
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

DOI : 10.5121/ijsea.2014.5303 25

IS FORTRAN STILL RELEVANT? COMPARING
FORTRAN WITH JAVA AND C++

Shahid Alam

Department of Computer Science, University of Victoria, BC, Canada

ABSTRACT

This paper presents a comparative study to evaluate and compare Fortran with the two most popular
programming languages Java and C++. Fortran has gone through major and minor extensions in the
years 2003 and 2008. (1) How much have these extensions made Fortran comparable to Java and C++?
(2) What are the differences and similarities, in supporting features like: Templates, object constructors
and destructors, abstract data types and dynamic binding? These are the main questions we are trying to
answer in this study. An object-oriented ray tracing application is implemented in these three languages to
compare them. By using only one program we ensured there was only one set of requirements thus making
the comparison homogeneous. Based on our literature survey this is the first study carried out to compare
these languages by applying software metrics to the ray tracing application and comparing these results
with the similarities and differences found in practice. We motivate the language implementers and
compiler developers, by providing binary analysis and profiling of the application, to improve Fortran
object handling and processing, and hence making it more prolific and general. This study facilitates and
encourages the reader to further explore, study and use these languages more effectively and productively,
especially Fortran.

KEYWORDS

Object-oriented programming languages, Comparing Languages, Fortran, Java, C++, Software Metrics

1. INTRODUCTION AND MOTIVATION

One of the most important aspects of a programming language is its ability to provide higher
levels of abstractions to the programmer. A programmer can define abstract data types such as:
types with extensions in Fortran, interfaces in Java and classes in C++.

According to the Tiobe Language Popularity Index [17] the three most popular programming
languages in any category (including general-purpose, compiled, script and other) are Java, C and
C++ in that order. Fortran is listed at number 33 in the index. Another Language Popularity Index
[47] lists the three most popular programming languages in the general-purpose and compiled
category as C, Java and C++ in that order. Fortran is listed at number 12 in the index. These
indexes are based on searching the web (Google, MSN and Yahoo etc) with certain phrases that
contain the language names and counting the number of hits returned. These indexes show that
Fortran is not very popular as a general-purpose programming language. An article, published by
ACM Queue, The Ideal HPC Programming Language [34], argues that Fortran is still one of the
popular and primary languages in high performance computing (HPC).

As COBOL is popular in large corporate business data centers and C in embedded and operating
systems, Fortran [16] has been in use and popular for over 50 years in scientific and engineering
communities. Most of the compute intensive tasks such as weather and climate modeling,

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

26

computational chemistry and physics, and others are programmed in Fortran. Most of the SPEC
CPU2006 floating point benchmarks [23] are implemented in Fortran.

Java [31] compared to Fortran and C++, is a relatively new language and was first released in
1995. It is mostly used for application development, specifically for the web. It has a simpler
object model and fewer low level facilities than C++. Applications written in Java can run on any
machine with a JVM (Java virtual machine). This makes it a write once, run anywhere language
and hence a popular choice among the software developers.

C++ [13] is mostly used to write system and application software, high performance server and
client applications, and video games. C++ is an enhancement to C and was initially called C with
classes. The previous C++ standard [11] was published in 1998 and revised in 2003. The recent
standard [13] known as C++11 was passed in 2011.

There is a large code base including libraries of Fortran that exist and are being developed by
scientists and engineers for specialized applications. Efficient development and maintenance of
this code is key to the success of the Fortran language. To improve these software development
processes, Fortran has gone through some major and minor extensions in 2003 and 2008. The
most recent standard known as Fortran 2008 [16] with these extensions was passed in 2010.
Fortran and C++ both have been officially approved by the ISO standards committee. Java does
not have an official standard approved by any of the standards committee but has achieved a
dominant position by public acceptance and market forces. This paper presents a comparative
study to evaluate and compare Fortran 2008 with Java and C++ making a case on behalf of the
software developers from the scientific and engineering communities that Fortran is still relevant,
and to highlight some of it’s significant advantages. We are interested in answering the questions:
(1) How much have the new extensions made Fortran comparable to Java and C++? (2) What are
some of the similarities and differences in supporting features like: Templates, object constructors
and destructors, abstract data types and dynamic binding?

These three languages are traditional languages and are being used for developing large software
applications. The program for comparison should be large enough to cover most of the features of
the programming language. A simple program will not reveal all the similarities and differences
among the compared languages, and a very large program can make the comparison complex and
the results unusable.

A basic ray tracer is implemented to compare the three languages. The ray tracing application
implemented in this paper is neither complex nor simple, but is practical and complete enough
that it has been used to generate molecular model animations (visualizations). One of them is
shown in Figure 1. The ray tracer is an object-oriented application and can either render one
image or more than one images (animation). Depending on the complexity of the animation the
rendering can take a lot of CPU cycles. We also give a comparison of the runtime of the ray
tracing application for each language and highlight some of the major differences of object
handling and processing. While generating animation the ray tracer processes a lot of images and
writes them to the disk. A correct measurement of the size and careful inspection of the code will
give us an insight into the complexity, quality of the code, similarities and differences in each
language.

The rest of the paper is organized as follows: Section 2 reviews some of the previous studies
carried out to compare Fortran with other languages. Section 3 describes the design of the ray
tracer. The object oriented features of the ray tracing application implemented in the three
languages are compared and discussed using the size and class level, and basic software, metrics
in Sections 4 and 5. Section 6 provides binary analysis and profiling of a simple object-oriented

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

27

application to highlight and discuss, where Fortran compiler lacks in optimizations, for object
handling and processing. Finally we conclude in Section 7.

Figure 1: Animated Chlorine Molecular Model Rendered by the Ray Tracer. Only the first image (frame),
out of 1245 rendered images (frames), is shown here. This and other animations are available online @ [5].

2. LITERATURE REVIEW

In this literature review we only cover the published literature that compares Fortran with other
popular languages including C++, Java, Pascal and Simula.

The first comparative study of Fortran with Simula, an object-oriented language, was done by
Jacob et al [43] in 1968. A simulation program was used for comparison. The authors found that
the program in Simula was 24% shorter but the runtime was 64% longer, than Fortran. They also
concluded that Fortran was more machine efficient where as Simula was more programmer
efficient (productive). The next comparative study of Fortran was done with Pascal by Garry et al
[42] in 1978. The purpose of this study was to describe how and why the transition was made
from Fortran to Pascal, for teaching as an introductory programming language, in the department
of computer science at the University of Colorado. At that time Pascal provided more features
than Fortran such as, extensible data and better control, structures. Moreover Fortran could be
easily learned once the student was comfortable with Pascal.

John et al [9] and Norton et al [40, 39] compares the object-oriented features of Fortran 90 [14]
with C++ for scientific programming. The major new features of Fortran 90 are type, module and
dynamic memory management. The authors were able to model many aspects of the object-
oriented features of C++ using Fortran 90. But their conclusion was that this modeling can be
tedious and inappropriate at times. Fortran 90 does not fully support object-oriented features. This
lack of support of object-oriented and other features in Fortran 90 has lead to the extension of
Fortran to support more features such as inheritance, polymorphism, procedure pointers and Co-
arrays etc in 2003 [15] and 2008 [16]. These extensions are the basic motivations for the study
carried out in our paper. The paper [9] mentioned the templates as the critical missing feature in
Fortran 90. This feature was not included in the latest Fortran 2008 standard or in Java because of
the cost of virtual function calls [28].

Mosli et al [37] compare Fortran 90 [14] with C++ and Oberon-2 [38]. Only the main language
features are compared, such as data types, pointers and arithmetic operators etc, and not the

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

28

object-oriented features. Bull et al [7] compares the performance of Java against C and Fortran
for scientific applications. The authors used Java Grande benchmark suite [8] for comparison and
concluded that the performance gap of Java on some platforms (Intel Pentium) compared to C and
Fortran is quite small.

Moreira et al [36] in 1998 compared the performance of Fortran, C++ and Java for numerical
computation, which involved a lot of array computation and manipulation. The authors discussed
the support of optimizations in the compilers for each language and how to make the compilers
for Java and C++ as efficient as Fortran for array processing. A matrix multiplication example
was used for comparison. According to the authors Fortran demonstrated better performance than
Java and C++. Based on our literature survey the study carried out in this paper is the first of its
kind to evaluate and compare Fortran with C++ and Java, in practice: implementation and
analysis of the ray tracing application, and in theory: applying software metrics to the ray tracer.

3. DESIGN OF THE RAY TRACER

Figure 2a shows a flow chart of the ray tracing application. The complete source code for the ray
tracer in all the three languages is available online @ [5]. The ray tracer implemented here only
renders spheres and planes. The rendering of images (scene) is done by ray tracing each ray from
the camera. The number of rays depends on the height and width of the scene. A scene file is used
to define spheres, planes, lights, materials and paths in the scene. The ray tracer generates
animation by using the object Path defined in the scene file. A Path is attached to an object in the
scene file to generate animation for that object. The Path contains information of an elliptic path.
The ray tracer uses this information to compute the positions around the elliptic path. Then it
generates images at each position. These images together create an animation. More details about
the scene file, rendering of animation and the design of the ray tracer is given in [6]. One of the
animations, visualization of a chlorine molecular model, rendered using the ray tracer is shown in
Figure 1.

The function RayTrace() is compute intensive. The pseudocode of this function is listed in Figure
2b. The computation intensity depends on the size of the scene, number of objects in the scene,
and the number of reflections and refractions by the ray. At each iteration the function RayTrace()
checks all the objects in the scene for a hit by the ray. If a ray hits an object the shading, shadow,
reflection and transparency/refraction are computed, which are then used to compute the color of
the pixel at the hit position. The reflection and refraction is performed by recursively iterating on
the reflected and refracted rays.

3.1. Methodology used for Implementing the Ray Tracer

In this section we describe the methodology used to implement the ray tracing application in the
three languages.

Out of the three languages C++ is the first language that provided OOP (Object-oriented
programming) support. We first implemented the ray tracing application in C++ as an object-
oriented application. It was then ported to Java and Fortran in that order. The purpose of this
study is not to compare the ease of learning or programming in the language, or comparing the
application implementation by persons with different skill levels in each language. Therefore only
one person was chosen to implement the application who was equally good in the three
languages. That is why the results of object-oriented software metrics as shown in Tables 1 and
2are mostly similar for the three languages. This shows that Fortran provides similar object-

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

29

oriented functionalities and features as the other two languages, which is one of the purposes of
the paper.

(a) Ray Tracer Flow Chart (b) Pseudocode of the RayTrace Function
Figure 2: Ray Tracer Flow Chart and the Function RayTrace

No deliberate effort was made to optimize the source code manually in any of the three
languages. Except, to make the source code as equivalent as technically possible for comparison,
in Fortran we change, at various places, the indirect access of objects to direct as shown in the
code snippet below:

From:
do i = 1, World%Scene%GetNumberOfSpheres()

sphere_t = World%Scene%GetSphere(i) ! Method call to access the private object
To:

do i = 1, World%Scene%GetNumberOfSpheres()
sphere_t = World%Scene%sphere_t(i) ! Accessing directly the public object

We believe emphasizing on one application provides more detailed analysis of the language and
the compilers than the traditional micro benchmarks. We provide this insight and analysis in

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

30

Sections 5 and 6. We make the case of why this application was chosen, and is suitable for
comparing the three languages in Sections 1 and 5.1.
One important aspect of the ray tracing application that we want to highlight here is the way this
application handles and processes the objects. This processing may be different than other micro
benchmark applications, but focusing on this one application helped us compare this property and
highlight some differences in the three object-oriented languages. This comparison and the
differences are discussed in detail in Section 5.

3. APPLYING BASIC OBJECT-ORIENTED SOFTWARE METRICS TO THE RAY

TRACER

Tables 1 and 2 show size-level and class-level metrics [2, 45] for the ray tracing application. We
have only selected basics of these metrics to represent complexity and quality of the object-
oriented features of the ray tracing application for comparing the three languages. The purpose of
applying these metrics is to highlight the differences and similarities among these languages such
as the same depth of inheritance achieved in all three languages, and that there are a greater
number of classes in Fortran and Java than C++. Overall there are more similarities than
differences that proves our conjecture, that Fortran as an object-oriented language is equivalent to
one of the two most popular object-oriented languages Java and C++. In the next Sections we will
see that there are some differences that need to be improved to make Fortran a more relevant
object-oriented language.

4.1. Selection of Object-Oriented Software Metrics

This Section describes the selection of the object-oriented software metrics for the case study
carried out in this paper. To compare the object-oriented features of Fortran with the other two
languages we selected 3 size-level metrics and 5 class-level metrics. The comparison highlights
both the differences and similarities in the three languages. These metrics are explained in more
detail in Section 4. Here we give the reasons for selecting these metrics as follows:

Size-Level Metrics: An object-oriented language provides the ability to create objects (i.e
classes). These objects have methods and attributes, that are used to define the behaviour and the
structure of the object, respectively. We wanted to see, as an object-oriented language, how
Fortran compares with the other two languages based on this basic property. So we selected 3
size-level metrics. TC, TM and TA: These are the total number of classes, methods and attributes
respectively in an application implemented using an object-oriented language. Class-Level
Metrics: An object or a class is a basic construct in an object-oriented language. This construct
lets the software developer design a code that is easy to develop, maintain, reuse and test.
Because of there pivotal role in an object-oriented system we are particularly interested in the
following class-level basic properties of an object-oriented language.

Data abstraction: This is the ability to hide a complex (e.g: a user defined data) data in a class.
Such a data with a well defined interface (easy to communicate with other classes) can be used
without knowing the details of its implementation. This reduces the software development time
and cost. To compare this property we selected the metric DAC (data abstraction coupling). The
coupling here means the ability of a class to communicate with other classes. Inheritance: This
provides reusability of the code and is achieved by deriving a new class from an existing (a
parent) class. The new class inherits all the features of the parent class and yet more features can
be added to the new class. The metric DIT (depth of inheritance) was selected to measure this
property. This metric deals with the relationship among classes that enables programmers to reuse
previously defined objects. Polymorphism: The ability to take more than one form. A method of a

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

31

class can behave differently in different instances of the class. This provides easy maintenance
and reusability of the code. The metric that we used in this paper to measure this property is
NMO (number of methods overridden by a class). This metric counts the number of polymorphic
methods in a class. The other two metrics NOM (number of methods per class) and NOA
(number of attributes per class) are the size-level metrics at the class-level. The metrics DIT and
NMO both focus on the inheritance property of a class but have different meanings.

In the next two Sections using these metrics and the source code listings in Figures 3 and 4 we
will highlight some of the object-oriented feature differences and similarities in the three
languages.

Table 1: Size-Level Metrics for the Ray Tracing Application in Fortran, C++ and Java

Fortran C++ Java

TM TA TC TM TA TC TM TA TC

151 78 19 165 82 17 154 101 24

4.2. Size-Level Metrics

There are 19 in Fortran, 17 in C++ and 24 classes in Java as shown in the Size-Level Metrics in
Table 1. This difference is because there are no struct or union types in Fortran and Java. We used
types in Fortran and classes in Java to imitate type struct, shown in Figure 3 as type(Color) and
class Color. Also in Java the global definitions are defined in a class and the parameters for the
recursive function RayTrace() are passed as classes. Java has more in total, but less mean number
of attributes (member variables of a class) than Fortran and C++ because of the greater number of
classes in Java. This confirms that Java is a pure object-oriented language and everything is an
object in Java. In Fortran and C++ the programmer is not bound to use objects.

Class Constructor: In C++ and Java the class constructor has a much simpler declaration than
Fortran. In Figure 3 the Fortran class TGA’s constructor is declared as interface TGA with
procedure init_TGA(). Class Destructor: As mentioned before there is no class destructor in Java
and the deallocation of objects is taken care of by the garbage collector. C++ uses the symbol ~ to
declare the class destructor as shown TGA::~TGA() in the Figure. In Fortran a destructor for a
class is declared using the keyword final and is implemented using the procedure final_TGA() in
the Figure. The dynamic memory allocated for the object Color in Figure 3 is deallocated, in Java
by the garbage collector (controlled by the JVM - Java Virtual Machine - and not by the
application), in C++ when the statement delete(tga) is called and in Fortran just before the end
program example statement is reached.

As shown in the Size-Level Metrics graph in Table 1 the total number of methods in the Fortran
source code of the ray tracing application is less than the total number of methods in the C++ and
the Java source code. Because the init (Class constructor) and the final (Class destructor) methods
were not implemented for all the Fortran classes. The gfortran compiler version 4.7 used in this
paper supports quite a few of these Fortran 2003 [15] and 2008 [16] extensions but does not
support all of them. The class constructor and destructor are not supported by the gfortran
compiler as declared in Figure 3. For a complete list of Fortran compilers and their support for the
Fortran 2003 and 2008 standards the reader is referred to [10].

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

32

4.3. Class-Level Metrics

An explanation and discussion of the Class-Level Metrics shown in Table 2 follows. The Min
number for each of these metrics is 0 and the Mean is the arithmetic mean:

(a) Fortran (b) C++ and Java
Figure 3: Part of the Source Code of the Ray Tracer Class TGA in Fortran, C++ and Java

Table 2: Class-Level Metrics for the Ray Tracing Application in Fortran, C++ and Java

Metric
Fortran C++ Java

Min Max Mean Min Max Mean Min Max Mean

DAC 0 8 2.4 0 8 2.6 0 10 2.8

DIT 0 1 0.16 0 1 0.18 0 1 0.14

NMO 0 3 0.5 0 3 0.53 0 3 0.4

NOA 0 28 4.7 0 30 4.8 0 29 4.4

NOM 0 26 8 0 27 9.8 0 26 6.7

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

33

1. NOA: Number of attributes per class. An attribute represents the structural properties of a
class and is defined as part of the declaration of the class. All three languages have almost
the same mean number of attributes per class except Java, because of the use of classes in
place of struct.

2. NOM: Number of methods per class. A method is an operation upon an object and is
defined as part of the declaration of a class. The Mean number of methods per class in the
Fortran and the Java is less than the C++. As mentioned before there are more classes in
the Fortran and the Java than the C++ implementation. These extra classes are user
defined data types and have 0 number of methods.

Figure 4: Part of the Source Code of the Ray Tracer Classes Shape, Sphere and Plane in Fortran

3. DIT: Depth of inheritance. This is the number of ancestor classes also called super classes
to a sub class. In our ray tracing application there are two superclasses: Shape (Sphere
and Plane) and Image (TGA). All the languages have exactly the same number of
superclasses. The difference in Mean is because of the difference in total number of
classes. Similar to Java, Fortran uses the keyword extends to inherit a super class. As
shown in Figure 4 the super class Shape is inherited by the two sub classes Sphere and
Plane. The inheritance in Fortran is very similar to C++ and Java. In Fortran the sub

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

34

classes inherit all the attributes and methods of the super class. Out of the three languages
only C++ supports multiple inheritance and Templates.

4. NMO: Number of methods overridden by a class. This makes a class polymorphic also
called ad-hoc polymorphism [48]. A method defined in a super class is implemented
differently in each of the sub classes. In Fortran the keywords abstract and deferred are
used to declare a virtual function. In our ray tracing application, as shown in Figure 4, the
sub classes Sphere and Plane implement the three virtual functions SetPosition(),
GetPosition() and Hit() declared in the super class Shape. All of the three languages
provide facilities to abstract either a complete class or an individual function. One of the
super classes, Image, is an interface. Three functions in the Shape class are declared
abstract in all three languages, an example in Fortran is shown in Figure 4. These
functions are implemented by the sub classes Sphere and Plane. The difference in Mean
is due to the difference in the total number of classes.

5. DAC: Data abstraction coupling. It is the ability to create new data types called abstract
data types (ADTs). DAC is the number of ADTs defined in a class. Some of the ADTs in
our ray tracing application are: Vector, Ray and RGBColor. Java is a pure object-
oriented language and the programmer is bound to use objects (classes) for every user
defined data structure. Therefore the ray tracing application implemented in Java has
more data structures defined as classes (e.g: in the ray tracing application implemented in
Java various struct types are defined as ADTs) and hence a bigger DAC number when
compared to Fortran and C++.

We have discussed some of the differences and similarities in the three languages by looking at
the source code and applying object-oriented metrics to the ray tracing application. These metrics
and the discussion imply that Fortran is an equal value object-oriented language like C++ and
Java. The syntax may be different but Fortran supports most of the object-oriented features
present in C++ and Java. Some of the features like Templates (Fortran Parametrized Derived
Types and Java Generics are technically different than Templates as listed in Section 1) and
multiple inheritance are not supported in Fortran for the same reason they are not supported in
Java due to their runtime overhead and the complexities of implementing an optimizing compiler.
Templates with many lines of code cannot be inlined and may incur runtime overhead. For details
of, why multiple inheritance make things complex and increases the runtime overhead the reader
is referred to [24]. C++ and Java are more concise and clear, but Fortran is more verbose and
explicit.

5. BASIC SOFTWARE METRICS FOR THE RAY TRACER

Figures 5 and 6 shows and Table 3 lists some of the basic software metrics for the ray tracing
application, including the runtime and the size of the ray tracing application. The reason for
including the size of the ray tracing application is to: show that Fortran is a verbose language and
why it took more time to implement the application in Fortran. We have chosen four parameters
to enumerate the size: number of files, number of bytes, words and lines of the source code. We
believe all these parameters together give a correct measurement of the size of the code and also
give an insight into the complexity of the code. The number of words and physical lines of source
code also includes comments. These comments are almost the same for each language. We used
the following timing functions, as recommended by all the three languages standard, in this paper
to compute the CPU time: cpu_time() in Fortran (ref: Section 13.7.42 of [16]), clock() in C++
(ref: Section 7.23.2.1 of [12]) and nanoTime() in Java [20].

The runtime shown in Figures 5 and 6 is the CPU time in milliseconds to render each image for
generating the animation. The scene files that were used to generate animations are listed in [6].

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

35

Machine used: Intel Core2 Quad CPU Q6700 4GB RAM; Dedicated for the experiment i.e; why the results are more uniform than
shown in Figure 6. Compilers: gfortran 4.7 [25], g++ 4.7 [25] and Oracle Java 1.6.0.21 [21] Optimization Flags: -O3 for gfortran and
g++, and no flag used for Java.

Figure 5: Runtime of the Ray Tracing Application (Using GNU Compilers), in Fortran, C++ and Java, for
Rendering Images to Generate Animation.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

36

T
o simulate the real life environment where the load is always unbalanced we used machines that are continuously used for running
different experiments and tests at IBM. That is why the results are non-uniform compared to Figure 5. Compilers: IBM XLF V13.1
[30], IBM XLC V 11.1 [30] and IBM J9 VM 1.6.0 [29] Optimization Flags: -O3 for XLF and XLC, and no flag used for Java.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

37

Figure 6: Runtime of the Ray Tracing Application (Using IBM XL Compilers), in Fortran, C++ and Java,
for Rendering Images to Generate Animation.

Following experimental setup was used to generate the data shown here:
Machine used: Power7 16 processors 4GB RAM; SUSE Linux Enterprise Server 11 SP1, 64 bit,
Linux kernel: 2.6.32.12
Compilers: IBM XLF V13.1 [30], IBM XLC V 11.1 [30] and IBM J9 VM 1.6.0 [29]
Optimization Flags: -O3 for XLF and XLC, and no flag used for Java
To emphasize and compare the processing of the objects, the following simplified RayTrace
function was used. We filtered the noise (File I/O, shading, reflection and refraction etc) from the
CPU time. It was easy to make sure that this small part of the code is almost the same in all the
three languages. To make the comparison more fair (specifically for Fortran), for iterating the
objects in: Java we used an iterator to access the private objects; C++ we used an array of pointers
to access the private objects; Fortran we directly access the public objects:

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

38

logical function RayTrace(color, ray, depth)
hit = 0
for i = 1, length(objects)

if (hit(objects[i], ray)) then
object_hit = objects[i]
hit = 1

end if
end for
material = get_material(object_hit)
if (hit == 0) then

return false
end if
color = get_color(material)
return true

end function RayTrace

Figure 7: Average Runtime of the Function RenderOneImage() of the Ray Tracing Application, Using
Different Number of Objects (planes, spheres etc in the scene), in Fortran, C++ and Java; The Average is

Computed over 30 Rendered Images.

The top (Simple Scene Animation) and the bottom (Complex Scene Animation) animations
contain 1296 and 1245 total number of images and, 5 and 56 total number of objects,
respectively. The ray tracing application in Fortran, using the open source compiler gfortran
shown in Figure 5, on average took 100% and 300% more time than the C++ application to
render each image for the top and the bottom animations respectively. Java is the slowest when
rendering animation for the Simple Scene but Fortran is 25% slower than Java when rendering the
Complex Scene. Our first thought was that Fortran is spending more time in file I/O than the
other two languages. But further instrumentation at the function level of the source code shows
that in the three languages compared in this paper the ray tracer spends most of the time, almost
90%, in the recursive function RayTrace(). Due to the object oriented features of the ray tracing
application, this difference shows that these features are not implemented as efficiently in the
gfortran as in the g++ compiler. Here we also want to point out a fact that Java is slower at startup
and is shown in our experimental results in Figure 5. As gfortran is an open source free compiler,
and to make a precise conclusion, we also present and compare the results using the IBM XL
compilers in Figure 6.

The ray tracing application in Fortran, using the IBM XLF compiler shown in Figure 6, on
average took 400% and 500% more time than the C++ application to render each image for the
top and the bottom animations respectively. Java is the slowest when rendering animation for the
Simple Scene, but Fortran is only 30% faster than Java in SUSE Linux and 1.6% slower in Red
Hat Linux when rendering the Complex Scene. These results confirm that our conclusion above
also applies to the IBM XL compilers. We provide an assessment of these and other results in the
next Section. Further analysis of the source code at the statement level shows that as we increase
the number of objects in the scene the Fortran application took more time to render each image.
Based on this analysis of object processing in the three languages, we present another
comparison in Figure 7, which shows the average runtime of the function
RenderOneImage() of the ray tracing application using a range of, from 5 - 400, objects. To
emphasize and compare the processing of the objects in the scene we simplified the RayTrace()
function as shown in Figure 7.

Figure 7 shows that Fortran remains ahead of Java when the number of objects are 20 or less.
After 20 as we double the number of objects so does the runtime of Fortran processing these
objects. With the introduction of object-oriented features and to make Fortran relevant,
competitive and successful in this area both the open source and the commercial compilers need
to improve this particular area. One of the reasons it is not optimized in these two popular

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

39

compilers is that either the Fortran programmers (engineers and scientists) are not using or the use
is still immature of the object-oriented features of the language. These object-oriented features are
still very new to the Fortran language and will take some time to become mature and stable
among programmers and the tool developers. We provide more insight into this in Section 6 As
mentioned before this is one of the motivations of this paper to increase the use of these features
among the programmers and improve the available tools.

Table 3: Size Metrics for the Ray Tracing Application in Fortran, C++ and Java

Metric Fortran C++ Java

Number of Files 18 31 19

Size in Bytes 101554 74959 70965

Size in Words 11987 9287 8703

Physical Lines 3336 3254 2828

Fortran has a total 18 files, 16 of which contain class definitions and 2 that contain global
parameters. These 2 files can also be called global header files. C++ has a total of 16 header files
and therefore has more files than Fortran and Java. In Java the file name and the class defined in
the file should have the same name. There are a total of 24 classes in the Java ray tracer as shown
in the Size-Level Metrics in Table 1, of which there are 5 inner classes, therefore there are only
19 files in Java. We mentioned Fortran as a verbose programming language which is confirmed
by the larger sizes of the ray tracing application in Fortran listed in Table 3. It took more time to
implement the application in Fortran than Java and C++. Java implementation took the least time.
The size of the code also follow the same order as shown in Table 3.

6. BINARY ANALYSIS AND PROFILING

Comparing the performance of programming languages is a non-trivial task. As mentioned
previously the purpose of the experiments and the results shown in the graphs and the tables of
this paper, is to compare the performance of these object-oriented languages for efficiently
handling and processing the objects. In this section we highlight this particular area of the Fortran
language and argue that it needs improvement by profiling the runtime and analyzing the
assembly codes generated by the three compilers. We use GNU compilers for C++ and Fortran
and Oracle compiler for Java. We profiled a simple object-oriented application, implemented in
the three languages, using the PIN tool [35]. PIN is a dynamic binary instrumentation tool, i.e: it
performs instrumentation at runtime. We wrote a small PIN application to count the number of
times a routine is executed (number of calls). Since the instrumentation is done at the binary
level, it includes routines both from the application and from the dynamic libraries linked at the
runtime. We also counted the total number of instructions executed in each of these routines.
After examining the results we found that the Fortran application spent most of its time in the
function (routine) Sphere::SetPosition as shown in Table 4. We also list the generated assembly
and byte code for the function Sphere::SetPosition in Table 5.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

40

Table 4: PIN Results (C++ and Fortran) for the Number of Calls and the Number of Instructions for the two
Functions from the Simple Object Oriented Application (implemented in the three languages) are Shown

for one Iteration.

Language Function Image1 Address Calls Instructions

C++ Sphere::SetPosition simple 0x400A90 3932160002 1572864000

Fortran Sphere::SetPosition simple 0x400950 3932160002 3145728000

C++ main simple 0x400830 1 5910828522

Fortran main simple 0x400970 1 9057340465

1 Image to which the function (routine) belongs, and can be the application or the library. Here it is the application.
2 These results are also confirmed by computing the number of calls to function Sphere::SetPosition from code

of the simple object oriented application (implemented in the three languages): 1024 x 768 x 500 = 393216000.

The number of byte code instructions generated by the Java compiler as shown in Table 5 does
not have any relation with the actual number of instructions executed. After profiling the Java
application with Oracle JRockit Mission Control [22] we were able to determine that the function
Sphere::SetPosition has been optimized by the runtime HotSpot JIT compiler but it was not clear
what optimizations were performed. We also compiled the Java application into native code using
the gcj [25] compiler version 4.4. gcj and g++ compilers use the same back-end, and the assembly
code generated for the function Sphere::SetPosition by the gcj compiler was exactly the same as
generated by the g++ compiler. Therefore in the next paragraph we discuss only, some of the
differences in the generated assembly code, by the Fortran and the C++ compilers.

Table 5: Generated Assembly (C++ and Fortran) and Byte Code (Java) for the Function Sphere::SetPosition
Implemented as Part of the Simple Object Oriented Application (implemented in the three languages).

Compilers used were g++, gfortran version 4.6 and Oracle javac version 1.6 on Linux 2.6.32 installed on
Intel Core 2 Duo 64 bit machine. Optimization level O3 was used by the g++ and the gfortran compilers.

Language Generated Assembly / Byte Code

C++1
1 0x400a90 : f 2 0 f 11 47 08 movsd %xmm0, 0 x8(%r d i)
2 0x400a95 : f 2 0 f 11 4 f 10 movsd %xmm1, 0 x10(%r d i)
3 0x400a9a : f 2 0 f 11 57 18 movsd %xmm2, 0 x18(%r d i)
4 0x400a9f : c3 r e tq

Fortran

1 0x400950 : 48 8b 07 mov (%r d i) ,%rax
2 0x400953 : 48 8b 36 mov (%r s i) ,% r s i
3 0x400956 : 48 89 30 mov %r s i ,(%rax)
4 0x400959 : 48 8b 12 mov (%rdx) ,%rdx
5 0x40095c : 48 89 10 mov %rdx ,(%rax)
6 0x40095f : 48 8b 11 mov (%rcx) ,%rdx
7 0x400962 : 48 89 10 mov %rdx ,(%rax)
8 0x400965 : c3 r e tq

Java

1 0: aload_0 // Load parameter (r e f e r e n c e) onto the s tack
2 1: dload_1 // Load l o c a l v a r i a b l e onto the s tack
3 2: p u t f i e l d #2; // Set f i e l d to value i . e : x = X
4 5: aload_0
5 6: dload_3
6 7: p u t f i e l d #3; // Set f i e l d to value i . e : y = Y
7 10: aload_0
8 11: dload_5
9 13: p u t f i e l d #4; // Set f i e l d to value i . e : z = Z
10 16: r e turn

1 All instructions can execute independently.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

41

Instruction MOVSD %xmm0,0x8(%rdi) moves the data (double precision floating point) from register xmm0 to the memory location
pointed to by the value stored at register rdi plus 8. MOVSD is a x86 SIMD instruction and xmm0 is one of the 128 bit registers added
as Streaming SIMD extension (SSE) reference: Section 2.2.7 of [19]. Instruction MOV (%rdi),%rax moves the value stored at memory
location pointed to by the value in register rdi to register rax [19].

The number of instructions are more than double in the assembly code generated by the Fortran
compiler than the assembly code generated by the C++ compiler as shown in Table 5. The results
of profiling in Table 4 also shows that the number of instructions executed by the Fortran
function Sphere:: SetPosition are double than the C++ function Sphere::SetPosition. This gives
one justification why Fortran is slower than C++ and Java. We can argue that the difference in
number of instructions may not be important because almost all processors now a days have
pipelines [26] and can execute instructions out-of-order [26]. Carefully examining the instructions
generated by the C++ compiler reveals that the function have been optimized. It uses SIMD
registers (see note to Table 5) and the instructions are not dependent [3] on each other, and
therefore can be pipelined [3]. Whereas the instructions generated by the Fortran compiler use
general registers and have multiple dependencies. Therefore these instructions cannot be
efficiently scheduled [3] for pipelining. We will not go into the details why the Fortran compiler
is not able to optimize this part of the code because it is out of the scope of this paper, but we
point out some directions for future research to improve the object-oriented Fortran compilers. In
object-oriented languages the selection of a target function in a dynamic dispatch [33] is very
important and is only known at runtime [28, 24]. The compiler knows the abstract type of the
object but not the concrete type. In our example the function Shape::SetPosition is abstract and is
known to the compiler at compile time. The concrete type is the function Sphere::SetPosition
where it is implemented and is only known at runtime. Therefore it can indirectly cause a
compiler (which lacks the required analysis to get the information) to produce a poorly optimized
code as in this case with the Fortran compiler. Every modern compiler [3] has a front-end and a
back-end. The same back-end can be used for different languages that have different front-ends.
Another argument that we make here is the use of the same back-end by g++ and gfortran
compilers. Our profiling and generated assembly code analysis confirms that this is the case. Both
the applications, in C++ and Fortran, are linked with the same libraries, except few, such as
cpu_time, set_args, set_options and os_error etc. Most of the assembly code generated by both
the compilers is similar but with some major differences. One of them is mentioned above and
listed in Table 5. The other major difference is the number of instructions generated for the main
function. The g++ compiler generated 88 instructions whereas the gfortran compiler generated
122 instructions for the main function. This difference is also evident from the number of
instructions executed in the main function by C++ and Fortran applications as shown in Table 4.
The number of assembly instructions generated for the following two very similar loops in the
main function are: by gfortran 42 and by g++ 28. This loop is executed 393216000 times as
shown in Table 4. This explains why the number of instructions executed by the Fortran main
function are almost double than the number of instructions executed by the C++ main function, as
shown in Table 4.

call cpu_time (time_start) clock_t time_start = clock();
do n1 = 1, NUM_SPHERES for (int n1 = 0; n1 < NUM_SPHERES; n1++) {

COUNT = COUNT + 1 COUNT = COUNT + 1;
n = n1 n = n1;
call sphere_t(n1)%SetPosition(n,n+1.0,n+2.0) sphere_t[n1].SetPosition(n,n+1.0,n+2.0);

end do }
COUNT = COUNT / 100 COUNT = COUNT / 100.0;
call cpu_time (time_end) clock_t time_end = clock();

(a) Fortran (b) C++

This part of the code is exactly where the application is making a virtual function call
Sphere::SetPosition. This analysis further confirms that Fortran compiler is not optimizing the
virtual function call overheads. One explanation for this is: that the front-end of the Fortran
compiler is not communicating enough information (or similar information as the C++ compiler)

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

42

to the back-end, which is required by the compiler to optimize the generated code for object
handling and processing.

Based on the discussion in the above paragraphs we provide some pointers, for further
exploration, and list some of the techniques that can improve such a code, as follows: (1) A better
interprocedural analysis [3] such as complete information about the inheritance graph and the
methods defined in each class. (2) Optimizations at link time, i.e: machine code optimization
where more information is available about dynamic link libraries. (3) An improved front-end
which collects and communicates enough information to the back-end for optimization. (4)
Devirtualization [32]. For further information on optimizations for object-oriented languages the
reader is referred to [32, 4, 1, 28, 27]. We have provided an insight into the simple object-oriented
application implemented in the three languages in the hope that this will motivate language
implementers and compiler developers to improve Fortran object handling and processing, and
hence make it’s use more prolific and general.

7. CONCLUSION

We have presented a comparative study to evaluate and compare Fortran with the two most
popular languages Java and C++. Based on our literature survey this is the first study carried out
to compare these languages by applying software metrics to an object-oriented application and
comparing these results with the similarities and differences found in practice. This paper makes
the following contributions:

1. An object-oriented application, a basic ray tracer, is implemented in Fortran, Java and
C++. The ray tracing application is neither complex nor simple but complete enough to
compare the object-oriented features of these languages. By using only one program we
ensured there was only one set of requirements thus making the comparison
homogeneous.

2. We applied software metrics to the ray tracing application and have highlighted some of
the differences and similarities in these languages that are found in practice, like:
Templates, object constructors and destructors, abstract data types, dynamic binding and
reuse. The graphs and the tables shown highlight some of the differences and similarities
in the three languages.

3. We have provided an insight into the binary analysis and profiling of a simple object-
oriented application implemented in the three languages to highlight some of the
inefficiencies present in the Fortran compiler, hoping to motivate language implementers
and compiler developers to improve Fortran object handling and processing, and hence
make it’s use more prolific and general.

4. This study facilitates and encourages the reader to further explore, study and use these
languages more effectively and productively especially Fortran.

Some of the important differences and findings in the three languages that are explored in this
paper are:

1. Multiple inheritance and templates: Fortran does not support multiple inheritance and
templates for the same reason they are not supported in Java as explained in Section 4.3.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

43

2. Garbage collection: In Fortran and C++ deallocation of the objects is the responsibility of
the programmer. In Java deallocation of the objects is taken care of by the language.
Unlike Java the memory consumption of a Fortran and a C++ application can be fine
tuned by an experienced programmer.

3. Pure object-oriented language: Java is a pure object-oriented language. Everything is an
object in Java. In Fortran and C++ the programmer is not bound to use objects.

4. Object handling and processing: Fortran object handling and processing is not optimized
in the two popular tools (GNU and IBM compilers) as shown in Sections 5 and 6. One of
the reasons it is not optimized in these two popular compilers, as mentioned in Section 5,
is that either the Fortran programmers are not using or the use is still immature of the
object-oriented features of the language. This is one of the motivations of this paper to
increase the use of this feature among programmers and improve the available tools.

5. Development time and cost: C++ and Java are more concise and clear but Fortran is more
verbose and explicit. This in general can increase the development time and cost of
software in Fortran compare to C++ and Java. This needs to be confirmed with more
studies as mentioned below.

There are more similarities than differences as shown in Section 4 in the three languages
compared. Therefore our study concludes that the object-oriented features (extensions) introduced
in Fortran 2003 and 2008 are comparable to C++ and Java. There are some features that are
missing or lacking in Fortran, such as support for anonymous classes, debugging, exception
handling and string processing as part of the language. There are some non-object-oriented
features in Fortran like the support of complex numbers, FORALL loop construct and parallel
processing (we did not include this feature of Fortran in this study but interested readers can read
more about this in [44, 41]) that are not available in C++ and Java as part of the language. We
believe that with these extensions Fortran can be more productive and effective and be used as a
popular standardized modern object-oriented parallel programming language in this multicore and
the coming manycore era. In the future the ray tracer will be updated to compare the parallel
languages, such as Co-array Fortran [44, 41], UPC [18] and X10 [46]. We would also like to
carry out a study on the programmer’s productivity and efficiency in these three languages. Such
as, how persons with different skill levels implement the same application and how easy it is to
learn and program, these three languages.

REFERENCES

[1] Ole Agesen and Urs Holzle. Type feedback vs. concrete type inference: A comparison of optimization
techniques for object-oriented languages. Technical report, University of California at Santa Barbara,
Santa Barbara, CA, USA, 1995.

[2] K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra. Empirical Study of Object-
Oriented Metrics. Journal of Object Technology, 5(8):0–, 2006.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006.

[4] Gerald Aigner and Urs Holzle. Eliminating Virtual Function Calls in C++ Programs. Technical report,
University of California at Santa Barbara, Santa Barbara, CA, USA, 1996.

[5] hahid Alam. Design of a Basic Ray Tracer. Available Online: 2014 @ http:
//www.cs.uvic.ca/~salam/raytracer/raytracer.html, May 2011.

[6] Shahid Alam. Design of a Basic Ray Tracer for a Comparative Study of Fortran, C++ and Java.
Available Online: 2014 @ http://www.cs.uvic.ca/~salam/raytracer/tech-report.pdf, May 2011.

[7] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Benchmarking Java Against C and Fortran for
Scientific Applications. In Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande,
JGI ’01, pages 97–105, New York, NY, USA, 2001. ACM.

[8] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A Benchmark Suite for High
Performance Java. Concurrency: Practice and Experience, 12(6):375–388, 2000.

www.cs.uvic.ca/~salam/raytracer/raytracer.html
http://www.cs.uvic.ca/~salam/raytracer/tech-report.pdf

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

44

[9] John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V. W. Reynders, and Paul J. Hinker.
Comparison of C++ and Fortran 90 for Object-Oriented Scientific Programming. Computer Physics
Communications, 105(1):20 – 36, 1997.

[10] Ian D. Chivers and Sleighthol Jane. Compiler Support for the Fortran 2003 and 2008 Standards
Revision 7. SIGPLAN Fortran Forum, 30:16–24, March 2011.

[11] ISO C++ Standards Committee. The C++ Standard ISO/IEC 14882:2003, 2007.
[12] ISO C Standards Committee. The C Standard ISO/IEC 9899:2007. Available Online: 2014 @

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf, 2007.
[13] ISO C++ Standards Committee. The Working Draft C++ Standard ISO/IEC14882:N3242. Available

Online: 2014 @ http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf, 2012.
[14] ISO Fortran Standards Committee. The Fortran Standard ANSI X3.198-1992, 1992.
[15] ISO Fortran Standards Committee. The Fortran Standard ISO/IEC 1539-1:2004. Available Online:

2014 @ http://std.dkuug.dk/jtc1/sc22/open/n3661.pdf, 2004.
[16] ISO Fortran Standards Committee. The Fortran Standard ISO/IEC 1539-1:2010. Available Online:

2014 @ ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf, 2010.
[17] Tiobe Software The Coding Standards Company. TIOBE Programming Community Index. Available

Online: 2014 @ http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, June 2012.
[18] The UPC Consortium. UPC Language Specification Version 1.2. Available Online: 2014 @

http://upc.gwu.edu/docs/upc_specs_1.2.pdf, 2005.
[19] Intel Corporation. IntelÂo 64 and IA-32 Architectures Software DeveloperâAZs Manuals. Available

Online: 2014 @ http://download.intel.com/products/processor/manual/325462.pdf, 2012.
[20] Oracle Corporation. Java Platform, Standard Edition 6 System.nanoTime(). Available Online: 2014

@ http://download.oracle.com/javase/6/docs/api/java/lang/System.html\#nanoTime().
[21] Oracle Corporation. Java Platform, Standard Edition Development Kit (JDK). Available Online: 2014

@ http://www.oracle.com/technetwork/java/javase/downloads/index.html, 2012.
[22] Oracle Corporation. Oracle JRockit Mission Control. Available Online: 2014 @

http://www.oracle.com/technetwork/middleware/jrockit/mission-control/index.html, 2012.
[23] Standard Performance Evaluation Corporation. CFP2006 (Floating Point Component of SPEC

CPU2006). Available Online: 2014 @ http://www.spec.org/cpu2006/CFP2006/, 2006.
[24] Karel Driesen and Urs Hölzle. The Direct Cost of Virtual Function Calls in C++. SIGPLAN Not.,

31:306–323, October 1996.
[25] Free Software Foundation Inc. GCC, the GNU Compiler Collection. Available Online: 2014 @

http://gcc.gnu.org/, 2012.
[26] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.
[27] Urs Hölzle and Ole Agesen. Dynamic versus static optimization techniques for object-oriented

languages. Theor. Pract. Object Syst., 1(3):167–188, December 1995.
[28] Urs Hölzle and David Ungar. Optimizing Dynamically-Dispatched Calls with Run-Time Type

Feedback. SIGPLAN Not., 29(6):326–336, June 1994.
[29] IBM. IBM SDK and Runtime Environment for Java Technology Edition Version 6. Available Online:

2014 @ http://www.ibm.com/developerworks/java/jdk/linux/download.html, 2010.
[30] IBM. The IBM XLC/XLF Compilers for Linux Version 11.1/13.1. Available Online: 2014 @

http://publib.boulder.ibm.com/infocenter/lnxpcomp/v111v131, 2010.
[31] Sun Microsystems Inc. The Java Language Specifications Third Edition. Available Online: 2014 @

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html, 2005.
[32] Andreas Krall and R. Nigel Horspool. Optimizations for Object-Oriented Languages. In The

Compiler Design Handbook (Second Edition). CRC Press, 2007.
[33] Stanley B. Lippman. Inside the C++ Object Model. Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA, 1996.
[34] Eugene Loh. The Ideal HPC Programming Language. ACM Queue, 8:30:30–30:38, June 2010.
[35] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven

Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. SIGPLAN Not., 40(6):190–200, June 2005.

[36] J.E. Moreira, S.P. Midkiff, and M. Gupta. A Comparison of Java, C/C++, and FORTRAN for
Numerical Computing. Antennas and Propagation Magazine, IEEE, 40(5):102 –105, oct 1998.

[37] Bernd Mosli. A comparison of c++, fortran 90 and oberon-2 for scientific programming. In The First
Joint Conference of GI and SI, ETH, Zurich, September 1995.

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://std.dkuug.dk/jtc1/sc22/open/n3661.pdf
http://www.tiobe.com/index.php/
http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://download.oracle.com/javase/6/docs/api/java/lang/System.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/middleware/jrockit/mission-control/index.html
http://www.spec.org/cpu2006/CFP2006/
http://gcc.gnu.org/
http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://publib.boulder.ibm.com/infocenter/lnxpcomp/v111v131
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.3, May 2014

45

[38] H. Mossenbock. Object-Oriented Programming in Oberon-2, 1991.
[39] Charles D. Norton, Viktor K. Decyk, and Boleslaw K. Szymanski. On Parallel Object Oriented

Programming in Fortran 90. SIGAPP Appl. Comput. Rev., 4:27–31, April 1996.
[40] Charles D. Norton, Viktor K. Decyk, and Boleslaw K. Szymanski. High-Performance Object-

Oriented Scientific Programming in Fortran 90. PPSC’97, pages 1 – 8, 1997.
[41] Robert W. Numrich and John Reid. Co-array Fortran for Parallel Programming. SIGPLAN Fortran

Forum, 17:1–31, August 1998.
[42] Gary J. Nutt. A Comparison of PASCAL and FORTRAN as Introductory Programming Languages.

SIGPLAN Not., 13:57–62, February 1978.
[43] Jacob Palme. A Comparison Between Simula and Fortran. BIT Numerical Mathematics, 8:203–209,

1968.
[44] J.K Reid. Co-arrays in the next Fortran Standard. ISO/IEC JTC1/SC22/WG5 N1824, April 2010.
[45] Linda H. Rosenberg. Applying and Interpreting Object Oriented Metrics. In Software Technology

Conference. NASA Software Assurance Technology Center (SACT), April 1998.
[46] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove. The X10 Language

Specifications Version 2.1. Available Online: 2014 @
http://dist.codehaus.org/x10/documentation/languagespec/x10-latest.pdf, 2011.

[47] Sourceforge. The Transparent Language Popularity Index. Available Online: 2014 @ http://lang-
index.sourceforge.net, June 2012.

[48] Christopher Strachey. Fundamental Concepts in Programming Languages. Higher Order Symbol.
Comput., 13(1-2):11–49, April 2000.

Author

Shahid Alam is currently a PhD student in the Computer Science Department at
University of Victoria, BC. He received his MASc degree from Carleton University,
Ottawa, ON, in 2007. He has more than 5 years of experience working in the software
industry. His research interests include programming languages, compilers, software
engineering and binary analysis for software security. Currently he is looking into
applying compiler, binary analysis and artificial intelligence techniques to automate and
optimize malware analysis and detection.

http://dist.codehaus.org/x10/documentation/languagespec/x10-latest.pdf
http://lang-

