
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

DOI : 10.5121/ijsea.2014.5102 9

RANKINGTHEREFACTORING TECHNIQUES
BASED ON THE INTERNAL QUALITY

ATTRIBUTES
Sultan Alshehri and Luigi Benedicenti

Department of Engineering, Software Engineering, University of Regina, Canada

ABSTRACT

The analytic hierarchy process (AHP) has been applied in many fields and especially to complex
engineering problems and applications. The AHP is capable of structuring decision problems and finding
mathematically determined judgments built on knowledge and experience. This suggests that AHP should
prove useful in agile software development where complex decisions occur routinely. In this paper, the
AHP is used to rank the refactoring techniques based on the internal code quality attributes. XP
encourages applying the refactoring where the code smells bad. However, refactoring may consume more
time and efforts.So, to maximize the benefits of the refactoring in less time and effort, AHP has been
applied to achieve this purpose. It was found that ranking the refactoring techniques helped the XP team to
focus on the technique that improve the code and the XP development process in general.

KEYWORDS

Extreme programming, Refactoring; Refactproing techqinces; Analytic Hierarchy Process.

1. INTRODUCTION

Code refactoring is the process of improving the design of the existing code by changing its
internal structure without changing its external behavior [1]. It is a core activity of the XP
development cycle to improve the design of the software and reduce the effort and cost of coding
and testing. Most of the current studies focus on the following issues:

1.1 Guidelines in the refactoring process

Mens and Tourwe [2] explained the refactoring steps in detail, which can be summarized as
follows:

 Identifying the part of the software that should be refactored.
 Deciding which refactoring methods should be applied
 Applying the refactoring
 Assessing the effects of the applied refactoring methods on the code quality attributes.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

10

Kataoka et al. [3] provided a 3-step model: “identification of refactoring candidates, validation of
refactoring effects, and application of refactoring”[4]. Other researcher-provided similar
processes can be found in [5,6].

1.2 Issues regarding refactoring tools

Maticorna and Perez [7] presented the refactoring characterization and showed how it can be used
as a tool to compare different refactoring definitions, including refactoring catalogs. Also, the
authors tackled various refactoring issues, such as design and languages, scope, actions, and
application on scheduling, which can each be a good starting point for the builders of the
refactoring tools. Murphy-Hill et al. [8] performed an empirical study comparing four methods
that were used to gather refactoring data to help in building a powerful refactoring tool.
Simmonds and Mens [9] compared four software-refactoring tools: SmalltalkWorks 7.0, Eclipse,
Guru, and Together ControlCenter 6.0. They provided detailed results that show the strengths and
weakness of each tool. Brunelet al. [10] investigated the accuracy of refactoring tools by
analyzing seven open-source java systems (MegaMek, JasperReports, Antlr, Tyrant, PDFBox,
Velocity, HSQLDB).Roberts et al. [11] discussed the technical requirements and practical criteria
for the refactoring tools. They emphasize that speed and integration are the most practical criteria.
Also, the accuracy and the ability to search across the entire program are the most technical
requirements.

1.3 Identification of code smells to locate possible refactoring

Sandalski et al. [12] used an intelligent assistant and a refactoring agent to analyze the refactoring
architecture and assess the existing code to highlight the portions of code that needed to be
refactored and to provide options for the methods.Advani et al. [13] conducted an empirical study
using open sources Java software to identify the area of complexity across the systems when
refactoring was being applied. Also, they discovered where the refactoring effort was being made.
They also created a way for developers to decide how to allocate the testing effort.Hayashi et al.
[14] proposed a technique using plug-ins for Eclipse to guide the developer on how and where to
do refactoring using the histories of program modification. This technique answered three main
questions: where to refactor? Which suitable refactoring method should be used? When should
refactoring should apply? Bryton et al. [15] proposed a model called Binary Logistic Regression
(BLR) to detect the code smell particularly Long Method objectively.

1.4 The impact of refactoring on the code quality attributes

Many studies; as they will are shown in section 5 have investigated the impact of the refactoring
on the code quality attributes. Yet, it is difficult and time consuming to apply all the possible
refactoring techniques during the iteration of the development. Therefore, this paper will provide
a way of ranking these techniques that can improve the code quality and transfer knowledge to
the development team.

2. THE ANALYTICAL HIERARCHY PROCESS

AHP is a systematic approach for problems that involve the consideration of multiple criteria in a
hierarchical model. AHP reflects human thinking by grouping the elements of a problem requiring

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

11

complex and multi-aspect decisions [16]. The approach was developed by Thomas Saaty as a
means of finding an effective and powerful methodology that can deal with complex decision-
making problems [17]. AHP comprises the following steps: 1) Structure the hierarchy model for
the problem by breaking it down into a hierarchy of interrelated decision elements. 2) Define the
criteria or factors and construct a pairwise comparison matrix for them; each criterion on the same
level is compared with other criteria in respect of their importance to the main goal. 3) Construct a
pairwise comparison matrix for alternatives with respect to each objective in separate matrices. 4)
Check the consistency of the judgment errors by calculating the consistency ratio. 5) Calculate the
weighted average rating for each decision alternative and choose the one with the highest score.
More details on the method, including a step-by-step example calculation, are found in [16].Saaty
[18] developed a numerical scale for assigning the weight for criteria or alternative by giving a
value between 1 (equal importance) and 9 (extreme importance), see table 1.

Table 1. AHP Numerical Scale Developed by Saaty [18].

Scale Numerical
Rating

Reciprocal

Equal importance 1 1
Moderate importance of

one over other
3 1/3

Very strong or
demonstrated importance

7 1/7

Extreme importance 9 1/9
Intermediate values 2,4,6,8 1/2, 1/4, 1/6,

1/8

3. REFACTORING TECHNIQUES

Fowler [1] assures that the refactoring helps developers to program faster, to find bugs and to
improve the software design. So, he defined more than 70 different refactoring patterns and
organized them into six categories: composing methods, moving features between objects,
organizing data, simplifying conditional expressions, making methods calls simpler, and dealing
with generalization. Each of the refactoring patterns has a specific purpose and effect over the
quality attributes. However, projects can have different priorities in terms of the quality attributes.
Using one or more of the refactoring methods variously improves the code and the design of the
software. So, it is essential to allocate the team’s efforts to the most important quality attributes in
order to maximize the value expected from the system. It is often unclear to software designers
how to use refactoring methods to improve particular quality attributes [19]. The task of selecting
the refactoring patterns is time-consuming and can create a conflict between the programmers’
opinions. Pivet et al. [20] introduced the AHP for three techniques and compared them based on
the use of these patterns, particularly in terms of simplicity, reusability, and comprehensibility.
These patterns would be more beneficial if we could investigate more patterns and rank them
based on their influence on the code instead of their capabilities and uses. Therefore, in this
section, we focused on ranking refactoring patterns based on their effects on the code quality
rather than their characteristics of uses. Also, we have chosen eight refactoring patterns from four
different categories proposed by Fowler to show the importance of these refactoring techniques
using AHP. The following patterns were selected:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

12

 Extract Method, Inline Method, and Inline Temp Method from “Composing Methods”
category.
 Extract Class, Inline Class, and Move Method from “Moving Features Between Objects”
category.
 Rename Method from “Making Method Calls Simpler” category.
 Pull Up Method from “Dealing with Generalization” category.

4. CASE STUDIES SETUP

The research questions, propositions, units of analysis,data collections and sources, and designing
the case studies are presented in this section.

4.1 Research questions and propositions

The primary objective in the refactoring practice is to investigate how AHP can be used in
ranking the internal and external code quality attributes. The following research questions
provided a focus for our case study investigation:

 How important is it to practice the refactoring using AHP?
 How can AHP rank the refactoring methods based on specific criteria?
 How can AHP affect the communication among the developers?
 How can AHP help in saving the developers’ time while refactoring?
The methodology used in this study is four case studies: two case studies in an academic
environment and two case studies in industrial environments with embedded units of analysis.
The study propositions are outlined below:
AHP captures important criteria and alternatives that need to be considered when refactoring.
AHP facilitates the process of ranking and selection in refactoring.
AHP involves an informative discussion and improves the communication among the

developers.
AHP provides a map to focus on the most important refactoring methods that increase the code

quality.
AHP resolves conflicting opinions among the developers when practicing the refactoring and

trying to find the smell code.

4.2 Unit of analysis

According to [21] the unit of the analysis should be derived from the main research questions of
the study. So, the main focus of this study is to rank the refactoring pattern based on internal
qualities attributes. So, the ranking and the process of evaluation are units of analysis for this
study. Also, the developers’ view of how AHP benefits each XP practice is another unit analysis.
As result, this work is designed as multiple cases (embedded) with multiple units of analysis.

4.3 Data collection and sources

In the beginning of the applying AHP to the refactoring practice, we propose the criteria that we
want to investigate in order to examine the AHP tool’s ability and benefits. This data was

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

13

collected from literature review and previous studies. To increase the validity of this study, data
triangulation was obtained. The data sources in this study were:

 Archival records, such as a study plan from the graduate students.
 Questionnaires given to the participants when developing the XP project.
 Questionnaires given to experts from industry.
 Open-ended interviews with the participants.
 Feedback from the customer.

However, the most important data source of this study was an XP project conducted at the
University of Regina in a software design class in fall 2012. In addition, three companies initially
participated in evaluating some of the XP practices and based on proposed criteria that affect the
practice. Later on, two of the three companies involved in validating the results.

4.4 Designing the case studies

The educational case studies were performed as part of a course in the Advanced Software Design
Class for graduate students taught in Fall 2012 at the University of Regina. The participants were
12 master’s students and a client from a local company in Regina. Participants have various levels
of programming experience and a good familiarity with XP and its practices. The Students'
background related to the experiment includes several programming languages such as Java, C,
C#, and ASP.net. They have implemented projects previously using various software process
methodologies. The study was carried out throughout 15 weeks; students were divided into two
teams. Both teams were assigned to build a project called “Issue Tracking System” brought by the
client along with industrial requirements. It ran in 5 main iterations and by the end of the semester,
the whole software requirements were delivered. The students were paired based on their
experience and knowledge, but also we had an opportunity to pair some experts with novice and
average programmers for the purpose of the study. Participants were given detailed lectures and
supporting study materials on extreme programming practices that focused on planning game
activities which included writing user stories, prioritizing the stories, estimating process
parameters, and demonstrating developers’ commitments. The students were not new to the
concept of XP, but they gained more knowledge and foundation specifically in the iteration plan,
release planning and prioritizing the user stories. In addition, the students were exposed to the
AHP methodology and learned the processes necessary to conduct the pairwise comparisons and to
do the calculations. Several papers and different materials about the AHP and user stories were
given to the students to train them and increase their skills in implementing the methodology. In
addition, a survey was distributed among students to get further information about their personal
experiences and knowledge.

The researcher have visited three companies (two companies in Regina, and one in Calgary; both
in Canada) several times and met with the developers and team leaders to explain the purpose of
the study and to collect the data and feedback from the real industries. To preserve their
anonymities, A, B, and C replace the companies’ real names. All the companies are familiar with
XP concept and currently practicing the refactoring during their development. In this study,
eighteen experts have used their knowledge and average of 10 years experience to evaluate the
proposed pair alternatives using the AHP.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

14

5. AHP USEINREFACTORING

The AHP method can be used in the XP development team to rank the refactoring techniques
based on the internal code quality attributes. In the following sections, the AHP evaluation,
structure and process are presented.

5.1 Background

Before applying the AHP to the refactoring, we will highlight some of the previous studies that
already have investigated the impact of the refactoring on the internal code quality attributes as
follow:

Moser et al. [22] conducted a case study to assess the refactoring impacts in an industrial
environment. They found that refactoring improved software quality attributes such as coupling,
cohesion, and response for a class. Stroggylos and Spinellis [23] analyzed source code version
control system logs from four open source software systems to detect changes that occurred after
refactoring and to examine the refactoring’s impact on the software metrics process. The metrics
examined include coupling, cohesion, and number of methods. Bois et al. [24] analyzed how
refactoring changes the coupling and cohesion characteristics. These refactoring methods were
used: Move Method, Replace Method with Method Object, Replace Data Value with Object and
Extract Class. The study led to an improvement in the code quality. Moser et al. [25] conducted a
case study in agile environment. The quality metrics selected for this study were complexity,
coupling, cohesion, number of methods per class, response of a class, depth of inheritance tree,
and number of children. They used a methodology proposed in their research that led them to the
conclusion that the refactoring could significantly improve the internal measures for reusability of
object-oriented classes written in Java. Ratzinger et al. [26] analyzed the history of a large
industrial system during 15 months and showed how refactoring can reduce the change couplings
and enhance the software evolvability. Stroulia and Kapoor [27] investigated how the refactoring
could improve the design and code quality. They found that the average LOC, the average the
number of statements, the number of methods, and the number of collaborators were decreased in
the individual system classes. Kataoka et al. [28] found that refactoring techniques such as extract
method and Extract Class reduce the coupling in the code and improve the maintainability of the
system. Zhao and Hayes [29] introduced a rank-based software using a measure-driven
refactoring decision to support the development team’s decisions of where to apply resources
when they did refactoring. They presented two case studies that examined the approach that
identifies which classes and packages need to be refactored based on static measures such as code
size, coupling, and complexity. Geppert et al. [30] found the defect rates and change efforts
decreased significantly.

5.2 Proposed criteria for ranking the refactoring

To rank the refactoring techniques, it is necessary to identify the quality attributes that are more
valuable to the development team or the organization. Each project can have a different set of
criteria and alternative refactoring methods in order to be ranked and evaluated. In this paper, we
have chosen four internal quality attributes as the core criteria for ranking the refactoring
techniques:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

15

 Cohesion: each system component does one thing and does it well.
 Coupling: the degree to which each system component relies on another component.
 Complexity: the degree of connectivity between elements of a design unit.
 Code size: most common technical sizing method is number of Lines Of Code (#LOC) per

technology, number of files, functions, classes, tables, etc.

5.3 AHP-refactoring structure for the internal attributes

The first step in the analytic hierarchy process is to structure the problem as a hierarchy that
includes three levels. The top level is the main objective: ranking the refactoring techniques; the
second level is the criteria: complexity, cohesion, coupling, and code size; the third level is the
alternatives: Extract Method, Inline Method, InlineTemp Method, Extract Class, Inline Class,
Move Method, Pull Up Method, and Rename Method. Figure 1 illustrates the AHP structure for
the problem.

Figure 1. AHP Structure for the refactoring techniques based on the internal attributes

5.4 Refactoring pairwise comparison process

All the participants had to apply the refactoring patterns to a real project to see the real impact on
their code. Then they were required to evaluate the refactoring patterns based on certain criteria.
For this purpose, sheets of paper with appropriate AHP tables were handed to the all participants
in order to save time and facilitate the process of comparison. The participants compared the
criteria using the Saaty scale from 1-9. The participants were asked these questions:

 Which is more important: complexity or cohesion and by how much?
 Which is more important: complexity or coupling and by how much?
 Which is more important: complexity or code size and by how much?
 Which is more important: cohesion or coupling and by how much?
 Which is more important: cohesion or code size and by how much?
 Which is more important: coupling or code size and by how much?
After finishing the criteria comparisons, the participants had to evaluate all the refactoring
techniques based on each criterion every time. Example follows:
 In term of reducing the complexity, which is more important Extract Method or Inline Method

and by how much?

Similarly, all the following comparisons were conducted based on each criterion:

Evaluating Refactoring
Techniques

Complexity Choseion

Extract
Method

Coupling Code Size

Inline
Method

InlineTemp
Method

Extract
Class

Inline
Class

Move
Method

Pull Up
Method

Rename
Method

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

16

 (Extract Method X Inline Method), (Extract Method X Inline Temp Method), (Extract Method
X Extract Class), (Extract Method X Inline Class), (Extract Method X Move Method), (Extract
Method X Inline Pull Up Method) (Extract Method X Rename Method).
 (Inline Method X Inline Temp Method), (Inline Method X Extract Class), (Inline Method X

Inline Class), (Inline Method X Move Method) (Inline Method X Inline Method), (Inline
Method X Inline Pull Up Method), (Inline Method X Rename Method).
 (Inline Temp Method X Extract Class), (Inline Temp Method X Inline Class), (Inline Temp

Method X Move Method), (Inline Temp Method X Pull Up Method), (Inline Temp Method X
Rename Method).
 (Extract Class X Inline Class), (Extract Class X Move Method), (Extract Class X Pull Up

Method), (Extract Class X Rename Method).
 (Inline Class X Move Method), (Inline Class X Pull Up Method), (Inline Class X Rename

Method).
 (Move Method X Pull Up Method) (Move Method X Rename Method).
 (Pull Up MethodX Rename Method).

The same questions and comparisons repeated until the participants evaluated all refactoring
techniques based on each criterion.

6. AHP EVALUATIONRESULTS

6.1 Educational case studies

For Team 1, the rankings of the refactoring techniques based on all criteria, i.e. complexity,
cohesion, coupling and code size, are summarized as follows. First: Extract Class (17.61);
Second: Extract Method (15.37); Third: Inline Class (15.35); Fourth: Pull Up Method (13.71);
Fifth: Move Method (11.55); Sixth: Inline Temp method (10.96); Seventh: Inline Method (10.17);
Eighth (5.28). Table 2 summarizes the results.

Figure 2 shows the importance of each criterion as follows: coupling (29.29), cohesion (29.25),
code size (22.56), and complexity (18.90).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

17

Team 2’s rankings of the prioritization techniques is summarized as follows: First: Inline Class
(19.31); Second: Inline Method (15.65); Third: Extract Class (13.42); Fourth: Extract Method
(13.35); Fifth: Move Method (12.19); Sixth: Inline Temp Method (9.69); Seventh: Inline Method
(9.56); Eighth: Rename Method (6.83). Table 3 summarizes the results.

Figure 3 shows the importance of each criterion as follows: coupling (33.61), cohesion (32.37),
complexity (27.10), and code size (6.93).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

18

6.1.1 Observations:

1. Considering all the criteria, the Extract Class technique was ranked the highest by Team
1, while Team 2 ranked it in the third position. Team 2 ranked the Inline Class in the
highest position while Team 1 ranked it in the third position.

2. Both Extract Class and Inline Class are categorized by Fowler as “Moving Features
Between Objects.”

3. Team 1 ranked Extract Method in the second position, and Team 2 ranked the Inline
Method in the second position. Both Extract Method and Inline Method are categorized
by Fowler as “Composing Methods”.

4. Rename Method was ranked in the last position by the two teams.
5. Cohesion and coupling quality attributes were of the highest concern for both teams.
6. If we look at the refactoring techniques considering each criterion individually, we can

see both teams ranked the Extract Method in the top position in the complexity attributes.
Also, both teams ranked the Inline Class in the top position in the cohesion attributes. See
tables 4 and 5.

7. For the coupling quality attribute, Team 1 ranked the Extract Method in the highest
position, while Team 2 ranked the Inline Class at the top. See tables 4 and 5.

8. For the code size quality attribute, Team 1 ranked the Extract Class in the highest
position, while Team 2 ranked the Inline Method at the top. See tables 4 and 5.

Table 4. Refactoring techniques based on each internal criterion by Team 1

Refactoring
Techniques Coupling

Extract Method 18.54 %

Extract Class 16.62 %

Pull Up Method 12.68 %

Move Method 12.44 %

Inline Class 11.43 %

Inline Temp
Method 11.30 %

Inline Method 9.33 %

Rename Method 7.66 %

Refactoring
Techniques Complexity

Extract Method 19.30 %

Extract Class 19.29 %

Inline Class 15.00 %

Pull Up Method 14.70 %

Move Method 13.16 %

Inline Method 7.76 %

Inline Temp
Method 7.11 %

Rename Method 3.68 %

Refactoring
Techniques Chohesion

Inline Class 18.17 %

Pull Up Method 16.41 %

Extract Class 15.02 %

Inline Method 11.83 %

Extract Method 11.65 %

Inline Temp
Method 11.56 %

Move Method 10.50 %

Rename Method 4.87 %

Refactoring
Techniques Code Size

Extract Class 21.50 %

Inline Class 17.24 %

Inline Temp
Method 13.09 %

Extract Method 12.64 %

Inline Method 11.16 %

Move Method 10.32 %

Pull Up Method 10.20 %

Rename Method 3.84 %

Table 5. Refactoring techniques based on each internal criterion by Team 2

Refactoring
Techniques Complexity

Extract Method 17.88 %

Extract Class 17.26 %

Inline Class 14.97 %

Pull Up Method 13.78 %

Move Method 11.40 %

Rename Method 9.45 %

Inline Method 8.43 %

Inline Temp
Method 6.83 %

Refactoring
Techniques Coupling

Inline Class 21.91 %

Inline Method 21.68 %

Extract Method 14.37 %

Move Method 12.12 %

Inline Temp
Method 10.62 %

Extract Class 8.59 %

Rename Method 5.97 %

Pull Up Method 4.74 %

Refactoring
Techniques Code Size

Inline Method 17.23 %

Inline Temp
Method 14.89 %

Inline Class 14.44 %

Pull Up Method 13.74 %

Extract Method 11.11 %

Move Method 10.79 %

Extract Class 10.31 %

Rename Method 7.48 %

Refactoring
Techniques Chohesion

Inline Class 22.47 %

Inline Method 16.39 %

Extract Class 15.40 %

Move Method 13.47 %

Inline Temp
Method 10.27 %

Pull Up Method 9.08 %

Extract Method 8.13 %

Rename Method 4.79 %

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

19

6.2 Industrial case studies

The rankings for the prioritization of techniques by company Aare summarized as follows: First:
Extract Method (16.21); Second: Pull Up Method (15.94); Third: Inline Class (15.8); Fourth:
Extract Class (13.7); Fifth: Rename Method (11.01); Sixth: Inline Method (10.9); Seventh: Move
Method (8.62); Eighth: Inline Temp Method (8.51). Table 7 summarizes the results.Figure 4
shows the importance of each criterion as follows: code size (37.93), cohesion (30.72), coupling
(16.21), and complexity (15.14).

The rankings for the prioritization of techniques by company Bare summarized as follows: First:
Extract Class (24); Second: Extract Method (19.99); Third: Move Method (12.44); Fourth: Inline
Class (10.25); Fifth: Pull Up Method (9.79); Sixth: Inline Method (8.83); Seventh: Rename
Method (8.31); Eighth: Inline Temp Method (6.39). Table 8 summarizes the results.

Figure 5 shows the importance of each criterion as follows: cohesion (41.75), coupling (30.34),
complexity (14.83), and code size (13.08).

Refactoring
Techniques All

Extract Method 16.21 %

Pull Up Method 15.94 %

Inline Class 15.8 %

Extract Class 13.7 %

Rename Method 11.01 %

Inline Method 10.9 %

Move Method 8.62 %

Inline Temp
Method 8.51 %

Table 7. Ranking the
refactoring techniques by

company A

Figure 4. Importance of the internal criteria for refactoring
company A

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

20

The rankings for the prioritization of techniques by company Care summarized as follows: First:
Extract Class (18.46); Second: Inline Class (17.98); Third: Extract Method (14.19); Fourth: Inline
Method (13.89); Fifth: Inline Temp Method (10.58); Sixth: Move Method (10.4); Seventh: Pull
Up Method (9.21); Eighth: Rename Method (5.29). Table 9 summarizes the results.

Figure 6 shows the importance of each criterion as follows: cohesion (38.37), coupling (38.76),
code size (12.38), and complexity (10.49).

6.2.1 Observations:

1. Considering all the criteria together, the Extract Class technique was ranked highest by
companies B and C while company A ranked it in the fourth position. Company A ranked
the Extract Method in the highest position.

Refactoring
Techniques All

Extract Class 18.46 %

Inline Class 17.98 %

Extract Method 14.19 %

Inline Method 13.89 %

Inline Temp
Method 10.58 %

Move Method 10.4 %

Pull Up Method 9.21 %

Rename Method 5.29 %

Table 9. Ranking the
refactoring techniques by

company C

Figure 6. Importance of the internal criteria for
the refactoring by company C

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

21

2. The second position for each company was different. The second-highest position in A
was Pull Up Method, in company B, it was Extract Method, and in company C it was
Inline Class.

3. Inline Temp Method was ranked in the last position by companies A and B, while
company C ranked the Rename Method in the last position.

4. Cohesion and coupling quality attributes were of the highest concern for companies B
and C, while company A was most concerned with the code size and cohesion.

5. If we look at the refactoring techniques and consider each criterion individually as it is
shown in tables 10, 11, and 12, we can see companies A and B ranked the Extract Class
in the top position in the complexity attributes, while company C ranked the Extract
Method at the top.

6. For the cohesion quality attribute, companies B and C ranked the Extract Class in the
highest position, while company A ranked the Extract Method at the top.

7. For the coupling quality attribute, companies A, B, and C all ranked the Extract Class in
the highest position.

8. For the code size, all the companies ranked the refactoring techniques differently.
Companies A, B and C ranked the Pull Up Method, Inline Method, and Inline Class in the
highest position, respectively.

Table 10. Refactoring techniques based on each internal criterion by company A

Refactoring
Techniques Chohesion

Extract Method 22.22 %

Inline Class 21.05 %

Rename Method 14.88 %

Extract Class 12.58 %

Pull Up Method 8.46 %

Inline Method 8.05 %

Inline Temp
Method 6.83 %

Move Method 5.93 %

Refactoring
Techniques Complexity

Extract Class 22.74 %

Extract Method 15.21 %

Pull Up Method 13.19 %

Inline Method 11.02 %

Move Method 10.49 %

Inline Class 10.1 %

Inline Temp
Method 8.77 %

Rename Method 8.47 %

Refactoring
Techniques Code Size

Pull Up Method 15.71 %

Inline Class 15.05 %

Extract Method 14.4 %

Inline Method 13.28 %

Move Method 12.78 %

Inline Temp
Method 12.25 %

Extract Class 9.41 %

Rename Method 7.12 %

Refactoring
Techniques Coupling

Extract Class 17.16 %

Pull Up Method 16.43 %

Extract Method 13.47 %

Rename Method 13.35 %

Inline Class 11.98 %

Inline Method 9.62 %

Inline Temp
Method 8.38 %

Move Method 8.59 %

Table 11. Refactoring techniques based on each internal criterion by company B

Refactoring
Techniques Complexity

Extract Class 28.73 %

Extract Method 21.4 %

Move Method 12.39 %

Pull Up Method 10.28 %

Rename Method 9.39 %

Inline Method 7.03 %

Inline Class 6.42 %

Inline Temp
Method 4.35 %

Refactoring
Techniques Chohesion

Extract Class 24.23 %

Extract Method 20.19 %

Move Method 13.83 %

Inline Class 10.32 %

Pull Up Method 10.26 %

Rename Method 8.39 %

Inline Method 7.28 %

Inline Temp
Method 5.5 %

Refactoring
Techniques Coupling

Extract Class 28.85 %

Extract Method 23.53 %

Move Method 11.92 %

Pull Up Method 9.59 %

Rename Method 8.4 %

Inline Class 6.55 %

Inline Method 5.79 %

Inline Temp
Method 5.37 %

Refactoring
Techniques Code Size

Inline Method 18.41 %

Inline Class 18.38 %

Extract Method 13.24 %

Extract Class 12.81 %

Inline Temp
Method 11.57 %

Move Method 9.87 %

Pull Up Method 8.55 %

Rename Method 7.17 %

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

22

6.3 Impact of refactoring on the quality attributes

Tables 13 and 14 show the impact of the refactoring on the internal quality attributes reported by
Team 1 and Team 2.

Table 13. Refactoring impact on the internal attributes by Team 1

Complexity Cohesion Coupling Code Size

Extract Method - + - -
Inline Method 0 + - -
InlineTemp Method 0 0 0 0
Extract Class 0 0 0 0
Inline Class + + - -
Move Method + + - -
Pull Up Method - + - -
Rename Method 0 0 0 0

Table 14. Refactoring impact on the internal attributes by Team 2

Complexity Cohesion Coupling Code Size

Extract Method - + 0 +
Inline Method + 0 0 -

InlineTemp Method - 0 0 -
Extract Class - - + +
Inline Class + + - -

Move Method - - + 0
Pull Up Method - + + -
Rename Method - 0 0 0

7. REFACTORINGVALIDATION

From the previous AHP evaluation conducted by students and experts, we found out that there are
three refactoring techniques that have received high rankings: Extract Class, Inline Class, and
Extract Method.In this section, we collected technical information from two educational studies
(Team 1 and 2) and two industrial studies (Company A and B) to validate the AHP evaluation

Table 12.Refactoring techniques based on each internal criterion by company C
Refactoring
Techniques Complexity

Extract Method 19.96%

Inline Class 16.98 %

Extract Class 13.7 %

Inline Method 13.4 %

Move Method 11.12 %

Inline Temp
Method 10.65 %

Pull Up Method 9.61 %

Rename Method 4.58 %

Refactoring
Techniques Coupling

Extract Class 20.46 %

Inline Class 15.93 %

Extract Method 15.41 %

Inline Method 13.4 %

Pull Up Method 11.39 %

Move Method 11.17 %

Inline Temp
Method 8.08 %

Rename Method 4.16 %

Refactoring
Techniques Code Size

Inline Class 26 %

Inline Temp
Method 15.16 %

Extract Class 14.31 %

Inline Method 12.23 %

Pull Up Method 9.94 %

Move Method 9.32 %

Extract Method 8.08 %

Rename Method 5.02 %

Refactoring
Techniques Chohesion

Extract Class 18.8 %

Inline Class 18.28 %

Inline Method 14.85 %

Extract Method 13 %

Inline Temp
Method 11.82 %

Move Method 9.74 %

Pull Up Method 6.91 %

Rename Method 6.6 %

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

23

results obtained previously. (We could not obtain some of the data from company C). The
collected information included the following:

 The impact of the proposed refactoring techniques on the internal and external quality
attributes.

 How many times each refactoring technique was used for each iteration in each case
study.

In addition, the participants were required to count the time spent for the refactoring before and
after using AHP.

6.4.9.1 Number of times using the refactoring techniques

Tables 15 and 16 summarize how many times each of the refactoring techniques were used in
each iteration by companies A and B.

Table 15 Number of times refactoring was used for each iteration by company A

Iteratio
n 1

Iteratio
n 2

Iteration
3

Iteratio
n 4

Iteratio
n 5

Total

Extract Method 27 34 21 49 41 172
Inline Method 5 13 17 8 22 65
InlineTemp Method 0 4 0 7 5 16
Extract Class 18 11 12 15 9 65
Inline Class 18 10 7 11 3 49
Move Method 8 6 0 0 20 34
Pull Up Method 21 17 9 27 13 87
Rename Method 11 0 17 22 5 55

Table 16 Number of times refactoring was used for each iteration by company B

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Total

Extract Method 9 5 2 1 1 18
Inline Method 2 1 0 0 0 3
InlineTemp Method 1 0 0 0 0 1
Extract Class 5 5 3 3 2 18
Inline Class 1 0 0 0 0 1
Move Method 2 0 0 0 0 2
Pull Up Method 7 5 2 2 1 17
Rename Method 4 1 0 0 0 5

7.2 Refactoring impact on the internal quality attributes

Tables17and 18 summarize the internal impacts for each refactoring technique for companies A
and B.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

24

Table 17. Refactoring impact on the internal attributes by company A

Complexity Cohesion Coupling Code Size

Extract Method - + - +
Inline Method - 0 + -
InlineTemp Method + - 0 +
Extract Class - + - -
Inline Class + - - +
Move Method - - + -
Pull Up Method - 0 - -
Rename Method - 0 0 0

Table 18. Refactoring impact on the internal attributes by company B

Complexity Cohesion Coupling Code Size

Extract Method - + - +
Inline Method + - + -
InlineTemp Method + 0 0 -
Extract Class - + - +
Inline Class + 0 + +
Move Method + - 0 +
Pull Up Method - + - -
Rename Method - 0 0 0

7.3 AHP-refactoring impact on time

Both companies were asked to provide the time spent before and after using the AHP.
Table 17 shows that the time was reduced.

Table 19. Refactoring impact on time for company A and B

Time before AHP After AHP
Company A 3 Days 2 Days
Company B 12 hours 7 hours

7.4 Observations from the validation

 From the AHP evaluation results, Extract Class and Extract Method were mostly ranked
in the top positions in the internal quality attributes. Tables 15 and 16 show that Extract
Method and Extract Class are commonly used and havepositive effects (asseen in tables
17 and 18). In Company A, the most refactoring techniques were used: Extract Method
(172), Pull Up Method (87), and Extract Class and Inline Method (65). In Company B,
the fewest refactoring techniques were used: Extract Method and Extract Class (18), and
Pull Up Method (17).

 Extract Class showed a positive impact on all the internal quality attributes in company
A. The complexity, coupling and code size were reduced while the cohesion increased. In
company B, the complexity and coupling reduced as well, but the code size increased.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

25

The cohesion increased as positive result. For both companies, Extract Method showed a
positive impact on all the internal quality attributes, except the code size increased.

 Pull Up Method was used many times by the two companies, even though it was not
showing significant results by the AHP evaluation. Also, it showed a positive impact on
both internal quality attributes generally.

 After narrowing the use of refactoring techniques and ranking them using AHP, the time
for refactoring for company A was reduced from 3 days to 2 days, while the refactoring
time for company B was reduced from 12 hours to 7 hours.

8. SEMI-INTERVIEW RESULTS

The semi-interview was conducted after showing the participants the results of the AHP
evaluation for the refactoring practices. Some of the results were surprising and others were
expected. The interview included open questions to obtain students’ general opinions about the
AHP, advantages and disadvantage of the using the AHP, and the best experience of the AHP
among all the XP practices. As noted previously, the data was collected in the form of
handwritten notes during the interviews. These notes were organized in a folder for the sake of
easy access and analysis. The questions and answers for the semi-interview are below and the
people’s names are kept anonymous.

From the interviews, we found very positive feedback from the participants regarding the AHP.
The AHP resolved any conflicting opinions and brought each team member’s voice to the
decision in a practical way. It also empathized with the courage of the team by letting every
opinion be heard. The time and the number of the comparisons were the main concerns of the
participants. All of them recommended using the AHP in the future when it needs to decide which
refactoring should be applied. There were a few additional recommendations as well, such as
developing an automated tool to reduce the time for the AHP calculation, adding the mobility
features, performing cost and risk analysis, and trying it with other XP areas and studying the
outcomes.

9. QUESTIONNAIRES

Questionnaires were given to the participants in order to obtain their perceptions of and
experiences with the AHP. The questionnaires were divided into two main parts. The first part
contained questions about the AHP as a decision and ranking tool. The second part contained
questions regarding the direct benefits of the XP practice and investigated the participants’
satisfaction. We used a seven-point Likert scale to reflect the level of acceptability of the AHP
tool. The seven-point scale appeared as follows: (1) Totally unacceptable. (2) Unacceptable. (3)
Slightly unacceptable. (4) Neutral. (5) Slightly acceptable. (6) Acceptable. (7) Perfectly
Acceptable.

Once the participants completed the questionnaire, we calculated the results and presented the
total percentage of the acceptability for each statement in the evaluation (questionnaires) in the
tables 4, 5, and 6.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

26

The total percentage of the acceptability was calculated as follows:

 The total percentage of acceptability (TPA)
= The average of the score for each team * 100 / 7.

 The average of the score for each team =
= The sum of the scores given by the team members / number of the team.

9.1 Acceptability level of AHP as a decision and ranking tool

AHP received positive ratings by the two teams and the three companies on most of the questions.
However, the lowest percentage given by all studieswere regarding the time efficiency(59%,
62%, 61%, 57%, 57%). See table 20.

Table 20. Acceptability level of AHP as a decision and ranking tool

Team 1 Team 2 Company
A

Company
B

Company
C

1-AHP as a Ranking tool in Refactoring

A- Decision Quality:
Capturing the needed information 76% 88% 86% 83% 88 %
Clarity of the decision process 88% 86% 94% 94% 90%
Clarity of the criteria involved 81% 76% 88 % 83% 88 %
Clarity of the Alternatives involved 81% 79% 88% 90% 95%
Goodness of the decision structure 86% 90% 98% 88% 71%

B- Practically
Understandability 83% 88% 98% 90% 85.66
Simplicity 71% 86% 76% 74 % 74 %
Time Efficiency 59% 62% 61% 57% 57%
Reliability 74% 76% 81% 90% 90%

9.2 Acceptability level for the impact of AHP on the development:

The following percentages show the acceptability level for the impact of the AHP on the
development:

 First: improving team communication; Team1 (74%), Team2 (93%), company A (93%),
company B (93%), and company C (94%).

 Second: creating aninformative discussion and learning opportunities, Team1 (71%),Team2
(88%), company A (86%), company B (95%), and company C (93%).

 Third: clarifying the ranking problem; Team1 (71%), Team2 (90%), company A (86%),
company B (93%), and company C (83%).

 Fourth: resolving the conflicting opinions among members; Team1 (64%), Team2 (86%),
company A (86%), company B (93%), and company C (83%).

 Fifth: elevating the team performance; Team1 (76%) and Team2 (88%), company A (79%),
company B (86%), and company C (not study).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

27

10. VALIDITY

Construct validity, internal validity, external validity and reliability describe common threats to
the validity tony performed study [31].”Empirical studies in general and case studies in particular
are prone to biases and validity threats that make it difficult to control the quality of the study to
generalize its results” [32]. In this section, relevant validity threats are described. A number of
possible threats to validity can be identified for this work.

10.1 Construct validity

Construct validity deals with the correct operational measures for the concept being studied and
researched. The major construct validity threat to this study is the small number of participants in
each case study. This threat was mitigated by using several techniques in order to ensure the
validity of the findings, as outlined below.

 Data triangulation: A major strength of case studies is the possibility of using many different
sources of evidence [33]. This issue was taken into account through the use of surveys and
interviews with different types of participants from different environments with various levels
of skills and experience, and through the use of several observations as well as feedback from
those involved in the study. By establishing a chain of evidence, we were able to reach a valid
conclusion.

 Methodological triangulation: The research methods employed were a combination of a
project conducted to serve this purpose, interviews, surveys, AHP result comparisons, and
researchers’ notes and observations.

 Member checking: Presenting the results to the people involved in the study is always
recommended, especially for qualitative research. This was done by showing the final results
to all participants to ensure the accuracy of what was stated and to guard against researcher
bias.

10.2 Internal validity

Internal validity is only a concern for an explanatory case study [33]. Internal validity focuses on
establishing a causal relationship between students and educational constraints. This issue can be
addressed by relating the research questions to the propositions and other data sources providing
information regarding the questions.

10.3 External validity

External validity is related to the domain of the study and the possibilities of generalizing the
results. To provide external validity to this study, we will need to conduct an additional case
study in the industry involving experts and developers, and then observe the similarities and the
differences in the findings of both studies. Thus, future work will contribute to accruing external
validity.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

28

10.4 Reliability

Reliability deals with the data collection procedure and results. Other researchers should arrive at
the same case study findings and conclusions if they follow the same procedure. We addressed
this by making the research questions, case study set up, data collection and analysis procedure
plan is available for use by other researchers.

11. CONCLUSIONS

After using the AHP to rank the refactoring techniques, it was found to be an important tool that
provides a very good vision for developers when they want to apply the refactoring practice to
improve the code. Considering the complexity, cohesion, coupling and code size when ranking
the refactoring techniques could bring many advantages to the development team such as code
enhancing the code in a short time and transferring knowledge to the developers. The Extract
Class and Extract Method were the most refactoring techniques have improved the code in our
studies. However, the other refactoring techniques have added values to internal code qualities as
well. More importantly, though, the AHP has a positive impact on the development process and
communication among the team members. For example, the team could mathematically reconcile
the conflict of opinions regarding the use of refactoring techniques. The AHP provides a
cooperative decision making environment, which could maximize the effectiveness of the
developed software.

References

[1] Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts, “Refactoring: Improving the
Design of Existing Code”, Addison-Wesley Professional; 1 edition (July 8, 1999).

[2] Tom Mens, Tom Tourwe, “A Survey of Software Refactoring”, Journal IEEE Transactions on
Software Engineering archive, vol.30, no.2, February 2004, pp.126-139.

[3] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tet- suji Fukaya, “A Quantitative Evaluation of
Maintainability Enhancement by Refactoring”, in Proceedings of the International Conference on
Software Maintenance, Washington, DC, USA, 2002, pp. 576–585.

[4] J. A. Dallal and L. Briand, “A Precise Method-Method Interaction-Based Cohesion Metric for Object-
Oriented Classes”, Journal ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 21, no. 2. March 2012.

[5] Tom Tourwe ́ and Tom Mens, “Identifying Refactoring Opportunities Using Logic Meta
Programming”, European Conference on Software Maintenance and Reengineering, 2003.

[6] Liming Zhao, Jane Huffman Hayes “Predicating Classes in Need of Refactoring: An Application of
Static Metrics”, Department of Computer Science, University of Kentuck, 2006.

[7] Raul Maticorna, Javier Perez, “Assisting Refactoring Tools Development Through Refactoring
Characterization”, in Proceedings of the 6th International Conference on Software and Data
Technologies, vol. 2, Seville, Spain, 18-21 July, 2011.

[8] Emerson Murphy-Hill, Andrew P. Black, Danny Dig, Chris Parnin, “Gathering Refactoring Data: a
Comparison of Four Methods”, in Proceedings of the 2nd Workshop on Refactoring Tools, no.7,
2008.

[9] Jocelyn Simmonds, Tom Mens, “A Comparison of Software Refactoring Tools”, Programming
Technology Lab, November 2002.

[10] S. Counsell Brunel Y. Hassoun G. Loizou R. Najjar, “Common Refactorings, a Dependency
Graph and some Code Smells: An Empirical study of Java OSS”, in Proceedings of the ACM/IEEE
international symposium on Empirical software engineering, 2006, pp.288 – 296.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

29

[11] Don Roberts and John Brant, Ralph Johnson, “A Refactoring Tool for Smalltalk”, Theory and
Practice of Object Systems - Special issue object-oriented software evolution and re-engineering
archive, vol. 3, no. 4, 1997, pp. 253 – 263.

[12] Mincho Sandalski, Asya Stoyanova-Doycheva, Ivan Popchev, Stanimir Stoyanov, “Development of a
Refactoring Learning Environment”, Cybernetics and Information Technology, vol.11, no 2, 2011.

[13] Deepak Advani, Youssef Hassoun & Steve Counsell, “Understanding the Complexity of Refactoring
in Software Systems: a Tool-Based Approach”, International Journal of General Systems, vol.35,
no.3, 2006,329-346.

[14] Shinpei Hayashi, Motoshi Saeki, Masahito Kurihara, “Supporting Refactoring Activities Using
Histories of Program Modification”, IEICE - Transactions on Information and Systems archive, vol.
E89-D no.4, April 2006, pp.1403-1412.

[15] Bryton, S.; Brito e Abreu, F.; Monteiro, M., “Reducing Subjectivity in Code Smells Detection:
Experimenting with the Long Method”, Quality of Information and Communications Technology
(QUATIC), 2010 Seventh International Conference, Sept. 29 2010-Oct. 2 2010, pp.337- 342.

[16] Nidhi Tiwari. Using the Analytic Hierarchy Process (AHP) to Identify Performance Scenarios for
Enterprise Application (2006).

[17] Saaty TL.The Analytic Hierarchy Process, McGraw-Hill, New York, (1980).
[18] Saaty, T.L. How to Make a Decision: the Analytic Hierarchy Process, Interfaces, Vol. 24, No. 6,

pp.19--43 (1994).
[19] Karim O. Elish, Mohammad Alshayeb, “A Classification of Refactoring Methods Based on Software

Quality Attributes”, Arabian Journal for Science and Engineering, vol. 36, no. 7, November 2011, pp.
1253-1267.

[20] Eduardo Kessler Piveta, Ana Moreira, Marcelo Soares Pimenta, João Araújo, Pedro Guerreiro,
Roberto Tom Price, Ranking Refactoring Patterns Using the Analytical Hierarchy Process, in:
proceeding of: ICEIS 2008 - Proceedings of the Tenth International Conference on Enterprise
Information Systems, vol. ISAS-2, Barcelona, Spain, June 12-16, 2008.

[21] Robert K. Yin, “Case Study Research: Design and Methods: Applied Social Research Methods”,
SAGE Publications, Inc; 2nd edition (March 18, 1994).

[22] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, Giancarlo Succi, “A Case
Study on the Impact of Refactoring Quality and Productivity in a Agile Tam”, Balancing Agility and
Formalism in Software Engineering Lecture Notes in Computer Science, vol.5082, 2008, pp 252-266.

[23] K. Stroggylos and D. Spinellis, “Refactoring - Does It Improve Software Quality?”, in Proceeding of
the 5th International Workshop on Software Quality, 2007, p.10.

[24] Du Bois, B.; Demeyer, S.; Verelst, J., “Refactoring - Improving Coupling and Cohesion of Existing
Code”, Reverse Engineering, in: Proceedings of the11th Working Conference, Nov 2004, pp.144-151.

[25] Raimund Moser1, Alberto Sillitti1, Pekka Abrahamsson2, and Giancarlo Succi1, “Does Refactoring
Improve Reusability?” in Proceedings of the 9th international conference on Reuse of Off-the-Shelf
Components, 2006, pp.287-297.

[26] J.Ratzinger, M. Fischer, H. Gall, “Improving Evolvability Through Refactoring”, in Proceeding of
the 2005 international workshop on mining software repositories, 2005, pp.1 – 5.

[27] E. Stroulia, R.V. Kapoor, “Metrics of Refactoring-based Development: An Experience Report”, In
The seventh International Conference on Object-Oriented Information Systems, 2001, pp. 113–122.

[28] Y. Yu, J. Mylopoulos, E. Yu, J.C. Leite, L. Liu, E.H. D’Hollander, “Software Refactoring Guided by
Multiple Soft- Goals”, in Proceedings of the 1st workshop on Refactoring: Achievements, Challenges,
and Effects, in conjunction with the 10th WCRE conference 2003, Victoria, Canada, 2003, pp. 7-11.

[29] Kataoka, Y.; Imai, T.; Andou, H.; Fukaya, T., “A Quantitative Evaluation of Maintainability
Enhancement by Refactoring”, Software Maintenance, in Proceedings of the International
Conference, 2002, pp.576-585.

[30] Liming Zhao, Jane Huffman Hayes, “Rank-Based Refactoring Decision Support: Two Studies”,
Innovations in Systems and Software Engineering, September 2011, vol.7, no. 3, pp 171-189.

[31] Geppert, B.; Mockus, A.; Robler, F., “Refactoring for Changeability: a Way to Go?”, Software
Metrics, the 11th IEEE International Symposium, Sept. 2005, pp.10 -13.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.1, January 2014

30

[32] Robert K. Yin, “Qualitative Research from Start to Finish”, The Guilford Press; 1 edition (October 7,
2010).

[33] Rudiger, Lincke, “How do PhD Students Plan and Follow-up their Work? – A Case Study”, School of
Mathematics and Systems Engineering, University of Sweden.

[34] Robert K. Yin, “Case Study Research: Design and Methods: Applied Social Research Methods”,
SAGE Publications, Inc; 2nd edition (March 18, 1994).

Authors

Sultan Alshehri was born in Saudi Arabia in 1981; a PhD Student in Software
Engineering Systems Department at University of Regina, Regina, Saskatchewan,
Canada.

He worked as a computer science teacher in Riyadh, Saudi Arabia, 2004-2005. Currently,
he is working as Programmer Analysts at SmarTech Company. In the same time, he holds the position of
CEO for the LogicDots Company in Regina.

Mr. Alshehri holds a reward of a scholarship since 2005 until 2013 from the high Ministry of education in
Saudi Arabia.

Dr. Luigi Benedicenti is the Associate Vice President (Academic) at the University of
Regina. A full professor in the Faculty of Engineering at the University of Regina, he is a
Professional Engineer licensed in Saskatchewan and a licensed Italian Engineer. His
collaborative network extends beyond Saskatchewan with TRLabs and IEEE, and Canada
through collaborative work with colleagues in Europe, South East Asia, and North
America.

Benedicenti’s current research is in three areas: Software Agents, Software etrics, and New Media
Technology. He envisions the unification of platform, tools, and optimizations for the provision of
persistent distributed digital services, regardless of people’s location and delivery device.

