out the appropriate components

from the vendor.

1.2.2. Elaboration Phase is the second phase of the RUP that defines architecture of the

software. The elaboration phase is where the project starts to take shape.[11] In this phase the

problem domain analysis is made. Various use cases diagrams along with the use cases and the

actors are identified. Generation of the development plan for the overall project occurs.

Prototypes are generated. Components interact with each other through the interfaces. Creating

Well defined architecture of the interfaces is done in this phases. Appropriate process model for

component development will be taken into consideration

1.2.3 .Construction Phase is the third phase of the RUP that produces the first external release of

the software [11]. This phase encompass component integration activity. Component integration

[2] is possible through coding. Maximum coding is done in this phase.

1.2.4. Transition phase is the last phase of the RUP in which system is made available to the end

users [11]. Various training programs regarding the use of the system and about the used

technologies are conducted .beta testing is conducted at the user site to validate the system.

Validation of the quality levels that were defined during the inception phase is also done. This

phase incorporates the component evolution activity [2].

2. Related Work

In this section we place our work in relation to ongoing research within related area. Component

model has been proposed that serves as a foundation for component-based software risk analysis

by integrating several component risks as part of the component behavior. In component-based

software risk analysis risks are identified, analyzed and then documented. Result of risk analysis

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

183

at component level is compos able. Techniques for component-based risk analysis facilitate the

integration of risk analysis into component-based development, and thereby make it easier to

predict that how upgrading subparts influences component risks. Various studies on occurrence of

typical risks in component based development and comparing the effectiveness of performed risk-

reduction activities has been explored. Several efficient risk reduction activities, such as carefully

examining the quality of component in selection phase, estimating the behavior of the

components, integrating unfamiliar components first, and monitoring the reputation of component

vendor has been explored. In addition, several context variables, such as number of components,

experience of the developer and quality requirements of the system, have been discovered as

confound factors on the relationships between risk reduction activities and the occurrence of

certain risk items. Large number of international survey across different countries based on risk

identification, risk management in using COTS components is reported upon and discussed. The

survey investigated several risk-management activities and their correlations with occurrences of

different risks in component-based software development. Results also illustrate several effective

risk reduction activities, such as conducting integration testing early and incrementally,

evaluating various tools that supports the component development activities, and monitoring the

capability of components vendors Lot of research covering the component activity areas

associated with the different risks has been conducted. Identification, assessment of risk,

sensitivity of risks and the impacts of different risks on the different nature of projects is also

been conducted. Several mitigation as well as remedial steps for these risks has been defined.

Various empirical studies on how process improvement and risk management activities were

performed .The results of the empirical study reveal that allocating more effort into learning OTS

components, performing the integration testing early, estimating the behavior and the

specifications of the components ,inspecting the quality of components at each phase can reduce

the risks up to maximum extent .CBSRAM is developed which is used to categorize

component And help in selecting suitable components based on the risk measures. The

quantitative framework suggested for CBS analyzes conflicting components Various Papers

related to the categorization of the risks in component-based development has been discussed. In

conventional risk analysis the portions of the environment that are important for estimating the

risk-level is also analyzed .Conventional risk analysis approach consists of: (1) a framework for

CBRA (2) a modular Risk modeling; (3) a formal foundation for modular risk modeling. The

framework for component-based risk analysis provides a technique for analyzing system

component wise and then combining the result at each component level. Modular risk modeling

involves 1) decomposing a system into components 2) composing components to form a larger

system. Modular risk modeling approach analyzes and model different risks and aid in

identifying, analyzing and documenting the several component risks. The component based

model provides a foundation for integrating risk analysis into component-based development.

Component-based risk analysis provides a framework for conducting risk analysis at the

component level. Framework is based on the CORAS method (graphical risk modeling language).

Modular risk modeling introduces the risk graph, which is act as an abstraction of several risk

modeling techniques, such as tree-based diagrams. A denotation model for component-based risk

analysis has been developed that represent the behavior of a component by a probability

distribution over communication histories

3. Risk Identification during component development activities in RUP

Phases

Risk identification in component based software is the technique that is used for identifying the

various types of risk at every phase of the development. It is done at the component level and the

risk identified at each component level will be added to the component at the next level The

objective of component-based risk identification and categorization is done in order to develop

reliable and trustworthy components [4].

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

184

3.1. Component based software development Risk during inception phase

• Prerequisite Quality is not met due to the lack of market survey [9] that has to be done to

know the requirement of the customer

• When the COTS Component and the requirement suggested by the user does not matches

• Requirements of the users changes frequently

• Budgets and schedules are not realistic

• Unclear requirements specification

• Lack of accuracy in schedule

• Lack of reliable and suitable licensing [9] contracts that encompass the appropriate

documentation and responsibility of the vendor and developer in case of failure

• Rigidness in Time constraints of schedule generates inflexibility

• Market survey is not done properly than appropriate components[9] that can map with

user requirements cannot be found

• Lack of contingency planning

• Rapid requirement change of the user

• Component search suffers from appropriate fetching [9] and classification mechanism

provided by the marketers

• Architectural prototype not defined properly

• Latest Technologies and fresh arrived COTS product are not analyzed or lack of market

survey

• Vendors incapability to delivers mind blowing demos and specifications of the COTS

product

• Architecture was not analyzed during the component selection process [8]

• Cumbersome and complicated requirements

• Lack of vendor support

• Missing authenticity of the components due to the lack of certified components

• Unavailability of the source code leads to judging nature and the behavior of the

components

• Inappropriate domain knowledge of developer [7].

3.2. Component based software Development Risk during elaboration phase

• Higher Complexity of components architecture and the connectors introduces the chances

of risk [1].

• Mismatch between connectors and message protocols

• Interface specification of the components is not clear or not specified [5] properly

• Incompatible or mismatch Interfaces may obstruct the data communication between the

components which wants to exchange data

• Use of the Software model that does not support component based software development

process

• False assumption of the internal structure and internal specification made by the COTS

component about each other

• Lack of resilient architecture

• Existence of the loop holes in the architecture review process

• Components are not platform independent

• Lack of executable architectural prototype

• Mismatch occurrence between planned expenses and actual expenses

• Security aspects are not considered and the vulnerability of the components is very high

• Prototypes that demonstrably mitigate each identified technical risk are not defined

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

185

• Components are not interoperable[5] with each other due to missing well defined

interfaces

• Lack of Software architecture document that is extreme crucial in order to gain

knowledge about the component

• Loop holes in Architectural Style [13] as architects have at hand incomplete, imprecise

and uncertain component information [16].

• Component architecture are not compatible with each other thus makes integration of the

component tough

• Component based software prototypes cannot be realized in early phases of the software

cycle make architecture verification of the interfaces difficult

3.3. Component based software development Risk during construction phase

• Wrong interface construction may hinder the proper flow of the information or data

between several components

• Development of the wrong functions at the time of coding leads to several exceptions

• Lack of regular watch on the component based development process generate several

problems

• lack of test suites and test cases that facilitates coordination among the component

• Generation of Incompatibility between user requirements stated earlier in the component

based system and the new versions [3] developed.

• Staffs persons indulge in integration process of the components are not technological

sound [1].

• Behavior of the components cannot be judged in component based development due to

the absence of the availability of the code of the component

• Lack of Technology expertise and poor work knowledge and skills of assembler leads to

Poor Component evaluation and integration [1].

• Missing compatibility between the different versions [3] of the component based

software.

• Existence of Poor or no documentation feature for the new versions [3].

• Poor stability control -If the stability is not incorporated in the component based system

then

• Doing change in one component will make a heavy impact on the other component

• Unavailability of the competent staff

• Unavailability of the internal structure of the component makes the testing process tough

and unreliable.

3.4. Component Based Software Development Risk during transition phase

• End user training sessions are not conducted

• Component based software that is developed cannot accommodate changes preferred

By the user

• Occurrence of incompatibility between the component based product being developed

And the quality level that has been set during the initial phase of the software

development cycle

• Complicated system manual results lack of understanding by the users

• Quality services after the COTS software installation at the user site are not given

• User is not facilitated with the upgraded copies of the component based software

• Updating or alteration of the component based system cannot be facilitated

• Lack of tracing of alternate component in case of failure [8]

• Planning the maintenance is difficult as the components have asynchronous cycle[8]

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

186

4. Risk Probability and Risk prevention cost formula

Risk Prevention Cost (Rpc)= Cost Of Preventing Threats(CPT)+ Cost Of Preventing

 vulnerabilities(CPV)+ Quality Appraisal Cost(QAC)+(External/Internal)Failure Cost(FC)

Cost Of Preventing Threats (CPT) =

Where Ti=Similar Number of Threat

CTi=cost of the particular Threat

 Cost of preventing vulnerabilities (CPV) =

 Where Ti=Similar Number of vulnerabilities

 CVi=cost of the particular vulnerability

Risk Prevention Cost (Rpc) = CPT+CPV+QAC+FC

Risk Probability= (CPT+ CPV) ÷ (Rpc)

Where CPT= Cost Of Preventing Threats

Where CPV=Cost of Preventing vulnerabilities=

Where RPC =Risk Prevention Cost

5. Risk Table showing Risk factor associated with each development

phase

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

187

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

188

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

189

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

190

Table 1 Survey table For Evaluating Risk Probability

Table 2 Description Of abbreviated symbols for Risk are described as follows

A When the COTS Component and the requirement suggested by the user does not matches

B Requirements of the users changes frequently

C Budgets and schedules are not realistic

D Unclear requirements specification

E Lack of accuracy in schedule

F Lack of reliable and suitable licensing contracts that encompass the appropriate

documentation and responsibility of the vendor and developer in case of failure

G Rigidness in Time constraints of schedule generates inflexibility

H Market survey is not done properly than appropriate components that can map with

 user requirements cannot be found

I Lack of contingency planning

J Rapid requirement change of the user

K Component search suffers from appropriate fetching and classification mechanism

 provided by the marketers

L Architectural prototype not defined properly

M Latest Technologies and fresh arrived COTS product are not analyzed or lack of market

survey

N Vendors incapability to delivers mind blowing demos and specifications of the COTS

product

O Architecture was not analyzed during the component selection process [8]

P Cumbersome and complicated requirements

Q Lack of vendor support

R Missing authenticity of the components due to the lack of certified components

S Unavailability of the source code leads to judging nature and the behavior of the components

T Inappropriate domain knowledge of developer [7]

U Higher Complexity of components architecture and the connectors introduces the Chances of

risk

V Mismatch between connectors and message protocols

W Interface specification of the components is not clear or not specified properly

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

191

X Incompatible or mismatch Interfaces may obstruct the data communication between the

components which wants to exchange data

Y Use of the Software model that does not support component based software Development

process

Z Prerequisite Quality is not met due to the lack of market survey that has to be done to Know

the requirement

A

B

False assumption of the internal structure and internal specification made by the COTS

component about each other

C

D

Lack of resilient architecture

E

F

Existence of the loop holes in the architecture review process

G

H

Components are not platform independent

IJ Lack of executable architectural prototype

K

L

Mismatch occurrence between planned expenses and actual expenses

M

N

Security aspects are not considered and the vulnerability of the components is very high

O

P

Prototypes that demonstrably mitigate each identified technical risk are not defined

Q

R

Components are not interoperable with each other due to missing well defined interfaces

U

V

Lack of Software architecture document that is extreme crucial in order to gain

 Knowledge about the component

W

X

Component architecture are not compatible with each other thus makes integration of the

component Tough

Y

Z

Component based software prototypes cannot be realized in early phases of the software

 cycle make architecture verification of the interfaces difficult

A

B

C

Wrong interface construction may hinder the proper flow of the information or data between

seve components

D

E

F

Development of the wrong functions at the time of coding leads to several exceptions

G

HI

Lack of regular watch on the component based development process generate several

 problems

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

192

J

K

L

Lack of test suites and test cases that facilitates coordination among the component

M

N

O

Generation of Incompatibility between user requirements stated earlier in the component and

the new versions developed

P

Q

R

 Staff persons indulge in integration process of the components are not technological sound

S

T

U

 Behavior of the components cannot be judged in component based development due to the abs

absence of the availability of the code of the component

V

W

X

Lack of Technology expertise and poor work knowledge and skills of assembler leads to Poo

omponent evaluation and integration

Y

Z

A

Missing compatibility between the different versions of the component based software

A

B

C

D

Existence of Poor or no documentation feature for the new versions

E

F

G

H

If the stability is not incorporated in the component based system

IJ

K

L

Doing change in one component will make a heavy impact on the other component

M

N

O

P

Unavailability of the competent staff

Q

R

S

T

Unavailability of the internal structure of the component makes the testing process

 Tough and unreliable

A

F

End user training sessions are not conducted

C

F

Component based software that is developed cannot accommodate changes preferred by

 the use

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

193

B

F

Occurrence of incompatibility between the component based product being developed and

The quality level that has been set during the initial phase of the software development cycle

E

F

Complicated system manual results lack of understanding by the users

G

F

Quality services after the COTS software installation at the user site are not given

K

F

User is not facilitated with the upgraded copies of the component based software

L

F

Updating or alteration of the component based system cannot be facilitated

M

F

Lack of tracing of alternate component in case of failure [8]

T

F

Planning the maintenance is difficult as the components have asynchronous cycle [8]

Determining the Total Risk Value of the Software

The Total Risk Value of the component based Software is equal to the sum of the Final Risk

Value of each risk encountered in every phases of the software development

TRVS=∑FRVR of every risk encountered in each phase of the development

TRVS = 220.15+112.15+53.04+2`2.74

TRVS=408.08

Determining the Risk Factor

Risk Factor (RF) = TRVS/ ITRVS

ITRVS is the Ideal Total Risk Value of the Software

ITRVS can be calculated when all the Risk encountered attain a rank of “3.5”by the Users

and Risk Manager.

TRVS = 408.08

ITRVS = ITRVS of the users + ITRVS of the Risk manager

ITRVS=700+840

ITRVS=1540

RF = TRVS/ITRVS

RF = 408.08/1540

RF = 0.264

Determining the Risk Severity from RF

If 0.0 ≤RF ≤0.25

Software Risk is “Negligible”

If 0.26 ≤RF ≤0.50

Software Risk is “Low”

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

194

If 0.51 ≤RF ≤0.75

Software Risk is “Moderate”

If 0.76 ≤RF ≤1.00

Software Risk is “High

Through this survey Risk factor come out to be in the second risk rating that reflects risk

as low. Therefore software tends to be less risky

6. Conclusion

Our study explored the occurrences of several risks in COTS - based projects and in the

RUP phases .We have discussed that how RUP entails COTS-based projects activities and the

concurrency between the components based life cycle activities and the RUP phases. Risk attack

on different component development phases vary with respect to the different nature of projects

we have highlighted the several risks that cut across a component-based development cycle.

Discussion like various phases of RUP associated with the several risks is also been incorporated.

This research focused on the importance of Risk Identification in component based development.

This identification has made the risks more visible at each component development stage making

it possible to carry out activities that can minimize their effects. Detailed discussions on the issues

like risk characteristics of the component based development have also been addressed. A survey

of component based software is done based on the proposed risk characteristics in RUP Life cycle

to evaluate its severity in terms of risk. We acknowledge that a lot has to be done in CBD. Future

works involves validating and the impact of the risk reduction activities on the corresponding

risks .Study regarding finding out the quantitative model for the risk analysis so that the risk can

be calculated in no time.

7. Future Work

Furthermore, the validations and verification of components needs to be addressed .Special

attention must be given towards the standardization of domain-specific components on the

interface level that will lead to the development of the application components purchased from

different vendors. CBSE is facing many challenges today. Questions like “if system attributes

derivable from the component attributes” is still a subject of research. Queries related with the

trustworthiness of the components are still unresolved. Effects of degrees of trustworthiness on

system attribute unknown. Process models being used in component based development are still

incomplete .Maintainability of the component based systems is still troublesome. Solutions of the

updating of components dynamically is still the subject of research .CBSD is still facing the

challenges of providing variety of tool support like test tools, configuration tools, evaluation tools

etc .future work includes developing and evaluating certain tools for automating integration tests,

that could be integrated in the protector’s development process. We acknowledge that a lot more

needs to be done in the area of CBD. Future work involves establishing a set of mitigation

strategies for the risks identified during various component-based development activities to take

advantage of COTS technology. Lot has to be done towards how modular risk assessment can

applies to different risk modeling techniques .UML techniques needs to be extended in order to

incorporate various component development phases

References

 [1] Abdullah,Tahir& Mateen, Ahmed& Raza, Ahsan& Mustafa,Tasleem, (2010) “Risk Analysis of

Various Phases of Software Development Models”, European Journal of Scientific Research ISSN 1450-

216X Vol.40 No.3 , pp.369-376

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.1, January 2012

195

[2] Johar,Kaur,amandeep & goel,shivani, (2011) “Cots Components Usage Risks In Component Based

Software Development”, International Journal of Information Technology and Knowledge Management,

Volume 4, No. 2, pp. 573-575

[3] Rashid,Awais & Kotonya,Gerald ,(2011)”Risk Management in Component-based Development:A

Separation of Concerns Perspective”

[4] Brændelanda,Gyrd&Refsdala,Atle&Stølen,Ketil, (2011), “A denotational model for component-based

risk analysis”, ISSN 0806-3036

[5]Brændelanda,Gyrd&Stølen,Ketil(2012),”Using Model-Driven Risk Analysis in Component-Based

Development”,IGI Global

[6] G. McGraw, “Software Security,”,IEEE Security & Privacy, vol. 2, no.2, 2004, pp. 80–83.

[7] Vitharana,Padmal,(2003), “Risks and challenges of the component based software development”,

COMMUNICATIONS OF THE ACM, VOL. 46, NO. 8

[8] LI,Jingyue & CONRADI,Reidar & Petter,Odd& N. SLYNGSTAD & TORCHIANO,Marco&

MORISIO, Maurizio & BUNSE,Christian, (2007),” A State-of-the-Practice Survey on Risk Management in

Development with Off-The-Shelf Software Components”

[9] Mahmood,Sajjad & Lai,Richard, (2006)” Analyzing Component Based System Specification”, AWRE

Adelaide, Australia

[10]Goertzel,Mercedes,Karen & Winograd,Theodore, (2011), “Safety and Security Considerations for

Component-Based Engineering of Software-Intensive Systems”

[11] Grady Booch, Ivar Jacobson, and James Rumbaugh, Unified Modeling Language 1.3, White paper,

Rational Software Corp., 1998.

[12]Sharma,Vidushi&Baliyan,Prachi,(2011),”Maintainability Analysis Of Component Based

System”,IJSEIA Journals,vol5_no3

[13]Selvi,R.Thirumalai&Balasubramanian,N.V&T.Manohar,George, (2008),” Framework and

Architectural Style Metrics for Component Based Software Engineering”, Proceedings of the International

MultiConference of Engineers and Computer Scientists, Vol IIMECS 2008, 19-21 March, 2008, Hong

Kong

[14] Johar,Kaur,amandeep & goel,shivani, (2011) “Designing of RIMCOTS model for Risk identification

and mitigation for COTS-based Software Development”, International Journal of computer system

engineering, Vol 02, Issue 02, pp. 573-575, ISSN: 2230-8563; e-ISSN-2230-8571

[15] Kotonya, G& Rashid, A, (2001),” A strategy for managing risk in component-based software

development “,ISBN: 0-7695-1236-4 2001

[16] Sagredo,Victor& Becerra, Carlos& Valdes,Gonzalo, (2010),”Empirical Validation of Component-

based Software Systems Generation and Evaluation Approaches”, CLEI ELECTRONIC JOURNAL,

VOLUME 13, NUMBER 1, PAPER 6

[17] Sharma,Arun & Kumar,rajesh & Grover,P.S, (2007),” A Critical Survey of Reusability Aspects for

Component-Based Systems”,WASET JOURNAL,v33-8

