
International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

DOI : 10.5121/ijsea.2014.5607                                                                                                                     103 

 

REVIEW OF THE MYTHS ON ORIGINAL SOFTWARE 

DEVELOPMENT MODEL 

 

Sriramasundararajan Rajagopalan
1 

 

1
Agile Training Champions 

 
 

ABSTRACT 

 
Software development is integral to today’s digitally monopolized business environments with increasing 

mobile, web, and desktop applications. With the growing emphasis to accommodating change in software 

development using agile approaches, the software development life cycle (SDLC) is often equated 

synonymously with the waterfall approach that never existed in the original proposition of software 

development life cycle. This paper demystifies these concepts so that the SDLC is correctly understood 

further emphasizing that similar misinterpretations do not lead to incorrect understanding of agile 

methodologies during software development. 

 

KEYWORDS 

 
SDLC, Waterfall, Software development life cycle, SDLC, traditional development, V-Model, Iterative 

Prototyping, Incremental Development, Agile, Lean, Scrum, XP, Kanban, ROI 

 

1. INTRODUCTION 

 
Long gone are the days where one can avoid thinking of software development without 

incorporating servicing the customers with the software developed. The exponential growth of 

mobile commerce has led to an abundance of software to the extent that the software itself is no 

longer reserved for Information Technology (IT) industry alone. Whether the software developed 

is for the customers external to an organization or the employees and vendors internal to an 

organization, the software development life cycle (SDLC) needs to carefully build good quality 

software and also rollout and maintain the software released.  

 

This trend led to the proposition of the SDLC by Winston Royce [1] containing a series of phases 

from the conception of an idea or challenge to be addressed through large software development. 

This SDLC model evaluated the return on investment (ROI) in developing the required software, 

the actual design and development needs, the acceptance of the software through testing, and the 

post-development stages of deployment and maintenance. The widespread adoption of SDLC 

started when the federal mandate [2, 3] adopted this model as DOD-STD-2167A labelling it as 

waterfall. Consequently, Royce’s original foundation morphed as practitioners interpreted it 

wrongly leading to SDLC being a linear model.  

 

In fact, Royce [1] was a building a software development methodology incrementally using ten 

diagrams where each diagram was iteratively adding features to the model suggesting best 

practices to employ and highlight the risks when these guidelines are not met. The most 

popularized linear model [4] with a series of seven steps was the second diagram as a precursor to 

software development discussion, when the software developed is going to be used by people 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

104 

 

other than the developers that built it. However, that diagram was perceived to be the actual 

SDLC model. With the absence of the feedback loop in this second diagram in Royce story 

building approach to SDLC [1], the practitioners drew parallel to water falling from a higher 

plane to a lower plane attributing the waterfall approach to software development as the original 

SDLC model. Nevertheless, nowhere in Royce’s model [1] is present any reference to the 

waterfall terminology. In this paper, many such practitioners’ interpretations convoluting original 

theoretical foundations are demystified so that similar misinterpretations do not bleed into the 

agile thinking or organizations can take inventory of the right best practices even in their current 

software development processes. 

 

2. MYTHS AND FACTS OF SOFTWARE DEVELOPMENT PROPOSITION 

 
The literature is rich with several studies describing the history of software development [5, 6, 7]. 

Royce sketched his thoughts of software development in 1970 laying the foundations of the 

SDLC with various interconnected stages. Contrary to the claims that this SDLC is a linear 

waterfall design [8], Royce’s detailed notes [1] define an iterative and cyclical approach to 

software development. For instance, Royce [1] called this linear model will lead to failure (p. 

329) when the customer is not involved at earlier points. However, even the agile manifesto 

claiming the importance of the customer collaboration needs in software development claim that 

the original proposition lacked customer collaboration until the final delivery.  

 

It is therefore evident that there are several misinterpretations of the original model that is now 

classified as “traditional” or “waterfall”. In fact the popularity of these incorrect associations has 

become so mundane that the waterfall model of “river of no return” [8] has become synonymous 

with the original SDLC. As a result, the approaches that emanated from the specialists in the 

information technology (IT) arena leading to the agile approaches are perceived as significant 

deviations from the SDLC model due to the misinterpreted claims, such as the following. 

Labelling Royce’s model [1] as the original baseline model moving forward in this paper, these 

claims against SDLC are challenged. 

 

1. Linear approach to software development with no feedback 

2. Big upfront requirements gathering 

3. Gathering requirements upfront saves cost 

4. Analysis follows requirements followed by design 

5. Project Management is not part of software development 

6. High degree of documentation needed before starting work 

7. Customer sees work after all the work is developed and tested 

8. Testers need not be involved early 

 

2.1. Myth 1: Linear approach 

 
As noted earlier, several claims [5, 6, 7, 8] note that the Royce’s SDLC model [1] is made up of a 

series of sequential and linear stages. These include the system requirements, software 

requirements, analysis, program design, coding, testing, and operations where the output of each 

stages feeds the next stage. Royce [1] set the stage by developing a series of stages as the first 

step when the software developed is going to be used by more than the persons that built it and 

expanded on this initial proposition of seven sequential stages as “...but the implementation 

described above is risky and invites failure.” (p. 329) 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

105 

 

Royce’s model [1] expanded on these risks noting that several of the performance testing 

requirements and storage limitations may be difficult to gather completely at the requirements 

phase and will differ during development and testing phases. Practical insights on the differences 

among the production, test, and development environments, such as the CPU, memory, cache, 

and network transfer are not always consistent for linear approach to early gathering of 

requirements feeding the design and development for testing to succeed flawlessly. As a result, 

Royce [1] suggested including two types of feedback mechanism in the model.  

 

 
 

Figure 1.  Feedback loops in original SDLC model  

 

The first feedback loop included responses from every stage to its preceding stage as illustrated in 

the Figure 1. Royce [1] noted that while testing can unearth bugs in development and 

development can suggest program redesign, there is a need for the findings from testing to 

actually be attributed to the program design and the program design due to the inaccurate 

requirements gathering emphasizing the iterative relationship in software development. 

Therefore, Royce’s recommendation [1] included a skip level feedback to a stage before the 

previous stage demonstrated in Figure 1 in addition to feedback to the previous stage. These 

discussions in Royce’s original model [1] eliminate the reference to the current thinking that the 

SDLC model was linear without feedback. Therefore, the fact is that the waterfall approach never 

existed in theory and only existed in the incorrect implementations. 

 

2.2. Myth 2: Big upfront requirements gathering 

 
The popularity of the agile approaches to software development is their focus on welcoming 

changes [9] with high degree of uncertainty [10] even if the changes are introduced late in the 

project and impacting even the architectural design [11]. Inherent in the earlier claim of linear 

approach to software development was another hidden notion that Royce’s SDLC model [1] 

required gathering all the requirements from the user prior to beginning the analysis stage leading 

to the technical, operational, and environmental feasibility studies. 

 

Royce’s original stand [1] is truly agile in nature when proposing “... change process is scoped 

down to manageable limits” (p. 328) requiring a firm signoff on requirements gathering. Royce 

however didn’t timebox this phase leading to the teams taking more time for gathering as much as 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

106 

 

they can. The agile approaches differ here because they enforce a time limit [9] on this phase so 

that there is consistent cadence in feature delivery in the incremental software updates. This 

approach to signoff is no different in the agile approach where the iteration planning focuses on 

what user stories can be accommodated within an iteration based on the team’s committable 

velocity. Royce [1] states that this closure to requirements allows maximizing the extent of early 

work. The lean concepts of limiting the work in progress espoused by Kanban and disallowing 

changes in iteration as noted in Scrum [9] are integrated in the original SDLC proposition so that 

the software can be designed appropriately. These observations invalidate the claims that the 

SDLC proposition required gathering all the requirements prior to design and development.  

 

Additionally, Royce [1] even questions if all system requirements can be gathered at the 

requirement and analysis stage while observing that the later events [testing] is the first entry to 

gather data points on “timing, storage, I/O transfer” leading to the introduction of “disruptive 

changes in design” in emphasizing skip level feedback in refining requirements later and updating 

the build. Therefore, the claim that the SDLC required all upfront requirement gathering is not a 

fact. However, those that conceived the waterfall mindset to software development ended up with 

band-aid fixes to the code leaving the requirements not comply with the code deployed violating 

the original requirements of software development.  

 

2.3. Myth 3: Gathering requirements upfront saves costs 

 
One of the underlying premises to upfront requirements is that gathering the requirements early 

saves costs as it helps plan the project better by eliminating rework. Regardless of the software 

development methodology, planning is essential but the plan itself is not because changes are not 

completely known, predictable, or constant. Neither the agile approaches to software 

development [9] nor Royce’s original model [1] as mentioned earlier prohibits entry of changes in 

software development. But, did Royce promise cost savings by adopting this model?  

 

Certainly, Royce [1] takes a definitive stand that when changes are introduced, one can expect 

higher percentage of schedule and cost overrun. (p. 329) Royce differentiates the minor 

deviations from missed steps in requirements or inefficiencies in design that could be addressed 

by small code changes from disruptive design changes that may lead to major changes in design 

and development. When such disruptive changes become necessary, either due to poor software 

design or due to forces external to the team’s original understanding, then Royce magnifies the 

cost overrun and schedule slips. Neither does agile approaches promise cost reduction in software 

development as they embrace changes [9, 12] and the state of agile development survey [13] 

conducted by VersionOne does not include cost savings as one of the benefits seen by 

organizations in using agile (p. 10). 

 

There is an important distinction to call out between Royce’s SDLC model [1] and the agile 

approaches to accommodating change. Royce’s original position that minor changes in the code 

can fix design flaws with no disruptive feedback into the other areas. This observation is not 

entirely true because these flaws when unchecked can lead to technical debt where flaws and bugs 

are knowingly passed into design and development. Agile approaches significantly differ here [9, 

12] by introducing a set of processes and tools, such as refactoring, test driven development, 

continuous improvement, and pair programming to contain technical debt.  

 

 

 

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

107 

 

2.4. Myth 4: Design follows Analysis 

 
The literature is profuse with both the scholars and the practitioners stating that the SDLC model 

uses detailed analysis first before design is executed. Royce [1] proves this claim wrong in one of 

the five additional recommended features that will ensure success of the SDLC model laid out in 

Figure 1. The first of these five features is introducing a program design phase before the 

analysis. Royce reasons that the time spent on this program design may help gather failsafe 

requirements for the software to function better despite the ambiguous requirements. (p. 331) 

 

Royce [1] also recommended that the skills in the program designers need to encompass a number 

of domains like database design, application interfaces, and operating procedures even at the risk 

of being wrong bringing early signs of kaizen and continuous improvement so that these designs 

can be refined through iterations. According to Royce, this program design concludes with a 

system overview document that at least one person has a deep understanding with. During the 

period when this model was proposed, most large scale implementations were predominantly in 

mainframe but its implications in the current mobile, distributed, and client based application 

development requirements call for merged roles like business systems analysts who can think in 

terms of the high level business requirements and simultaneously converse with developers and 

network architects.  

 

These findings are indispensable in the evolution of the rapid application development (RAD) to 

develop a prototype as a proof of concept and the development of spikes in the agile context to 

validate the concepts prior to committing time and resources. The surge of object oriented 

analysis and design (OOAD) and the unified modelling language (UML) were adequately 

supplemented by integrated development environments (IDE) where graphical elements can be 

quickly assembled with minimal coding to support the needs of these hybrid roles. Although these 

program designs were later followed by the detailed design, these findings invalidate the claims 

that Royce’s original SDLC model [1] was linear with the analysis preceding design. 

 

2.5. Myth 5: Project Manager skillset in software development 

 
Perhaps due to the reference to the word “software” in the software development life cycle, the 

emphasis of strong project management in managing the IT projects is losing its focus leading to 

repeated claims on IT failures due to project management failure [14, 15, 16, 17]. The project 

management book of knowledge (2014) provides a number of tools and techniques for the project 

manager [18] to avoid such failure.  

 

Interestingly, Royce [1] took a firm stand on project management in software development 

suggesting very strongly to “replace project management” (p. 332) in the second recommended 

feature when the documentation of the software requirements go missing. Royce rationalized that 

without a clear document, the project management cannot confirm any tangible evidence of task 

completion succumbing to the “90% finished” syndrome. Although the agile approaches may 

make the requirements documentation simpler in the form of user stories, the definition of done is 

baked into documentation expectations in Royce’s proposition for good project management as 

success criteria in quality software development.  

 

2.6. Myth 6: High degree of documentation is needed 

 
In the degree of documentation, Royce’s proposition [1] is unequivocal. Although the claims to 

having big upfront gathering of requirements document is invalidated by earlier comments, Royce 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

108 

 

mandates six types of documentation that needs to be updated along with the final delivery of the 

software product. These six documents include initial software requirements, preliminary design 

document, interface design document, final design document, test plan document, and operating 

instructions.  

 

The agile manifesto carefully suggests working software over comprehensive documentation but 

didn’t abolish documentation. Many situations in the agile context require additional 

documentation besides just the user stories. For example, when the team structure uses the 

distributed team structure through computer supported collaboration tools or involves the 

regulated industries like the pharmaceutical or financial industry requiring compliance documents 

to meet PhRMA or Sarbanes-Oxley mandates, or when the service provider relationships with 

partners call out Capability Maturity Model Integration (CMMI) compliant requirements, 

additional documentation is called for [9]. 

 

Royce [1] emphasizes that until development begins coding, the documentation, specification, 

and design denote the same thing (p. 332) where the phases can run concurrently to elicit 

requirements and validate them through the design. On the contrary, the documentation takes on 

special significance in the testing phase where testing is mapped to the requirements to identify 

errors in design and development as pointed out by skip level feedback and also in the operational 

phase so that the software can be maintained and managed by members other than those that 

developed the software.  

 

2.7. Myth 7: Customer sees work after all requirements are developed and tested 

 

The misconceptions of a linear model and big upfront requirements gathering made Royce’s 

original SDLC model [1] as a black box where there was no user involvement between 

requirements gathering and final software delivery. These observations are so widely publicized 

in the several renditions of images in the cyberspace where the customer’s requirements were so 

vastly different from what was finally delivered. Yet, these observations of delaying the user or 

the customer until later stages are unsubstantiated in Royce’s model. 

 

On the contrary, in the fifth feature recommendation, Royce [1] stresses the importance of 

involving the customer in a formal way at earlier stages before the final delivery further 

underscoring the trouble when such early customer involvement is absent after requirements 

gathering. (p. 335). Additionally, Royce promotes a success criterion as the third feature 

requirement that prior to the final delivery the customer should receive the software for 

evaluation [fitness for use] and the entire delivery process repeated in mini-scale to address the 

issues from this evaluation. This testing is formalized in project management and agile context 

requiring the business users to perform acceptance testing sowing the seeds for acceptance test 

driven development (ATDD) [9] prior to the final delivery to the customer. Yet, these acceptance 

testing by business users and customers prior to final delivery are less frequently implemented 

leading to escaped quality defects, project failure, and customer dissatisfaction 

 

2.8. Myth 8: Testers need not be involved early 

 
If work moved from one group to another group sequentially, then, the testers would be involved 

only after development is complete. Royce [1] never took this stand to begin with and 

recommended several levels of testing that needed different types of specialists during design and 

development. Royce challenges the notion of designers understanding design and developers 

relating to coding as a “sure sign of failure” emphasizing that different specialists need to be 

involved in testing the design and development against the documented requirements. According 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

109 

 

to Royce, testers bring a special set of skills and should be involved early to review design 

decisions and suggest recommendations before development begins. 

 
 

Figure 2.  V-Model establishing testing alignment 

 

Royce [1] recommended visual inspection of design and development by a second party who 

neither contributed to design or development suggesting program review and formalized code 

review protocols that should be a prerequisite to good software development. Royce insists that 

the computer shouldn’t be relied on such testing as it could be expensive. At the time of Royce 

proposition, the advanced compiler design, integrated programming environment, advanced 

programming languages or the tools for continuous build & integration, automated testing, and 

workflow tools were unavailable and so this claim is worth the review for computer based testing. 

 

For instance, the compiler design today are advanced to even track the garbage tracking 

automatically and the integrated development environment could even offer suggestions on 

uninitialized variables at the time of coding or detect potential memory leaks improving security 

and stability in the development. The V-Model to software development [19] involving validation 

and verification model took on these principles where parallel level testing was mandated as 

demonstrated in Figure 2. Agile development also involves the testing specialists to get involved 

to get engaged in conversations about design and development when the requirements are still 

evolving [9, 20]. 

 

2.9. Discussion 

 
There is a saying, “In theory, there is no difference between theory and practice. In practice, there 

is.” But, if practice created a theory that didn’t exist, then, the theory needs to be re-established to 

shed light on these findings. Theory should augment practice and practice should reinforce theory 

and when this cycle is broken, this is a sure sign of chaos. Software development has evolved 

with a number of developments in the computer aided software engineering tools. Yet, various 

scholar-practitioner discussions revolve around waterfall approaches to software development 

that was never proposed in the original SDLC model. While there has been refinements made 

with spiral approaches, V-Model, and agile approaches [9, 19, 20], misinterpretations in these 

refinements and new ideas could lead to additional challenges unless corrected.  

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

110 

 

3. CONCLUSIONS 

 
The practitioners’ rush interpreting the foundation of SDLC proposition incorrectly can be seen as 

one cause for creating a theory of waterfall that never was proposed. Similarly, the scholar’s stand 

believing the voice from the corporate setting to be the outcomes of the theory’s weakness 

mutated the original proposition. Challenging these observations, Royce’s model [1] raises the 

risks with these incorrect implementations as suggested below. As agile approaches to software 

product development gains popularity, it would be a worthwhile effort for organizations to re-

evaluate the software development practices and apply the proper criteria to use the effective 

software development methodology. 

 

1. Linear approach to software development with no feedback is a risk 

2. Big upfront requirements gathering is not always possible 

3. Gathering requirements upfront is not guaranteed to save cost or reduce timeline 

4. Program design should be incorporated prior to full analysis  

5. Project Management is an integral part of software development 

6. High degree of documentation needed before final delivery but documentation should 

always exist 

7. Customer should be involved frequently for software development success 

8. Testers need to be involved earlier in the stages prior to development 

 

ACKNOWLEDGEMENTS 

 
The author would like to thank all the customers, team members, and stakeholders involved in all 

the projects the author had managed and the learners the author has trained in both the corporate 

and academic settings from who the author unlearned and relearned software development life 

cycle. 

 

REFERENCES 

 
[1] Royce, W. Winston (1970) “Managing the development of large software systems”, Proceedings, 

IEEE WESCON, August, pp 1-9. 

[2] Boehm, B. (1996). Anchoring the software process. IEEE Software, July, pp 73-82. 

[3] Gabig, J.S. (1991). Managing software development: An insight into process. National Contract 

Management Journal, 24, 2, pp 41-50. 

[4] Palvia, P., & Nosek, J. T. (1990). An empirical evaluation of system development methodologies. In 

Managing information resources in the 1990s: proceedings of 1990 Information Resources 

Management Association international conference (p. 72). 

[5] Misra, S. (2012). Agile software development practices: Evolution, principles, and criticisms. The 

International Journal of Quality & Reliability Management, 29, 9, pp 972-980. 

[6] Gremillion, L.L., & Pyburn, P. (1983). Breaking the system development bottleneck." Harvard 

Business Review, March. 

[7] Guimares, T. (1985). A study of application program development techniques. Communications of 

the ACM, 28, 5. Pp 494-499. 

[8] Tayntor, C.B. (2007). Six sigma software development. Boca Raton, FL: Auerbach Publications. 

[9] Cohn, M. (2010). Succeeding with agile. Upper Saddle River, NJ: Addison Wesley.  

[10] DeCarlo, D. (2004). eXtreme Project Management. San Francisco, CA: Jossey-Boss. 

[11] Crow, A. (2012). The PMI-ACP exam. Velociteach Publications.  

[12] Saddington, P. (2013). The agile pocket guide. Hoboken, NJ: John Wiley-Sons. 

[13] VersionOne (2014). 7th annual state of agile development survey, pp 1-14. 

[14] Betts, M. (2003). Why IT Project Fail. Computerworld, Volume 37, Issue 34, Page 44. 



International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6, November 2014 

111 

 

[15] Fichter, D. (2003) Why Web Projects Fail Volume 27, Issue 4, page 43. 

[16] Auerbach, B. & McCarthy, R. (2014). Does Agile + Lean = Effective: An investigative study. Journal 

of Computer Science and Information Technology, 2, 2, pp 73-86. 

[17] Keith, M., Demirkan, H., & Goul, M. (2013). Service oriented methodology for systems development. 

Journal of Management Information Systems, 30, 1, pp 227-259. 

[18] A guide to the project management book of knowledge (2014). Pennsylvania, PA: Project 

Management Institute. 

[19] Balaji, S. & Murugaiyan, M.S. (2012). Watefall Vs V-Model Vs Agile: A comparative study on 

SDLC, International Journal of Information Technology and Business Management, 2, 1, pp 26-29. 

[20] Leau, Y.B., Loo, W.K., Tham, Y.P, & Tan, S.F. (2012). International Conferences on Information and 

Network Technology, 37, pp 162-167. 

[21] Vickers, M.H. (1999). Information technology development methodologies: Towards a non-positivist 

development paradigm. Journal of Management Development, 18, 3, pp 255-272. 

 
Authors 

 

Dr. Rajagopalan graduated with a Bachelor’s degree in Electronics and Communication 

Engineering from the University of Madras in India, a Master's (MS) degree in Computer 

Engineering from Wayne State University, Michigan, a business (MBA) degree in 

Management from Concordia University, Wisconsin, and a doctorate (PhD) degree in 

Organization and Management from Capella University, Minnesota. Dr. Rajagopalan also holds many 

professional certifications in project management (PMP, PMI-ACP, PMI-SP, CSP, CSPO, CSD, CSM, 

ACC, IT Project+).  With extensive software development and project management experience in many 

industries, Dr. Rajagopalan promotes the scholar-practitioner approach delivering information technology 

and management courses as adjunct faculty in several universities and community colleges in addition to 

delivering his own project and agile trainings. 


