
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

DOI : 10.5121/ijsea.2014.5501 1

EPISODE: AN EXTREME PROGRAMMING METHOD

FOR INNOVATIVE SOFTWARE BASED ON SYSTEMS

DESIGN AND ITS PRACTICAL STUDY

Takaaki Goto

1
, Kensei Tsuchida

2
 and Tetsuro Nishino

1

1
Graduate School of Informatics and Engineering, The University of Electro-

Communications, Japan
2
Faculty of Information Science and Arts, Toyo University, Japan

ABSTRACT

In software development, the waterfall model is commonly used, especially for large-scale software

systems. For smaller-scale software development, agile software development approaches such as extreme

programming or scrum are used. Traditional software development methodologies are mainly targeted

toward customer-centric development, and therefore, new software methodologies are often not well

received in the industry. In this study, we propose a new software development methodology that is aimed

at developing innovative software using artificial intelligence (AI), idea creation, value engineering, and

systems design. The name of our method is named as EPISODE (Extreme Programming method for

Innovative SOftware based on systems DEsign). EPISODE supports the efficient and creative development

of open source software (OSS) by small groups. Moreover we describe an evaluation of EPISODE in a

class.

KEYWORDS

Software Development Methodology, Value Engineering, Open Source Software

1. INTRODUCTION

In software development, the waterfall model is commonly used at present. Recent years have,

however, witnessed the increasing use of agile software development methodologies, especially

for small- or mid-scale projects and even in some large-scale projects.

Both the waterfall and agile software development models feature developers and clients, where

the developers obtain the project requirements from the clients. After requirement analysis, the

developers design and develop systems according to the obtained requirements.

Nowadays, there is an increasing demand for software and applications for tablets and other small

smart devices. This software is developed by not only established software companies but also

individual or small groups of developers who may not have clients. In the latter case, the

developers have to create new ideas by themselves for software requirements instead of obtaining

requirements from clients. However, the waterfall and agile development models do not facilitate

new and innovative software development methods. Moreover, small software development

groups have limited resources available to themselves, and therefore, there is a strong need for

efficient development methods for such groups.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

2

In this study, we propose a new software development method for developing innovative software

using artificial intelligent (AI), idea creation, value engineering, and systems design. Moreover

we describe a practical study of our method on graduate school course.

2. BACKGROUND

The software development process plays an important role in software development. Some

software development processes have been proposed thus far.

2.1 Software Development Process

2.1.1. Waterfall model

The waterfall model for software development involves six steps: “requirement analysis,”

“external design,” “internal design,” “implementation,” “test,” and “operation and maintenance.”

Figure 1 shows the flow of the waterfall model.

Figure 1 Waterfall model

2.1.2. Agile development

Agile development is a lightweight software development methodology. In this approach,

developers develop the desired systems by dividing the overall project into small functions. In

agile development, the development cycle from the design to the test phase is performed for one

small function. Then, the developers shift to the next function. By using this approach, developers

can present the software to their clients from the early stage of the project.

A popular agile development approach is extreme programming (XP). Figure 2 shows a software

development cycle in XP. The cycle consists of the following stages: ”planning,” ”design,”

”coding,” and “test.” This cycle is used for extracting one function from the desired system, and it

is repeated until the system development is completed.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

3

Figure 2 Extreme programming

2.2. Methods for innovating
[

2.2.1. Brainstorming

Brainstorming was first proposed by Alex Faickney Osborn in 1938. Brainstorming is a method

used to generate new ideas by a team composed of around 10 members. To generate new ideas

efficiently, the number of participants, constructing groups, implementation method, and so on

are defined in this method. Brainstorming, as defined by Osborn, is performed under the

following principles [1].

1. Withhold criticism

2. Welcome abandon

3. Focus on quantity

4. Combine and improve ideas

2.2.2. Affinity Diagram

A method for analyzing obtained ideas by brain storming using grouping is the affinity diagram

[2]. This method enables groups to formulate new ideas that cannot be found from one idea by

constructing groups of obtained ideas.

2.2.2 Value graph

Ishii et al.[3] proposed the concept of value graphs. A value graph is a tool used for the managing

of finding value and requirement functions. It can be applied to the generation concept and its

selection. Figure 3 shows an example of a value graph.

Figure 3 Example of value graph Error! Reference source not found.]

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

4

A value graph can be used to analyze the value of some object by constructing a graph from one

idea with thinking such as “why?” or “how?” In Figure 3, “Cooling fan” is the initial idea, and

then, an analysis is performed by thinking “why” or “how.” In this case, the cooling fan is needed

to promote the flow of air. An alternate method to promote the flow of air is to generate

convection.

2.3 Practical Software Development Education and UEC Software Repository

2.3.1 Practical Software Development Education

Nowadays, many attempts are being made to implement PBL (project-based learning) in software

development education. At the University of Electro-Communications, we are working on a

practical form of software development education that provides students with a more rounded set

of practical skills and self-motivation for software development. By developing teaching

materials for self-motivated practical education, with a focus on open-source software

development and implementing an education program that incorporates these materials, our goal

is to provide practical education using the UEC software repository [4] as an autonomous

practical educational resource to cultivate highly creative developers with excellent research and

development skills.

2.3.2 UEC Software Repository
[

At the University of Electro-Communications, a great deal of software is written every year

through the course of student research and educational activities. Normally, most of this software

is managed and stored on servers in the research laboratories; however, as the software is

generally lacking in documentation and is not developed with third-party use in mind, it tends to

be used only by the original developers. Once the developers have graduated, there are very few

opportunities for this software to be reused. As one approach to addressing these problems, we

are working on the construction of a UEC software repository.

Figure 4 Screenshot of UEC software repository

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

5

The UEC software repository is a database for the centralized in-house management of software

developed at the university. Ordinary users can download and use software stored in this

repository by accessing it through site searches. The repository system has the following features:

1. Software registration, search, and download functions

2. Research paper registration, search, and download functions

3. Download ranking functions

4. User management functions

5. Development support functions

This repository supports three types of users with different privileges:

1. Software project leader

2. Software users

3. System administrators

Table 1 lists the features available to each type of user. Software project leaders are permitted to

submit software to the repository. To qualify as a software project leader, a user must have

studied for and completed a graduate course in the practical software development course, which

is described above. Software project leaders can also search for and download research papers.

Table 1 Features available to each user type

Software project

leader

Registering, searching, and downloading software,

Searching and downloading research papers

Software users Searching and downloading software, Searching and

downloading research papers

System administrators Managing software, Managing research papers,

Managing users

3. ISSUES ON APPLYING EXISTING SOFTWARE DEVELOPMENT

METHODOLOGY TO OUR TARGET

3.1 Issues on applying waterfall model to our target

When developing software by a small group based on existing software development

methodologies, two main problems are encountered.

1. In this study, we target the development of new software including innovative ideas

proposed by the developing team members. Because clients do not exist, there will be some

possibility to add or modify functions in the development process. Therefore, if we apply the

waterfall model to our target (developing innovative software), the development cost will

increase because of backtracking during development.

2. Creating a software document such as a requirement definition document or external design

document is too heavy and time-consuming a workload for developers because of its volume.

Creating many documents with only a small number of developers is difficult.

3. In the waterfall model, it is common for persons with professional skills to be associated

with each development phase (requirement definition, design, test, etc.). However, it is

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

6

difficult to assign team members to such development phases because of the limited number

of team members available.

4. The waterfall model basically targets large-scale development. Therefore, human wave

tactics can be applied. However, it is not applicable to development with a small group. A

small group needs to decide priorities for developing functions and to develop efficiently

using development support tools

3.2 Issues faced in applying agile development to our target

The Information-Technology Promotion Agency (IPA) reported a survey of application examples

on the practice of agile development [5]. In their report, they showed application examples on the

practice of agile development. The following nine situations are described in their report:

1. Short-term development

2. Project that has a lot of ups and downs in scope

3. Requirement of quality is high

4. Requirement of cost is difficult

5. Skills of team members are undeveloped

6. Teams treat new technical field or new business knowledge

7. Teams have some newcomers

8. Teams develop using distributed development methodology

9. Teams use agile development for the first time

Our software development methodology mainly targets small groups in universities. Therefore,

“Skills of team members are undeveloped,” “Teams treat new technical field or new business

knowledge,” “Teams have some newcomers,” and “Teams use agile development for the first

time” can be true. To solve these problems, an agile coach is required to train the team. However,

it is difficult to acquire a sufficient number of agile coaches in universities.

On the other hand, software development projects in universities change project members every

year. However, the agile development method does not mention how to share knowledge and

know-how and how to maintain software documents.

The waterfall and agile development models involve another problem when applied to our target.

Our target project does not have a client. However, both these models assume a client in order to

obtain the system or software specifications. Therefore, a method for generating new ideas is not

considered in these development processes.

4. PROPOSED METHOD

4.1 Abstract of EPISODE

In this study, we propose a new software development methodology that targets developing

innovative software using artificial intelligence (AI), idea creation, and value engineering. This

new method supports the efficient and creative development of open source software (OSS) by

small groups. The name of our method is named as EPISODE (Extreme Programming method for

Innovative SOftware based on systems DEsign).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

7

4.2 Development cycle of EPISODE
[

The development cycle of our proposed method is shown in Figure 5. In this cycle, development

is performed by the following process: “Planning” → “Design” → “Coding” → “Evaluation.” To

finish developing the software, the cycle is continued. We adopt the idea creation and value

engineering methods in XP.

In the planning phase, story extraction is performed. First, team members create ideas for target

software using the brainstorming method (divergence). Then, the KJ method is used to group the

obtained ideas and to derive insights from the constructed groups (convergence).

When the goal of the target software is decided by the brainstorming and KJ methods, then the

developers extract the story of the target software. At that time, the related software is needed for

analysis. Then, we obtain information about the related software from OSS. Many OSS do not

have appropriate documents. In this case, an automatic document generation tool is used to obtain

documents from the source code of OSS.

In the design phase, task division is performed using the story obtained in the planning phase. A

brainstorming tool is also used in this phase to divide the story and design. A digital book tool can

be used when developers want to record their insight or know-how. The digital book includes not

only software structure information and algorithms but also developer notes.

In the coding phase, developers implement tasks (prototyping) that are obtained in the design

phase. Programming is performed using the “pair programming” method. Developers note their

findings using the digital book tool.

In the evaluation phase, the developers themselves evaluate their developed software. After

evaluating the software, the developers also check the value of the obtained software in terms of

whether it satisfies the requirements by using a value graph.

Figure 5 Development cycle of EPISODE

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

8

EPISODE can be used for two software development patterns such as “development from

scratch” and “alter existing software.” In the process of “development from scratch,” students

develop their software following the steps: Planning → Design → Coding → Evaluation. On the

other hand, analysis of existing software should be done first of all on “alter existing software,”

that is the steps Evaluation → Planning → Design → Coding → Evaluation are needed for such

development.

4.3 Development support tool
[

Herein, we describe some proposed tools that are used in each phase. In our method, the

following four tools are used:

1. Brainstorming support tool

2. Automatic document generation tool

3. Digital book tool

4. Value graph tool

These tools are under development, and therefore, we explain their concepts.

4.3.1. Brainstorming support tool

The brainstorming support tool is used in the planning and design phases. Developers can discuss

their new ideas by using this tool. This tool includes two functions: brainstorming (divergence)

and KJ method grouping (convergence). This tool can be used by one or many developers.

4.3.2. Automatic document generation tool

The automatic document generation tool is used in the planning phase. If there already exist some

software related to the target software, the developers have to check and understand this software.

Most OSS has only source code. This tool generates useful software documents from the OSS’s

source code.

This tool targets an object-oriented language for analysis. This tool consists of the following two

components: (1) UML generation module and (2) source code summarization module based on a

natural language processing method.

4.3.3. Digital book tool
[

A digital book tool is used for understanding software and sharing notes and insights regarding

the target software. The digital book generated using this tool also includes an index function and

a writing annotation function to support efficient development. This tool is used in the design,

implementation, and evaluation phases.

4.3.4 Value graph tool

The value graph tool is used in the evaluation phase. This tool draws a value graph function and

adjusts the layout function. This tool can be used by one or many developers.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

9

5. A CURRICULUM FOR A CLASS IN OUR UNIVERSITY BASED ON EPISODE

We have started to apply our method EPISODE to a graduate course practical software

development education class called “Fundamentals of Practical Software Development.” In this

class, students develop OSS and experience the software development process from the

requirement definition to the test phases based on EPISODE. We prepared four small OSS which

will be base systems for software which students develop. The four OSS are “Calculator,”

“Support soft for dyschromatopsia,” “Ledger sheet tool,” and “breakout game with physical

controller.” These OSS include source code, binary code, and software design documents.

Table 2 explains the syllabus of this class. During the early part of the class, students will

overview the outline of software engineering and agile development. From the seventh class,

students start developing their own software based on the provided OSS. In this class, students

modify the OSS, therefore analysis of existing software should be done first of all on “alter

existing software,” that is, Evaluation → Planning → Design → Coding → Evaluation is needed

for such development.

Table 2 Syllabus for “Fundamentals of Practical Software Development”

No. Contents No. Contents

1 Guidance 9 Coding 1

Programming, unit test

2 Introduction to software engineering 1

(Summary of software engineering,

requirement)

10 Coding 2

Programming, unit test

3 Introduction to software engineering 2

(design, coding)

11 Coding 3

Programming, join test

4 Introduction to software engineering 3

(Test)

Summary of agile development

12 Coding 4

Programming join test

5 Extreme programming (XP) 1 (Life

cycle of XP, Concept of XP, Story

card, Task card)

13 Evaluation (Validation and analysis of

obtained software)

6 Extreme programming (XP) 2 (Pair

programming, test-driven

development)

14 Preparation of publishing software

Documentation

7 Evaluation, Planning

Extraction of story for target software

15 Presentation

8 Design

Task division

6. PRACTICAL STUDY OF INNOVATING METHODOLOGY TO

AGILE DEVELOPMENT

In this section we describe an evaluation of applying innovative methodology to agile

development based on the proposed EPISODE in our class. There are 20 students in our class,

and they formed six groups (one “support soft for dyschromatopsia” group, three “calculator”

groups, and two “breakout game with physical controller” groups).

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

10

Students develop their software based on following procedure: Evaluation → Planning → Design

→ Coding → Evaluation. In the first evaluation phase, students choose an OSS based on their

request, then they analyze values of the chosen OSS (such as “Calculator”) using a value graph.

The theme of making value graph work is “xx application” (xx means target software).

Table 3 Results of value graph analysis

Group Theme Obtained value Insight

1 Support soft for

dyschromatopsia

Make dyschromatopsia

person's life easier

Lack adequate support for

designer to design in

consideration of dyschromatopsia

persons

2 Calculator Obtain correct

calculation result,

everyone can obtain the

same calculation result

Need for high-function calculator

which can be used easily

3 Calculator Calculate rapidly and

easily; visualize

calculation result

Need for calculator which can

calculate complicated formulas

and visualize mathematical

formulas

4 Calculator Make calculation easier

with more precision

Want to shorten the time of

calculation

5 breakout Have fun, gain a feeling

of accomplishment, to

kill time

Incorporate elements of sports

6 breakout Have fun, gain a feeling

of accomplishment, to

kill time

Get rid of stress, get an

exhilarating feeling

From Table 3, each group could analyze essential qualities for their target software. Students

could find higher layer values of target software, and obtain some insights from the obtained

value graph.

In the next phase (planning phase), students did brainstorming based on the subject “When did

you find the application useful?” Students then made affinity diagrams from the obtained ideas by

brainstorming. They made groups in terms of “situation.” Table 4 indicates the result of the

brainstorming and affinity diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

11

Table 5 Results of brainstorming and affinity diagram

From the result of the value graph analysis and brainstorming and affinity diagram, each group

found the development goal for their software as shown in Table 6.

Table 6 Development goal for each group

Group Theme Development goal

1 Support soft for

dyschromatopsia

To develop a function that supports

designer

2 Calculator To develop a calculator with graph plot

function

3 Calculator To develop a calculator which can

calculate from history

4 Calculator To develop a calculator with memo

function

5 breakout To develop a match type breakout

6 breakout To develop a breakout game with fun by

breaking chain

Students learned how to do brainstorming, making affinity diagrams, and generating value graphs

by lecture before they analyzed their software. However, we saw that some students experience

difficulty in using these methodologies. More effective guides for these methodologies are needed.

We will improve our methods of support.

6. RELATED WORKS

So far, a great deal of research has been done on software development education.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

12

Turnu et. al. [6] report the effects of agile practices on open source software development. They

evaluated the effects of Test Driven Development (TDD). We also use TDD in EPISODE. TDD

is a useful method for developing; therefore, we adopt TDD into our method.

Koch [7] reports the comparison of agile and open source software development. The study

discusses differences between open source software and agile development. Our proposed method

targets developing open source software based on agile development with the method of

generating innovative ideas. Our method allows us to benefit from the merits of both open source

development and agile development.

Aaen [8] proposes an agile development method. The method includes ways to facilitate

creativity and innovation by using brainstorming. We also take in brainstorming for our proposed

develop method. However we adopt not only brainstorming but also use a value graph. Our

method targets developing software without customers. Therefore the value graph plays the

important role of helping us discuss and judge whether something is innovative or not.

7. CONCLUSIONS

In this study, we propose a new method that targets the development of innovative software by

small groups by using artificial intelligence (AI), idea creation, value engineering, and systems

design. We find the correspondence between the cycle of XP and processes for innovating

(divergence and convergence). Then, we propose a method for developing innovative software

using the brainstorming and value graph methods. We also present a practical study of our

proposed methodology.

We will develop the proposed tool and evaluate the effectiveness of our method through our

class.

REFERENCES

[1] Alex F. Osborn, Applied Imagination. Creative Foundation Inc., 1963.

[2] Lou Cohen. Quality Function Deployment: How to Make QFD Work for You. Addison-Wesley,

1995.

[3] Kousuke Ishii, Kenji Iino, Sekkeinokagaku kachidukurisekkei. Yokendo, 2008, (in Japanese).

[4] “UEC Software Repository,” https://www.repository.uec.ac.jp/.

[5] IPA:INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN, “Report and reference

guide for survey of application example on practice of agile development,”

http://www.ipa.go.jp/sec/softwareengineering/reports/20130319.html, (in Japanese).

[6] Ivana Turnu, Marco Melis, Alessandra Cau, Alessio Setzu, Giulio Concas, Katiuscia Mannaro,

“Modeling and simulation of open source development using an agile practice, ” Journal of Systems

Architecture, Volume 52, Issue 11, November 2006, Pages 610-618.

[7] Stefan Koch, “Agile Principles and Open Source Software Development: A Theoretical and Empirical

Discussion,” Extreme Programming and Agile Processes in Software Engineering, Lecture Notes in

Computer Science, Vol. 3092, pp. 85-93, 2004

[8] van Aaen, “Essence: Facilitating Agile Innovation”, Agile Processes in Software Engineering and

Extreme Programming, Lecture Notes in Business Information Processing, pp.1-10, 2008.

International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.5, September 2014

13

Authors

Takaaki Goto graduated with a Doctor of Engineering degree from Toyo University in

2009. He is a Project Assistant Professor at the Graduate School of Informatics and

Engineering at The University of Electro-Communications. His main research interests are

applications of open source software development, software development education, graph

grammars, visual languages, and software development environments. He is a member of

IEICE Japan, IPSJ, and IEEE.

Kensei Tsuchida received M.S. and D.S. degrees in mathematics from Waseda University

in 1984 and 1994, respectively. He was a member of the Software Engineering

Development Laboratory, NEC Corporation in 1984-1990. From 1990 to 1992, he was a

Research Associate of the Department of Industrial Engineering and Management at

Kanagawa University. In 1992 he joined Toyo University, where he was an Instructor until

1995 and an associate professor from 1995 to 2002, and a Professor from 2002 to 2009 at

the Department of Information and Computer Sciences, and since 2009 he has been a Professor of Faculty

of Information Sciences and Arts. He was a Visiting Associate Professor of the Department of Computer

Science at Oregon State University from 1997 to 1998. His research interests include software

visualization, human interface, graph languages, and graph algorithms. He is a member of IPSJ, IEICE

Japan and IEEE Computer Society.

Tetsuro Nishino graduated from department of Mathematics, Waseda University, and

continued his research and obtained a D.Sc. in Mathematics in 1991. He was a researcher

at Tokyo Research Laboratory, IBM Japan during 1984-1987. He was an Associate

Professor at School of Information Science, Japan Advanced Institute of Science and

Technology, Hokuriku during 1992-1994. In 1994, he joined at Department of

Communications and Systems Engineering, The University of Electro-Communications as an Associate

Professor and in 2006 he became a Professor. He received The Funai Information Technology Prize (2003)

and IBM Faculty Award (2008).

