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ABSTRACT 

Real-time software is usually used in circumstances where safety is important and the margin for errors is 

narrow. These kinds of systems have applicability in a broad band of domains as: automotive, avionics, air 

traffic control, nuclear power stations, industrial control, etc. As the name denotes, the main feature of 

"real-time" applications is the criticality of their timeliness. Guaranteeing certain timeliness requires 

appropriate testing. As manual testing is burdensome and error prone, automated testing techniques are 

required. Although the importance of having a standard environment for automatic testing is high, the 

technologies in this area are not sufficiently developed. This paper reviews the standardized test 

description language "Testing and Test Control Notation version 3 (TTCN-3)" as a mean for real-time 

testing and proposes extensions to enable real-time testing with TTCN-3. The aim is to provide a complete 

testing solution for automatic functional and real-time testing, built around this already standardized 

testing language. The solution includes an environment for designing and running the tests written in the 

extended language. As a proof of concept, test examples, designed using the enhanced TTCN-3, are mapped 

to real-time platform implementations and the timeliness of each implementation is analyzed. 
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1. INTRODUCTION 

As the name denotes, the main feature of real-time applications is the criticality of their 

timeliness. Testing of real-time software represents a challenge due to their special nature which 

requires not only testing the functional aspects, but also timing aspects of the computation. The 

challenge is even greater when the complexity and diversity that prevails in the world of real-time 

applications has to be handled. An automatized and standardized testing process will increase the 

efficiency of testing and will be more suitable for covering and testing requirements of such 

complex systems than traditional testing methods, which are involving a lot of manual testing and 

are, therefore, more prone to errors. An automatized testing framework is ought to guarantee 

reproducible tests. Furthermore, the reproducibility of the testing process will better lead to the 

discovering of reproducible errors and failures in the time behavior. Without automation, 

searching for errors in a timed behavior would be lumpish and totally unreliable. Also, a 

standardized testing framework would provide a common basis of usage for different stakeholder. 

                                                
1
 Testing and Test Control Notation version 3 – defined by the European Telecommunications Standards 

Institute (ETSI). The TTCN-3 related standards can be found at:  http://www.ttcn-3.org/ 
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Different manufacturer could test their products using a common standardized set of tests and 

they could interchange and compare their results. 

 

The solution provided in this paper is concerned with the design of a testing framework for real-

time embedded systems. The aim is to provide a test technology that can be successfully used for 

automating the test procedures, especially  with regards to the real-time aspects, in domains with 

rapid development process and high quality demands as, for example in the automotive industry. 

The real-time testing methodology and framework presented here is based on a standardized test 

language that was proven to be popular and successful in the industry, in areas as mobile and 

broadband telecommunications, medical system, IT systems and, since recently, also in the 

automotive. The referred language is Testing and Test Control Notation version 3[2] (TTCN-3), 

developed and maintained by European Telecommunications Standards Institute (ETSI).  

 

Having the advantages of being a well modularized, test-oriented, user friendly and popular, 

TTCN-3 has also the downside of not being developed with real-time focus in mind. Thus, it 

lacks some mechanism for dealing with real-time specific test situation. The insufficiencies of 

TTCN-3 language towards real-time were first being analysed in [3]. Therefore, several 

extensions were developed for this language in order to make it suitable for real-time.  

 

The new proposed concepts are integrated into the syntactical structure of the TTCN-3 language, 

by means of clear syntactic rules, based on extended Backus-Naur Form (BNF) notation. The 

semantics of the real-time test system, realized on the basis of enhanced TTCN-3 is further 

defined by means of timed automata [4]. The focus of this paper will be on presenting these time 

automata defining the semantic of the enhancements.  

 

This approach, using timed automata, is new and different from the way semantics of TTCN-3 

was previously defined into the standard. The motivation for choosing timed automata is that they 

are mathematical instruments specialized in modelling timed behaviour in a formal way.  

 

2. RELATED WORK 

There exist already several approaches that have been proposed in order to extend TTCN (Tree 

and Tabular Combined Notation, an earlier version of TTCN-3) and TTCN-3 for real-time and 

performance testing. Among these RT-TTCN, PerfTTCN, TimedTTCN-3, Continuous TTCN-3 

should be mentioned. A more comprehensive state of the art, describing those enhancements is 

being presented in [3].  

 

The work presented in this paper began as collaboration with the TEMEA project
2
. Therefore, the 

basic real-time concepts that are introduced in this document are based on the ones developed in 

the context of TEMEA project. 

In the context of TEMEA project, a new paradigm and a new extension for real-time testing based 

on the TTCN-3 notation was developed. The ambitious goal was to use the experience of the past 

and to develop the language with new meaningful concepts, which are more powerful and more 

oriented towards the embedded systems used in the automotive domain than the attempts made in 

the past. The aims of the TEMEA project can be summarized in the following: 

• Support for integrated testing of discrete and continuous behaviour. 

• Exchange of test definitions between different test- and simulation platforms e.g. Model 

in the Loop (MIL) platforms, Software in the Loop (SIL) platforms and Hardware in the 

Loop (HIL) platforms. 

                                                
2
 TEMEA (TEst specification and test Methodology for Embedded systems in Automobiles)", 

http://www.temea.org, Last verified on July 2012 
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• Support over the entire process of software integration and hardware integration. 

• Analysis of real-time and reliability requirements. 

• Testing distributed components according to AUTOSAR architecture. 

• Analysis of the quality of tests. 

 

The basic concepts introduced by TEMEA can be organized in the following categories: 

 

• Representation of time: In order to ease the manipulation of time values, two new abstract 

data types are introduced. datetime designates global time values and timespan designates 

time distances or intervals between different points in time. It is used to represent the 

amount of time that passed between events. In order to give the tester the right 

instruments of detecting relative time, some predefined symbols of the type datetime are 

introduced. testcasestart returns the time point when the test case execution started and 

testcomponentstart returns the point in time when the test component execution started. 

 

• Measurement of time: The observation of time is directly connected to the reception and 

provisioning of messages at communication ports. A new construct is introduced for 

automatically registering the time value at which a receive-event, or send-event has 

occurred. The saving is indicated by redirect symbol ‘->’ followed by the timestamp 

keyword. 

 

• Control of application: The ‘at’ operator is introduced to send certain messages at fixed 

points in time. It is associated with a datetime value, representing the point in time when 

the sending of a message should be performed. 

 

• Time verification: In order to verify whether certain messages were received in time, the 

within operator is introduced. The operator is associated with an interval of datetime 

values that represent the range for the allowed times of reception. 

 

A more comprehensive presentation of those concepts can be found in the list of following 

publications: [6], [1] and [7]. 

 

Some of the concepts listed above have gained concrete ground and became part of a new 

standard from ETSI. This standard is intended to be an extension for performance and real-time 

testing, and is regarded as an additional package to TTCN-3. TTCN-3 packages are intended to 

define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core 

language, but which are optional as part of a package which is suited for dedicated applications 

and/or usages of TTCN-3. 

 

To fulfil the requirements for testing real-time system, the following TTCN-3 core language 

extensions are being standardized in [5]. 

 

• A test system wide available test system clock, that allows the measurement of time 

during test case execution. 

 

• Means to directly and precisely access the time points of the relevant interaction events 

between the test system and the system under test. 

 

As previously mentioned, the work presented here was developed in parallel with the evolution 

and definition of the real-time concepts from TEMEA. Therefore, it undertakes the basic set of 

concepts defined within this context, but it is not limited to it. In the following section the 
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concepts that are focus of this work are presented and briefly discussed. For a more detailed 

presentation of these concepts, one should look in [8]. 

 

3. SUMMARY OF THE REAL-TIME EXTENSIONS FOR TTCN-3 

In Table 1 are listed the new concepts, divided in four categories, comprised into four columns: 

the first column introduces the special operations; the second column introduces the temporal 

predicates, the third column introduces the predefined constants used to build timespan 

values, and the last column lists the new introduced data types.  

Now at hour datetime 

Wait within min timespan 

Break before sec tick 

Timestamp after millisec  

testcasestart not microsec  

testcomponentstart  nanosec  

testcomponentstop    

Table 1: List of RT-TTCN-3 Terminals Which Are Reserved Words 
 

4. SEMANTIC DEFINITIONS OF CONCEPTS FOR REAL-TIME TTCN-3 

The ways to address different timing requirements and transform them into reliable timed test 

specification, using the standardized language TTCN-3, had been presented already in 

publications as [6], [1] and [7]. A new set of concepts had been introduced in TTCN-3 in order to 

enhance the power of the language with regards to testing real-time applications. In order to 

properly show the power of those concepts and to understand how timed test specification can be 

converted into timed test behavior a clear understanding of the underlying semantics is required. 

Therefore, a semantic formalism for of all these concepts is presented in the following. 

 

An example of a simple real-time test system is presented in Figure 1.The test system is 

illustrated there together with the correspondent system under test (SUT). At a closer look, one 

can identify two critical sections with regard to time, contained in the test system’s behavior: first, 

there is tmax, a timed requirement for the SUT, that indicates the interval in which the reaction to 

the first stimulus should be received by the test component; the second is twait, which indicates the 

time that should elapse at the test component side, between the receiving of the first reactions 

from the SUT and the sending of the second stimulus to the SUT. These are simple examples of 

timing requirements that should be added to a test system in order to make it appropriate for 

testing timing aspects of real-time applications.  

 

In the next subsection, a real-time test system is formally defined in terms of timed automata. 

Each feature particular of a test system is being mathematically described, and where necessary, 

tagged with time stamps. 
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Figure 1: Black-box Test with Time Restrictions [1] 

 

4.1. Defining The Real-time Test System (RTTS) As A Timed Automata 

 
The semantics for the new concepts will be presented in the following context. We consider our 

test system to be one type of timed automata described by the set: },,,,,,{ EUIGAXLTS =  

where: 

• L is a set of location or states from which we use a subset to define the semantics of the 

new introduced concepts. This subset is: 
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o Clocks  is considered to be a set of 
0≥ℜ -valued variables called clocks, where 

0C is the general clock of the system, visible from every state and which 

increments its value at fixed intervals; the general clock of the system cannot be 

reset or have its value changed; all the other clocks are available to be used and 

initialized in any state. They are useful for calculating relative timings, as for 

measuring the time spent in waitS state, for example. 

o VarList is the list of all variables from the TS . 

o TimestampsMessagesVarListVarList ×=⊃ ' , where: 

� Messages  represents the set of all messages that enter or leave the 

system at runtime. 

� }|{ 0≥ℜ∈= timestamptimestampTimestamps represents the set of 

timestamps for the messages that enter or leave the system at runtime. 

The timestamp variable represents time values in seconds. 

� 'VarList  is organized into queues in the following way:  
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o ComponentsVarList ⊃ , where }..1,|{ compi niiCompComponents =ℵ∈= +
 

is the set of all components that were created in the TS . 
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• }{;')()( ττ ∪=∪∪= AAAAChansAChansA outin
. We assume a given set of actions 

A , mainly partitioned into three disjoint set of output actions: 

o UU
n

i

i

ini

n

i

i

iniin AaachAChAChans
11

}|?)({)()(
==

∈== , where ich are channels 

attached with communication ports of the TS , n is a natural number representing 

the number of ports, and )( i

ini ACh is the set of input events that can enter on that 

port into the TS . 

o UU
n

i

i

outi

n

i

i

outiout AaachAChAChans
11

}|)!({)()(
==

∈== , where 
ich are channels 

attached with communication ports of the TS , n is a natural number representing 

the number of ports, and )( i

ini ACh is the set of input events that can leave the 

TS through the ith port. 

o 'A  is the set of special internal events, used for synchronizing different parts of 

the TS which are running in parallel. The used set of internal events is: 

 
 

o In addition, it is assumed that there is a distinguishable unobservable action 

A∉τ  

• )()( MessagesTemplatesClocksGuardsG U= ,where  

o )(ClocksGuards  denotes the set of guards on clocks, being conjunctions of 

constraints of the form tc ∝ , where },,,,{ ≥>==<≤∝∈ , Clocksc ∈ and 

0>ℜ∈t  

o )(MessagesTemplates is a set of constraints on messages which splits the 

message set into equivalence classes of the form 

},|{ MessagesmsgtmplmsgmsgEqMsgs ∈≈= and 

)(MessagesTemplatestmpl ∈  , where )(MessagesTemplates is the set of all 

applicable templates that are available in TS . 

• )(: ClocksGuardsLI → assigns invariants to locations 

• )()()()( VarListUClocksUVarListClocksUXU UU == is the set of updates of 

clocks corresponding to sequences of statements of the form tc =: , where 

Clocksc ∈ and 
0>ℜ∈t , represents the time in seconds. 

• Ε is a set of edges such that LXUAGL ××××⊆Ε )(τ  
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• QueuesChansQ →:  is a bijection which assigns queues to channels. For each channel 

ich there is a queue 
iqueue  associated with it so that 

ii queuechQ =)( , where 

nii ..1, =ℵ∈  with n designating the number of channels used by the TS . 

• We consider Part to be the set of all partitions over the set TemplatesGuards × . The 

function U
PartP

PQueuesR
∈

→:  assigns a set of time restrictions and message templates to 

each incoming queue. U
itmpln

j

ijiji tmplgQueueR
1

)(
=

×= , with 

TemplatestmplGuardsg ijij ∈∈ , , ℵ∈ji, and 
itmpln is the number of templates 

associated with the queue. 

• We consider AltBrunches  being a subset of branches associated with an alternative. 

Then the function AltBrunchesTemplatesGuardsQueuesB →××: represents a 

bijection which associates a queue with time guards and a template to a branch of the 

alternative. kijiji branchtmplgqueueB =),,( , 

where ||..1,..1,..1 Alttmplports Brunchesknjni
i

=== . 

We will consider in the following that the test system  TS  is a timed automaton with the above 

presented structure. The semantics of the new introduced instructions is represented accordingly, 

also as timed automata that represent subsections of the test system whose behavior they are 

forming.  In this context, the TS  will be a composition of those smaller time automata which 

may run sequentially or in parallel. 

 

4.2. Semantics Of Special Operations Relaying On Time 

At the core of every timed TS there is a clock which keeps the track of time from the 

beginning of the TS  execution. In  

Figure 2 is presented the time automaton associated with the global clock. The clock is 

considered to be periodic, with the period tδ , this being a characteristic of the used 

processor,
f

t
1

=δ  where f is the frequency of the processor and
+ℜ∈ft, . 

 
 

Figure 2: Logical Clock Timed Automaton 

Complementary to the timed automaton for the logical clock, there is a timed automaton 

associated with the now instruction, which gives the total time from the beginning of the 

TS execution, until the current moment when the instruction is invoked ( 
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Figure 3). When the period of time characteristic to the logical clock expires, the clock 

automaton emits a !tick  signal. This signal is used for synchronization between the two 

automata.  

 

 
 

Figure 3: Now State Timed Automaton 

When signal !tick  is received by the now automaton, the local variable from the nowS  state 

increases its value with the value of the period tδ . The clock and now automata are going to be 

active for the whole life of theTS . The now automata uses the ?now signal for synchronization 

with other automata existing in the system. When some other automata need to access the current 

time value, it will emit a complementary !now signal. This will be intercepted by the now 

automata. Every time when this signal is generated and intercepted, the value of the local clock 

0c is copied in the global variable VarListvnow ∈ . This variable can be then accessed by the 

automata that requested the current time. 

A trace for the clock automata would look like:
*)!( tickt ⋅δ , while a trace for the now automata 

might look like: 
*)??( mn

nowtick ⋅ , where ℵ∈mn,  are naturals. 

 
Figure 4: Wait State Timed Automaton 

 
In Figure 4 is presented the timed automaton associated with the wait instruction. It can be 

observed that this timed automaton is approximately similar to the now automaton, with the 

difference that when the local clock, waitc , reaches a first threshold but not overpass a second 

threshold, there will be a transition to state nextS . If the second threshold is stepped over, then the 

transition will lead to an error state. The state waitS has therefore the invariant 

tucwait δ−< associated with it. The states nextS and errorS represent generic states, used to 

designate the transition to other parts from theTS , possibly represented by other automata. 
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errorS represents a final state indicating time inaccuracy of the wait instruction. This type of 

errors should be signalized because otherwise the system would lose its propriety of being time 

deterministic. 

 

A trace for the wait automata would look like wait

n
ttick ⋅?)( , where waitt might be 

[ ])(),( eueutwait δδ +−∈ , or )( eutwait δ+> . 

The automata represented in  

Figure 5 and  

Figure 6 illustrate the times tamping process that takes place at the beginning of a test case, at the 

beginning of the execution of a test component and at the end of the execution of a test 

component, respectively. The next state is not reached before interrogating the now automaton for 

the current time. The current time is the stored in a variable which is associated either with the 

beginning of the test case, either with the beginning or the end of a test component. If we assume 

that there are compn  test components in the current test case, then there will be compn*2 variables 

for registering starting and ending time of each component.   

 

 
 

Figure 5: Test Case Start Timed Automaton 

 

As we assume that our TS runs on a single machine, we consider a sequential execution of the 

test cases and we keep a global variable for recording the starting point of the current test case. 

 

 
 

Figure 6: Test Component Start & Test Component Stop Timed Automata 

 

4.3. Semantics For Receive With Timestamp 

The timed automaton from  
Figure 7 in composition with the timed automaton from  
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Figure 8 illustrate the receive mechanism with automate time stamping at the message arrival. 

The two automata should not be regarded separately but in relationship to each other. The 

functionality is split between those two automata so that to increase precision of the time stamp 

value. The receive automaton presented in  

Figure 7 has a functionality that should be simpler and therefore faster than the match 

automaton presented in  
Figure 8.  
 
The receive automata is triggered by the receiving of a message on the input channel. When 

this happens, some basic actions as extracting the message and saving the current time are being 

performed. The signal !iqueue is emitted for waking up the match automata which takes further 

the task of verifying whether the freshly arrived message is conforming with the template 

associated with that port or not. The operations performed by the receive automaton should be 

fast enough (and executed within predictable time bounds) and after they are accomplished, the 

receive automaton is back to the 
receiveS  state, where is free to receive other incoming 

messages, while the match automaton may continue performing checking operations which are 

usually much more time consuming and also more difficult to time bound due to different lengths 

of messages and templates. 

 

 
 

Figure 7: Receive With Timestamp Timed Automaton 

 

In the present context from  

Figure 7 ?)(echi
means that one input event is expected on the channel

ich . The channels are 

associated to ports and are indexed according to the order in which the ports are used inside a test 

case. If it’s assumed that there are portsn ports, then portsni ..1= . 
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Figure 8: Match Timed Automaton 

 

)( iij chinputmsg = means that when a message arrives on the channel ich it is extracted and 

saved in the variable ijmsg , where j indicates that this is the j -th message received on this 

channel, for this receive instruction. The timestamp associated with the arrival of ijmsg is 

saved in the variable ijtimestamp , which takes its value from the variable nowv after sending a 

time refresh request to the now automaton which is active in the background. Signal !iqueue  is 

being sent to the match automaton for indicating that a new message is available for the check.  

The relationship between receive and match can be described also in terms of the classical 

producer – consumer. 

 

We consider that each channel 
ich has a queue 

iqueue associated with it, where the incoming 

messages for that channel are going to be stored. When match automata is waked up by the  

!iqueue  signal, it extracts the newest message from the iqueue queue and starts the comparison 

against the given template. We are going to see in the following sections that there can be more 

than one template for messages associated with each queue. But in this case, for this instruction, 

there is only one template to be matched. If the matching succeeds, both the value of the  message 

and the time stamp for the message are saved into the VarList and the !receive  signal is sent 

from the match automaton to the receive automaton to indicate that the right message was 

receiver and that it can move forward to the next state (see  
Figure 7). As we know, the receive statement is a blocking operation which returns only when 

the expected message is received. If the message could not be matched, the match automaton goes 

back in the waiting state until the next awakening signal (see  
Figure 8). 

 

In the presented timed automata, receiveS and nextS  are symbolic states designating any generic 

receive statement and all the possible states that come next to it. Also 
i

timestamprcvS _ , 

i

matchstartS _ , 
i

waitmatchS _  and 
i

stopmatchS _ are generic states which are indexed after the number of 
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port they are associated with. 
1i

matchS  state is indexed after the number of port and the number of 

the template for incoming communication on the port the state is associated with. 

One possible trace for receive automaton might look like: 

?)!!?)(( receivedqueuenowech
k

ii ⋅⋅⋅ , while one possible trace for match should be a 

complementary trace of the form: !?)( receivedqueue
k

i ⋅ , where ℵ∈k represents the number of 

messages received until the last one matched. 

 

4.4. Semantics For Send With Timestamp 

The semantics of send with timestamp is simpler than that of the receive with 

Timestamp and it can be represented with a single timed automaton, as in Figure 9. The logic 

starts from the initial state 
sendS . After the message is sent out through the indicated port, the 

global time is requested using the signal now!and the returned value is saved in the list of global 

variables. 
sendS  is a generic state, indicating the initial state of any send operations. 

timestampsnd
i

S _  is a generic state indicating an intermediary step for the time stamping procedure, 

associated with a specific port; the association between the port and the state is realized through 

the index i , where ports1..ni ∈ .  The index j  in ijps_timestam , states that the j -th message is 

being sent from port  i , where _on_port_i messages1..nj∈ .
nextS  represents a generic state, indicating 

the next flow of instructions.  
 

A trace for the send automata would simple look like: !)!( nowechi ⋅ . 

 

Figure 9: Send With Timestamp Timed Automaton 

 

4.5. Semantics For The Receives Which Verify Incoming Communication 

The semantics of the receive instructions which verify incoming communication using time 

predicates is going to be expressed by enhancing the receive and match timed automata that 

were introduced in 4.3. The intention behind using time predicates in combination with the 

receive statement is to impose time restrictions for the arrival of messages. For verifying a real-

time system is not sufficient to verify the functionality aspects, reflected in a black-box test 
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system by the accuracy of the responses of the SUT to certain stimuli, but also the timing of the 

responses from the SUT. That implies that there are two matching, performed when a new 

message is received: message matching against a structural template and a temporal matching. 

The temporal matching verifies whether the time predicate associated with the receive instruction 

is satisfied by the time of the message receive. 

 

The receive timed automaton presented in Figure 10 is similar to the receive timed 

automaton presented in  

Figure 7, excepting the errorS  state which is newly introduced. This state is added in order to 

avoid the situation when a receive operation becomes blocking for an indefinite period of time. If 

the expected message never arrives, this blocking behavior might compromise the well-

functioning of the whole test system. Introducing time restrictions for the incoming messages 

helps in avoiding this situation. If the time interval when a valid message is expected is 

overstepped, then it becomes clear that the time predicate could not be further satisfied. In this 

case, the receive returns from the waiting state and enters an error state, where the failure of 

the SUT can be acknowledged. 

 

The two new receive and match timed automata from Figure 10 and  

Figure 11 are also complementary to each other, in the same way that it was shown for their 

predecessors in  
Figure 7 and  

Figure 8. Therefore, their behavior should be understood in relation to each other and together 

they can form as a composite timed automaton. 

The match timed automata from  

Figure 11 is also enhanced with an additional state, 
1

_

i

timematchS , which performs the second 

matching, the time matching. As illustrated here, time matching is performed before the structural 

matching.  

 

If the time does not correspond to the time predicate, then there is no reason for continuing with 

the structural matching. A !_ receivestop  signal is emitted towards the receive automaton. Then 

both automata are entering an error state, symbolized by the generic errorS . 

 

If the time predicate is still valid then the structural matching is performed. If the message does 

not match, then the match automaton returns to the waiting state, 
i

waitmatchS _ . If both the 

temporal match and the structural match are fulfilled, the match automaton signals the 

receive automaton that the expected message has just been received, by emitting a !receive  

signal. Afterwards, the match automata moves to a successful terminal state, 
i

stopmatchS _ .The 

receive automaton, which was blocked in the receiveS state, moves its execution to nextS .  
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Figure 10: Receive Timed Automaton 

 

The indexes used in both Figure 10 and  

Figure 11 have the following meaning: portsni ..1∈ is the index of the port on which the message 

is expected; 
iportonmessagesnj __..1∈ . Also, the timed automaton presented in  

Figure 11 is a simplified version, with only one time predicate and only one template. This is 

indicated by the index 1 associated with the states 
11

_ , i

match

i

timematch SS . A receive operation, waiting 

on one port can have associated a set with more than one pair of the type: time predicate, 

template. Therefore, as a generalization, for modeling this situation one should add pairs of states 
11

_ , i

match

i

timematch SS  equal in number with the cardinal of the set. Each transition from a waitmatch
i

S _ a 

ix

timematchS _ state will be tried, listening to a priority rule. 

One possible trace for the receive automaton from Figure 10 would be: 

?)!!?)(( 1 receivedqueuenowech
k

ii and the complementary trace based on the match automaton 

would be: !?)( 1 receivedqueue
k

i , where 
0

1

>ℵ∈k represents the number of messages received on 

the port and handled by this receive instruction until one of them matched. This trace indicates a 

situation when the SUT passed the verification that regarded both time and structure of the 

message. 

 

Other possible couple of traces, this time corresponding to a failure of the SUT, might look, on 

the receive automaton side, like: ?_)!!?)(( 2 receivestopqueuenowech
k

ii and on the match 

automaton side: !_?)( 2 receivestopqueue
k

i , where 
0

2

≥ℵ∈k  represents the number of 

messages received on the port and handled by this receive instruction until the valid time frame 

for time constraints on the message receive finally expires. 
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Figure 11: Match Timed Automaton 

 

4.6. Semantics For Sends Which Control Outgoing Communication 

For illustrating the semantics of send operation with time constraints for the outgoing of the 

message, the timed automaton in Figure 12 is being introduced. The send timed automaton starts 

in state sendS  where is waiting for the time point given as parameter to the “at statement” to be 

reached. This send automaton has a behavior which is similar to the wait automaton presented 

in Figure 4. The time point, representing the time constraint, would be expanded to a time interval 

in the vicinity of the given time point,  [ ]δεδε +− maxmax ,tt , in order to introduce some tolerated 

error, inherent to the real world. If there are scheduling problems, due to overloading of the 

system, or other causes, and the time interval for sending the message is missed, the send 

automaton enters a terminal error state. This state indicates that the TS  itself had a malfunction. 

 

 

Figure 12: Send With Time Constraint Timed Automaton 

 

One possible trace for the send with time constraints timed automata would look like: 
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)!()!?( echnowtick i

k ⋅⋅ , where ℵ∈k is a natural number indicating the number of clock ticks 

that passed before sending the message. 

 

Other possible trace, this time indicating an error would be: !? nowtick ⋅ which indicates that the 

specified moment of time had already expired. 

 

4.7. Semantics For Alt Blocks Which Control Incoming Communication 

The semantics of an alt statement is more complex than the semantics of the other instructions 

which extensions were presented in this paper. It involves the collaboration of the three timed 

automata that are illustrated here in  
Figure 13,  

Figure 14 and  

Figure 15. 

 

Due to its complexity, in  

Figure 13 is shown only an excerpt from the alt automaton. The excerpt contains the 

semantics associated with one representative branch of a generic alt statement. We assume that 

the generic alt statement considered here has a number of na  receiving branches. Each 

receiving branch is waiting for input on one specific port of the TS . 

 

We consider to have a function AltBranchesTemplatesGuardsQueuesB →××: that 

represents a bijective relation, associating one queue with time guards and templates to each 

branch of the alternative. jilili branchTmplTPqueueB =),,( ,  

where nAlttmplports aBranchesjnlni
i

==== ||..1,..1,..1 . In  

Figure 13, representing the main functionality of an alternative, we can see that the automaton is 

able to receive input messages on different channels or ports. The flow corresponding to a 

receive on a port is similar for the receive automaton that was already presented in Figure 

10. If one message arrives while inside an alternative, the transition associated with the channel 

on which the message is received is going to be taken. This will lead to a state that will take the 

time stamp for the message arrival and then, the associated match automaton for that channel will 

be woken up with the corresponding signal, iqueue . Then the automaton enters back in the 

listening state. altS  state might be regarded as the state where the automata is listening to all the 

ports on which it expects to receive messages inside the alternative.  

Once received and time-stamped, the message is passed to the extended match automaton, to be 

verified whether it respects the temporal and structural constraints associated with that port. The 

match automaton defined here, represents a generalization for the automaton presented in  

Figure 11. In an alt statement one port might be used in more than one receive branches. On 

each of the receive branches, there might be temporal and structural constraints expressed as time 

predicates and message templates. We consider one match automaton to be responsible for 

verifying all the constraints associated with the port correspondent to that automaton. The 

matching will be performed in the order in which the receive branch is encountered inside the 

alt statement, from top to the bottom. The first )( th
l matching state with the pair - time 

constraint  )( ijTP  and the structural constraint )( ijTmpl - that is satisfied by the received message 

is going to trigger the !ilreceive  signal to indicate to the alt automata that one of the branches was 

satisfied. This is a success scenario when the alt is satisfied, the extended match automaton 

reaches a successful terminal state and the execution of the test system moves to the next state.  
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Figure 13: Alt Block Timed Automaton 

 

 
 

Figure 14: Timer For The Alt State 

 

If the match is not successful, despite of trying all the constraints associated with the port, the 

extended match automaton associated with that port moves into a waiting state. If none of the 

branches of the alt statement was satisfied in the requited amount of time indicated by the 

parameter of the alt statement, then the execution of the alt automaton is interrupted by a 

signal given by the wait_alt automaton. This signalizes that an alternative error behavior 
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should be run in this situation. This alternative behavior is the one associated with the break 

instruction. 

 
 

Figure 15: Extended Match Timed Automaton 

 

One possible trace for the alt automaton will be: 

?))!!?(...

)!!?(...)!!?()!!?((

**

**

22

*

11

ilaa

ii

receivedqueuenowch

queuenowchqueuenowchqueuenowch

nn
⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
, with the 

complementary trace for the extended match automaton: 

!)?...?...??( ****

2

*

1 ilai receivedqueuequeuequeuequeue
n

⋅⋅⋅⋅⋅⋅ , 

And the complementary trace for the wait_alt automaton: 

!)!?( *
breaknowtick ⋅⋅ ' 

 

5. CONCLUSIONS 

A standardized testing language is needed for providing the possibility of describing tests in an 

easy way, a way that is used and understood without difficulty among different stakeholder in the 

industry. We chose TTCN-3 as a well-designed testing language with a high degree of popularity 

and usage in the real world. But even though perfectly suitable for attesting conformance and 

performance, it was proved that the language lacks methods of expressing temporal requirements. 
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One of the big challenges of this work was to identify precisely the aspects regarding the real-

time testing where TTCN-3 was not expressive enough and to cover these situations, by 

introducing a minimal set of concepts that will not burden, but enhance the language. 

 

The highlight of this work is that it presents each new concept endowed with a clear semantic 

defined by a well-constructed mathematical formalism. Timed automata were used to model the 

introduced concepts and the test system itself. The semantic developed here establishes mappings 

between TTCN-3 abstract test specifications and timed automata, the conversion being made 

possible back and forth. This approach opens also new interesting possibilities, as, for example, 

semantic validation of the timed TTCN-3 code, based on model-checking methods developed for 

timed automata. Further on, based on the description of behaviour in the previously defined 

formalism, the mapping to real-time operating system's mechanisms can be realized. 

 

As the semantics of the new real-time features added to the TTCN-3 language is expressed using 

timed automata, an interesting idea would be to implement a translator from a real-time test 

specification to a network of timed automata. That would open the possibility of applying model-

checking verification techniques to semantically validate the real-time test specification. If an 

automatic translation from TTCN-3 to timed automata can be performed, the generated timed 

automata model can be used as input for an already existing verification tool, as Uppaal [9] for 

example, that can be used to perform this checking. 

 

Real-time testing is a hot topic now days and has a huge potential of applicability in a wide range 

of domains. This work brings its contribution in the field of standardized and automatized testing 

for real-time by defining a thorough methodology and a specialized set of instruments and 

examples for building a framework for this type of testing. Thus, the goal presented in the starting 

chapter of this thesis was achieved, but the greatest aim of this work is to be continued, extended 

and, most importantly, applied, in all types of industrial situations. 
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