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Abstract

Software reliability models (SRMs) are very important for estimating and predicting software
reliability in the testing/debugging phase. The contributions of this paper are as follows. First, a
historical review of the Gompertz SRM is given. Based on several software failure data, the
parameters of the Gompertz software reliability model are estimated using two estimation
methods, the traditional maximum likelihood and the least square. The methods of estimation are
evaluated using the MSE and R-squared criteria. The results show that the least square
estimation is an attractive method in term of predictive performance and can be used when the
maximum likelihood method fails to give good prediction results.
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1. INTRODUCTION

Because of the rapid growth of the size, complexity, and diversification of computer systems, A
wealth of software reliability models (SRMs) have been developed over the years to assess,
predict, and improve of software reliability. Some models use a non-homogeneous Poisson
process (NHPP) to model the failure process, it is a traditional and important class of SRMs. The
NHPP is characterized by its expected mean value function, H(t). This is the cumulative number
of failures expected to occur after the software has executed for time t. H(t) is non-decreasing in
time t with a bounded condition, H(∞)= a, where a is the expected number of failures to be
encountered if testing time is infinite. Gompertz SRM model is based on an NHPP. This SRM
model is one of the simplest S-Shaped software reliability growth models. It takes the number of
faults per unit of time as independent Poisson random variables. The maximum likelihood
estimation has been frequently considered to estimate the parameters of the SRMs ([1], [2], [3],
[4], and [5]). In the literature, some cons on the maximum likelihood estimation have been
pointed out such as there is no guarantee to always have a unique ML estimate, more specifically
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the non-linearity may cause the failing of the MLE method. The MLE method cannot be easily
applied to estimate the parameter in the Gompertz SRM, because of its strong non-linearity. As
an alternative to the MLE method, when it fails to give accurate results, the least squares
estimation (LSE) method can be applied. The rest of the paper is organized as follows: detailed
review of the Gompertz SRM will be provided in Section 2. Section 3 discusses the maximum
likelihood and the least square estimation methods for the Gompertz SRM. Section 4 presents
some selected data sets. Section 5 describes the criteria for comparing the estimation methods
used in this study. In Section 6, numerical example is illustrated and Section 7 presents
conclusion.

2. Historical Review of the Gompertz SRM

Deterministic SRMs formulated by Gompertz growth curve has been widely used to estimate the
error content [6]. In Japan, some computer manufacturers and software houses have actually
applied this model. This curve was originally developed to predict demand trend, economic
growth, or future population. One of the SRMs that belongs to the Non Homogeneous Poisson
Process (NHPP) is the Gompertz model, it gives good approximation to a cumulative number of
software faults observed interesting software. The model was first proposed by Goel and
Okumoto [7] and has formed the basis for the models using the observed number of faults per
unit time group. Ohba [8] presented a detailed study of few interesting models and indicated the
use of several other models, such as Gompertz model and logistic curves as used in software
reliability study in Japan. Kececioglu [9] provided methods to estimate initial values for the
Gompertz model. Parameter estimates may also be obtained using non-linear regression. This
approach fits the curve to the data and estimates the parameters from the best fit to the data,
where fit is defined as the difference between the data and the curve function fitting the data.
Kececioglu, Jiang, and Vassiliou [10] modified the Gompertz model to include a fourth
parameter. This fourth parameter shifts the associated growth curve vertically, thus
accommodating for S-shaped growth datasets.

The new method is claimed to be more flexible than its predecessor for fitting data with S-shaped
trends. Sk.MD. Rafi and Shaheda Akthar [11] proposed a discrete SRGM with discrete
exponential, discrete Gompertz and discrete logistic testing effort function (TEF) curve. At the
same time they developed discrete imperfect debugging SRGM with discrete TEF. Also, they
developed optimal release policy based on cost, reliability and intensity requirements.
Swamydoss D and Dr. G.M. Kadhar Nawaz [12] used the Gompertz model to predict the
reliability of the software. It is shown that the proposed model can be derived from the well-
known statistical theory of extreme value and has the quite similar sympatric property to the
classical Gompertz curve. They applied the Gompertz software reliability model to assess the
software reliability and to predict the number of initial fault contents. In their work, they
considered web based application with alternative approach for parameter estimation in Gompertz
SRM, they showed that the least mean square estimation approach is attractive in terms of
goodness of fit tests.

For the Gompertz growth curve model, the expected cumulative number of errors detected up to
testing time t is given by
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where , a and b are constant parameters to be estimated, b provides a shape parameter to the
Gompertz model equation, it models the growth pattern (small values model rapid early reliability
growth, and large values model slow reliability growth). The parameter is the expected initial
error content of a software product, the model characteristics are as follows:

The error detection rate is
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while, the intensity function is,
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also, the number of remaining errors and the conditional reliability functions are defined
respectively by
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and the mean time between software failures can be obtained by
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3. Estimation Procedures

Fitting a proposed model to actual failure data involves estimating the model's parameters from
the test data sets. In this section, two methods of estimating the unknown parameters of the
Gompertz SRM will be considered, the maximum likelihood and the least square.  The maximum
likelihood method will be investigated in two cases count and time data, for the illustrative data
analysis only the case of time data will be considered.

3.1. The maximum likelihood estimation (MLE) method

MLE method is one of the most popular estimation techniques. The MLE technique estimates
parameters by solving a set of simultaneous equations, in the following the MLE method of the
NHPP models will be illustrated in the case of time and count data. In time data the time between
failures is considered as the random variable, while the interest of the count data is in the number
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of faults or failures in specified time intervals. Also the MLE in the case of time and count data
will be obtained for the Gompertz SRM.

MLE method of the NHPP SRMs in case of count data

Suppose that the error-detection count data ( )t i i y, , i = 1, 2, …, n, are observed during the

testing phase. Then the likelihood function for the unknown parameters in an NHPP model with
H(t) is given by

( ) ( ) ( ) ( ){ }nn2211 ytJ......,,ytJ,ytJPy,t,aL ====θ

( ) ( ){ }
( ) ( ) ( ){ }[ ]∏

=
−

−

−
− −−

−
−

=
−n

1i
1ii

1ii

yy
1ii tHtHexp

!yy

tHtH 1ii

, (7)

where
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Taking the natural logarithm of both sides of equation (7) and equating its partial derivatives with
respect to the unknown parameters to zero, we get
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and
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Then, the (n+1) maximum likelihood estimates â and iθ̂ , i = 1, 2, ..., n can be obtained by
solving equations (8) and (9) simultaneously.

MLE Gompertz models’ parameters in case of count data

The form of the mean value function is given by equation (1) and the parameters η , a and b

would be estimated. The logarithm of the likelihood function 1 in this case is:
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The derivative of 1 with respect to a is
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The summation appearing in the second term of the last equation is equal to
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Differentiate (10) with respect to b and  equate to zero. Thus, the following equation results
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which can be rewritten as
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MLE method of the NHPP SRMs in case of time data

Assessment of the reliability of the software at any time during the test process depends on the
model assumed for the activation of faulty systems. Most of the models in the literature pertaining
to this matter are the so called “time domain” models which consider the time till a fault is
activated as a random variable realized according to some stochastic process. This last is
generally taken as a non-homogeneous Poisson process. In this situation the collected data are
called failure-occurrence time data. In this Section we will introduce the parameter’s estimators
by using the MLE method, considering this case.

Suppose that the failure-occurrence time data s i (i = 1, 2, …, n ) are observed during the testing
phase. Then, the joint density function of the observed data, that is, the likelihood function for
estimating the unknown parameters in an NHPP model with the mean value function H(t), is
given by

( ) ( ){ } ( )∏
=

−=θ
n

1i
in shsHexpS,aL ,                                                                                          (14)

where

h ( ) ( )
ist

i dt

tdH
s

=

= , (15)

and a is the expected number of errors in the system.
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MLE of Gompertz models’ parameters in case of time data

For the Gompertz model we have by equation (1),
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where

1<b<0,1<a<0,0>η .
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Hence the log likelihood function is
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Differentiate with respect to η , a and b and equate to zero to get the estimates of η , a and b
respectively. These give
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Equations (20), (21) and (22) can be solved numerically to obtain the ML estimates of

.b̂andâ,η̂

3.2. The least squares estimation (LSE) method

LSE is a popular technique and widely used in many fields for function fit and parameter
estimation (Liu, 2011). The LSE may be simple but very useful in estimating model parameters, it
finds values of the parameters such that the sum of the squares of the difference between the
fitting function and the experimental data is minimized. Mathematically, the LSE method
concerns in determining the value of the unknown parameters that minimizes the following
quantity:LS θ t = ∑ (i − H(t )) ,                                                                                                     (23)

where ( ) the total cumulated number of errors observed within time is (0, ]
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4.  Datasets

The following seven published datasets are chosen for our evaluations:

1. NTDS data: is from Goel and Okumoto [7], which originated from the U.S. Navy Fleet
Computer Programming Center. These failure data were collected during the
development phase of the software for the real-time multicomputer complex system that
is the central part of the Navel Tactical Data System (NTDS).

2. The F11-D program data: were presented by Moranda [14] and pertain to a record of
errors which occurred during the debugging of a data reduction program called the F11-D
program. This program consists of “approximately 3-4 thousand” FORTRAN statements.

3. DACS data: is from J. Musa’s [15] “Software Reliability Data”, available from DACS,
Rome Air Development Center, New York.

4. DS4 data: contains 20 inter-events times which are Weibull distributed with scale
parameter 10 and shape parameter 2 [16].

5. DS5 data: represent the time between failures of software product reported by Musa [17],
this data consists of 136 failures.

6. DS6 data: were presented by Guo et al. [18], and contain 21 failures of a repairable
system.

7. DS7 data: is from Xie et al. [19], this data set contains 30 failures.

5.  Model Comparison Criteria

In order to investigate the effectiveness of the selected estimation methods, the comparison
criteria we used are described as follows:

(1) The mean square error (MSE) measures the deviation between the predicted values with
the actual observations [20]. Thus, the MSE value is defined as:

MSE = ∑ ( ) ( ) . (24)

A smaller MSE indicate better performance.

(2) R-squared ( ) can measure how successful the fit is in explaining the variation of the
data. A value of close to 1 indicates the best model, this measure can be expressed as
follows:R = 1 − ∑ ( ) ( )∑ ( ) ∑ ⁄ ,                                                                              (25)

where ( ) the total cumulated number of errors observed within time is (0, ], ( ) is the
estimated cumulative number of errors at time obtained from the fitting mean value function, n
is the number of observations and k is the number of parameters to be estimated.
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This section evaluates the performance of two methods of estimation for the Gompertz SRM
based on several real data sets. For the estimation of parameters for Gompertz model the
maximum likelihood and the least square methods are used. The results of MSE and have
been listed in Table (1) and Figure (1), Table (1) shows that, comparing the two method of
estimation on all the seven real data sets, the MSE value for the LSE method is smaller than the
MSE value for the MLE method. Also we can see that the R–squared for the LSE is much closer
to 1 than the R–squared for the MLE method. Also, Figure 1 shows that the MSE of the MLE and
LSE methods for Gompertz SRM based on different 7 data sets. From this figure, it is so clear
that the least square method gives better results than the MLE method for the selected data sets.

7. Concluding Remarks

In this paper, we have provided a theoretical review f the Gompertz SRM, several mathematical
formulas of the model’s characteristics are obtained. The general methods to estimate the
parameters of SRMs are LSE and MLE. For this model, those two methods of estimation are
considered and evaluated using two different criteria. From the obtained results, we can conclude
that the LSE is more useful method for estimating the parameters of the Gompertz SRM. The
LSE approach can be adopted as a good alternative for the Gompertz SRM when the MLE
method cannot be applied because of the model’s strong non-linearity, the least squares
estimation (LSE) may be simple but very useful in estimating model parameters. Hence, the LSE
methods should be considered when studying software reliability models.

Table 1.  MSE and R Results for Gompertz SRM using MLE and LSE
.

Data set
MSE (MLE) MSE (LSE) R-squared(MLE) R-squared(LSE)

NTDS 229.6723 0.6625226 -2.61194 0.9895808
F11-Dprogram 89.67286 0.8626611 -2.843123 0.9630288
DACS 413.2834 5.757572 -2.510515 0.951094
DS4 160.3058 0.5282724 -3.098042 0.9864953
Musa 6090.256 48.01285 -2.864339 0.9695353
DS6 175.192 42.77778 -3.095397 -1.1036e-13
DS7 332.7993 1.683625 -2.998034 0.979774

Explanatory notes:
MSE: Mean square error, the lowest is the better.R : R-squared, the closer to 1 is the better.
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Figure 1. Comparing between MSE values for MLE and LSE methods.
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