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ABSTRACT 

 
Machine Learning approaches are good in solving problems that have less information. In most cases, the 

software domain problems characterize as a process of learning that depend on the various circumstances 

and changes accordingly. A predictive model is constructed by using machine learning approaches and 

classified them into defective and non-defective modules. Machine learning techniques help developers to 

retrieve useful information after the classification and enable them to analyse data from different 

perspectives. Machine learning techniques are proven to be useful in terms of software bug prediction. This 

study used public available data sets of software modules and provides comparative performance analysis 

of different machine learning techniques for software bug prediction. Results showed most of the machine 

learning methods performed well on software bug datasets. 
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1. INTRODUCTION 

 
The advancement in software technology causes an increase in the number of software products, 

and their maintenance has become a challenging task. More than half of the life cycle cost for a 

software system includes maintenance activities. With the increase in complexity in software 

systems, the probability of having defective modules in the software systems is getting higher [1]. 

It is imperative to predict and fix the defects before it is delivered to customers because the 

software quality assurance is a time consuming task and sometimes does not allow for complete 

testing of the entire system due to budget issue. Therefore, identification of a defective software 

module can help us in allocating limited and resources effectively. A defect in a software system 

can also be named a bug.  

 

A bug indicates the unexpected behaviour of system for some given requirements. The 

unexpected behaviour is identified during software testing and marked as a bug. A software bug 

can be referred to as” Imperfection in software development process that would cause software to 

fail to meet the desired expectation” [2]. Moreover, the finding of defects and correcting those 

results in expensive software development activities [3]. It has been observed that a small number 

of modules contain the majority of the software bugs [4, 5]. Thus, timely identification of 

software bugs facilitates the testing resources allocation in an efficient manner and enables 

developers to improve the architectural design of a system by identifying the high risk segments 

of the system [6, 7, 8].  
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Machine learning techniques can be used to analyse data from different perspectives and enable 

developers to retrieve useful information. The machine learning techniques that can be used to 

detect bugs in software datasets can be classification and clustering. Classification is a data 

mining and machine learning approach, useful in software bug prediction. It involves 

categorization of software modules into defective or non-defective that is denoted by a set of 

software complexity metrics by utilizing a classification model that is derived from earlier 

development projects data [9]. The metrics for software complexity may consist of code size [10], 

McCabe’s cyclomatic complexity [11] and Halstead’s Complexity [12].  

 

Clustering is a kind of non-hierarchal method that moves data points among a set of clusters until 

similar item clusters are formed or a desired set is acquired. Clustering methods make 

assumptions about the data set. If that assumption holds, then it results into a good cluster. But it 

is a trivial task to satisfy all assumptions. The combination of different clustering methods and by 

varying input parameters may be beneficial. Association rule mining is used for discovering 

frequent patterns of different attributes in a dataset. The associative classification most of the 

times provides a higher classification as compared to other classification methods.  

 

This paper explores the different machine learning techniques for software bug detection and 

provides a comparative performance analysis between them. The rest of the paper is organized as 

follows: Section II provides a related work on the selected research topic; Section III discusses 

the different selected machine learning techniques, data pre-process and prediction accuracy 

indicators, experiment procedure and results; Section VI provides the discussion about 

comparative analysis of different methods; and Section V concludes the research.  

 

2. RELATED WORK  
 
Lessmann et al. [13] proposed a novel framework for software defect prediction by benchmarking 

classification algorithms on different datasets and observed that their selected classification 

methods provide good prediction accuracy and supports the metrics based classification. The 

receiver operating characteristics curve (AUC) is used for comparison.  Actually, AUC represents 

the objective indicator of predictive accuracy and it is most informative within a benchmarking 

context [14, 15]. Especially for comparative study in software bug detection, it is recommended 

to use AUC as primary accuracy indicator because it separates predictive performance from cost 

distributions and class, and they are actually project specific characteristics that may be subject to 

change and unknown. Therefore, there is a potential for AUC-based evaluation to significantly 

improve convergence across studies. In particular, of RndFor for defect prediction previous 

findings regarding the efficacy [16] were confirmed. The results of the experiments showed that 

there is no significant difference in the performance of different classification algorithms. The 

study covered only classification model for software bug prediction.  

 

Sharma and Jain [17] explored the WEKA approach for decision tree classification algorithms. 

They characterized specific approach for classification and developed method for WEKA in order 

to utilize the implementation of different datasets. The high rate of accuracy is presented and 

achieved by each decision tree. It correctly classify data into its related instances. The proposed 

approach can be used in banking, medical and various areas. Their proposed method is generic 

one not especially for software bug prediction. Various machine learning approaches such as 

Artificial Neural Network (ANN), Bayesian Belief Network (BBN), Decision Tree, clustering 

and SVM are some techniques which are generally used for fault prediction in software. Elish and 

Elish [18] proposed a software prediction model by utilizing SVM approach. A comparative 

analysis was also performed for SVM against four NASA datasets including eight machine 

learning models. Guo et al., [19] also used NASA software bugs datasets and utilized ensemble 

approach (Random Forest) to predict non-defective software components and also compared its 
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performance against other existing machine leaning approaches. Ghouti et al., [20] proposed a 

model based on Probabilistic Neural Network (PNN) and SVM for fault prediction and used 

PROMISE datasets for evaluation. This research work suggested that predictive performance of 

PNN is better than SVM for any size of datasets. 

 

Khoshgoftaar et al. [21] also used one of the machine learning approach i.e. Neural Network to 

find out that either software module is defective or not and performed experiment on large tele-

communication. They did a comparative analysis between NN and other approaches and 

concluded that NN performed well in bug prediction as compared to other approaches. Kaur and 

Pallavi [22] also discussed the utilization of numerous machine learning approaches for example 

classification, clustering, regression, association and regression in software defect prediction but 

did not provide the comparative performance analysis of techniques. Okutan and Yildiz [23] and 

Fenton et al. [24] and also predict bugs in software modules by using Bayesian Network 

approach. Okutan and Yildiz. [23] used PROMISE data repository and concluded that most 

effective metrics for software are response for class, lines of code and lack of coding quality. 

Wang et al. [25] provided a comparative study of only ensemble classifiers for software bug 

prediction.  

 

Most of the existed studies on software defect prediction are limited in performing comparative 

analysis of all the methods of machine learning. Some of them used few methods and provides 

the comparison between them and others just discussed or proposed a method based on existing 

machine learning techniques by extending them [26, 27].    

 

3. MACHINE LEARNING TECHNIQUES FOR SOFTWARE BUG DETECTION  
 
In this paper, a comparative performance analysis of different machine learning techniques is 

explored for software bug prediction on public available data sets. Machine learning techniques 

are proven to be useful in terms of software bug prediction. The data from software repository 

contains lots of information in assessing software quality; and machine learning techniques can be 

applied on them in order to extract software bugs information. The machine learning techniques 

are classified into two broad categories in order to compare their performance; such as supervised 

learning versus unsupervised learning. In supervised learning algorithms such as ensemble 

classifier like bagging and boosting, Multilayer perceptron, Naive Bayes classifier, Support 

vector machine, Random Forest and Decision Trees are compared. In case of unsupervised 

learning methods like Radial base network function, clustering techniques such as K-means 

algorithm, K nearest neighbour are compared against each other.  

 

The brief description of each one is as follow: 

 

3.1.1 Decision Tree 

 
Decision trees classify software defective modules by using a series of rule [28]. The decision 

tree has basic components such as the decision node, branches and leaves. Input space within 

decision tree is divided into mutually exclusive regions and a value or an action or a label is 

assigned to each region to characterize its data points. The mechanism of decision tree is 

transparent and decision tree structure can be follow to see how the decision is made. Most of the 

decision trees construction algorithm consists of two phases. In the first phase, vary large size tree 

is constructed and then the tree is pruned in the second step to avoid over fitting issue. Then the 

pruned tree is utilized for classification purpose. 
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3.1.2 Ensemble Classifier (Bagging and Boosting) 
 

Ensemble Classifier integrates multiple classifier to build a model for classification and helps in 

improving the defect prediction performance. The main idea is to improve the overall 

performance of prediction by combining set of learning models. The Bagging [29] (Bootstrap 

AGGregatING) is one of the ensemble classifier and mainly constructs each ensemble member by 

using different datasets. Then the predictions are made by combining their average or votes over a 

label of class. Bagging build a combined model results in better performance than one single 

model. Another ensemble method is Boosting and Adaboost [30] is one of the well-known 

algorithm of Boosting family. It usually train new model in each round and multiple iterations 

with different example weights are performed. The increment in the weight of incorrectly 

classified classes will be done, so this over fitting counts more heavily in the next iteration. In this 

way, the series of classifier complement each other and they are combined together by voting. 

 

3.1.3 Random Forest 
 

Random Forest [31] is also another approach under ensemble classifier. In the construction of 

decision tree a random choice of attributes is involved. A simple algorithm is used in the 

construction of individual tree. Pruning process is not performed at each node of decision tree and 

sampling of attributes is randomly performed. The unlabelled example classified based on 

majority of voting [32]. Random forest has one important advantage that it is fast and is able to 

handle large number of input attributes. 

 

3.1.4 Naïve Bayes Classifiers (NB) 

 

The Naïve Bayes classifier [33] is based on Bayes rule of conditional probability. It analysis each 

attribute individually and assumes that all of them are independent and important.  

 

3.1.5 Support Vector Machine (SVM) 

 
A support vector machine (or SVM) [34, 35] utilizes non-linear mapping for original training data 

to transform it into higher dimension. Then it searches for optimal linear hyper plane for 

separation. The hyper-plane can be found using margins and support vectors. SVM is used for 

classification purpose and based on supervised learning. 

 

3.1.6 Multi-layer Perceptron (MLP) 

 
A multilayer perceptron (MLP) [36] is a supervised learning approach and comprised of 

feedforward artificial neural network model. The sets of input data in this approach map onto a 

set of appropriate outputs. A MLP comprised of directed graph of multiple layers of nodes, and 

they are fully connected to the next one within each node. Each input node is called as neuron 

with a nonlinear activation function.
 
The sigmoidal units of hidden layer learn to approximate the 

functions. For training purpose, MLP utilizes a technique called backpropagation. 

 

3.1.7 Radial Basis Function Networks 

 
Radial basis function (RBF) [37] Networks uses the approximation theory of function. It is 

different from MLP because it has feed forward networks of two layers. The radial basis 

functions are implemented within hidden nodes and output nodes utilizes linear summation 

functions. The learning and training is very fast in RBF networks. 
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3.1.8 Clustering  
 

Clustering is classified under unsupervised learning approach because no class labels are 

provided. The data is grouped together on the basis of their similarity. Groups with similar data 

points are put together in clusters. It is a process defining set of meaningful sub-classes called 

clusters based on their similarities. K-mean [38] clustering is based on non-hierarchical clustering 

procedure and item are moved within sets of clusters until the desired set is reached. K- Nearest 

neighbors is also another example of clustering under unsupervised learning.  

 

3.2 Datasets & Pre-Processing 

 
The datasets from PROMISE data repository [39] were used in the experiments. Table 1 shows 

the information about datasets. The datasets were collected from real software projects by NASA 

and have many software modules. We used public domain datasets in the experiments as this is a 

benchmarking procedure of defect prediction research, making easier for other researcher to 

compare their techniques [13, 8]. Datasets used different programming languages and code 

metrics such as Halstead’s complexity, code size and McCabe’s cyclomatic complexity etc. 

Experiments were performed by such a baseline.  

 

Waikato Environment for Knowledge Analysis (WEKA) [40] tool was used for experiments. It is 

an open source software consisting of a collection of machine learning algorithms in java for 

different machine learning tasks. The algorithms are applied directly to different datasets. Pre-

processing of datasets has been performed before using them in the experiments. Missing values 

were replaced by the attribute values such as means of attributes because datasets only contain 

numeric values. The attributes were also discretized by using filter of Discretize (10-bin 

discretization) in WEKA software. The data file normally used by WEKA is in ARFF file format, 

which consists of special tags to indicate different elements in the data file (foremost: attribute 

names, attribute types, and attribute values and the data).  

 

3.3 Performance Indicators 

 
For comparative study, performance indicators such as accuracy, mean absolute error and F-

measure based on precision and recall were used. Accuracy can be defined as the total number of 

correctly identified bugs divided by the total number of bugs, and is calculated by the equations 

listed below:  

 

Accuracy = (TP + TN) / (TP+TN+FP+FN)                                                                               (1) 

 

Accuracy (%) = (correctly classified software bugs/ Total software bugs) * 100                     (2) 

 

Precision is a measure of correctness and it is a ratio between correctly classified software bugs 

and actual number of software bugs assigned to their category. It is calculated by the equation 

below:  

 

Precision = TP / (TP+FP)                                                                                                   (3) 
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Table 1. Datasets information 

 

Table 2. Performance of different machine learning methods with cross validation test mode based on 

accuracy 

 

 
   Supervised learning  

  Unsupervised learning 

Datasets 
Naye 

Bayes 
MLP SVM 

Ada 

Boost 
Bagging 

Decision 

Trees 

Random 

Forest 
J48 KNN RBF K-means 

AR1 83.45 89.55 91.97 90.24 92.23 89.32 90.56 90.15 65.92 90.33 90.02 

AR6 84.25 84.53 86.00 82.70 85.18 82.88 85.39 83.21 75.13 85.38 83.65 

CM1 84.90 89.12 90.52 90.33 89.96 89.22 89.40 88.71 84.24 89.70 86.58 

JM1 81.43 89.97 81.73 81.70 82.17 81.78 82.09 80.19 66.89 81.61 77.37 

KC1 82.10 85.51 84.47 84.34 85.39 84.88 85.39 84.13 82.06 84.99 84.03 

KC2 84.78 83.64 82.30 81.46 83.06 82.65 82.56 81.29 79.03 83.63 80.99 

KC3 86.17 90.04 90.80 90.06 89.91 90.83 89.65 89.74 60.59 89.87 87.91 

MC1 94.57 99.40 99.26 99.27 99.42 99.27 99.48 99.37 68.58 99.27 99.48 

MC2 72.53 67.97 72.00 69.46 71.54 67.21 70.50 69.75 64.49 69.51 69.00 

MW1 83.63 91.09 92.19 91.27 92.06 90.97 91.29 91.42 81.77 91.99 87.90 

PC1 88.07 93.09 93.09 93.14 93.79 93.36 93.54 93.53 88.22 93.13 92.07 

PC2 96.96 99.52 99.59 99.58 99.58 99.58 99.55 99.57 75.25 99.58 99.21 

PC3 46.87 87.55 89.83 89.70 89.38 89.60 89.55 88.14 64.07 89.76 87.22 

PC4 85.51 89.11 88.45 88.86 89.53 88.53 89.69 88.36 56.88 87.27 86.72 

PC5 96.93 97.03 97.23 96.84 97.59 97.01 97.58 97.40 66.77 97.15 97.33 

Mean 83.47 89.14 89.29 88.59 89.386 88.47 89.08 88.33 71.99 88.87 87.29 

 

Recall is a ratio between correctly classified software bugs and software bugs belonging to their 

category. It represents the machine learning method’s ability of searching extension and is 

calculated by the following equation.  

 

Recall = TP / (TP + FN)                                                                                                             (4) 

 

F-measure is a combined measure of recall and precision, and is calculated by using the following 

equation. The higher value of F-measure indicates the quality of machine learning method for 

correct prediction.  

 

F = (2 * precision * recall) / (Precision + recall)                                                                        (5)  

 
 

 

 

 

 

 

 

 

 CM1 JM1 KC1 KC2 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 AR1 AR6 

Language C C C++ C++ Java C++ C C C C C C C++ C C 

LOC 20k 315k 43k 18k 18k 63k 6k 8k 40k 26k 40k 36k 164k 29k 29 

Modules 505 10878 2107 522 458 9466 161 403 1107 5589 1563 1458 17186 121 101 

Defects 48 2102 325 105 43 68 52 31 76 23 160 178 516 9 15 
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Table 3. Performance of different machine learning methods with cross validation test mode based on mean 

absolute error 

 

 

 

Supervised learning 

 

Unsupervised learning 

Datasets 
NayeB

ayes 

ML

P 
SVM AdaBoost Bagging 

Decision 

Trees 

Random 

Forest 
J48 KNN RBF 

K-

means 

AR1 0.17 0.11 0.08 0.12 0.13 0.12 0.13 0.13 0.32 0.13 0.11 

AR6 0.17 0.19 0.13 0.22 0.24 0.25 0.22 0.23 0.25 0.22 0.17 

CM1 0.16 0.16 0.10 0.16 0.16 0.20 0.16 0.17 0.16 0.17 0.14 

JM1 0.19 0.27 0.18 0.27 0.25 0.35 0.25 0.26 0.33 0.28 0.23 

KC1 0.18 0.21 0.15 0.22 0.20 0.29 0.19 0.20 0.18 0.23 0.17 

KC2 0.16 0.22 0.17 0.22 0.22 0.29 0.22 0.23 0.21 0.23 0.21 

KC3 0.15 0.12 0.09 0.14 0.14 0.17 0.14 0.13 0.39 0.15 0.12 

MC1 0.06 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.31 0.01 0.01 

MC2 0.27 0.32 0.28 0.39 0.37 0.40 0.35 0.32 0.35 0.41 0.31 

MW1 0.16 0.11 0.08 0.12 0.12 0.15 0.12 0.12 0.18 0.12 0.13 

PC1 0.11 0.11 0.07 0.11 0.10 0.14 0.09 0.10 0.12 0.12 0.08 

PC2 0.03 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.18 0.01 0.01 

PC3 0.51 0.14 0.10 0.16 0.15 0.21 0.15 0.15 0.36 0.18 0.13 

PC4 0.14 0.12 0.11 0.15 0.14 0.16 0.14 0.12 0.43 0.20 0.13 

PC5 0.04 0.03 0.03 0.04 0.03 0.06 0.03 0.03 0.33 0.05 0.03 

Mean 0.16 0.14 0.10 0.15 0.15 0.18 0.14 0.14 0.27 0.16 0.13 

 

3.4 Experiment Procedure & Results 

  
For comparative performance analysis of different machine learning methods, we selected 15 

software bug datasets and applied machine learning methods such as NaiveBayes, MLP, SVM, 

AdaBoost, Bagging, Decision Tree, Random Forest, J48, KNN, RBF and K-means. We employed 

WEKA tool for the implementation of experiments. The 10- fold cross validation test mode was 

selected for the experiments.  

 

 

i) The software bug repository datasets:  

 D= {AR1, AR6, CM1, JM1, KC1, KC2, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5}  

ii) Selected machine learning methods  

M = {Nayes Bayes, MLP, SVM, AdaBoost, Bagging, Decision Tree, Random Forest, J48, KNN, 

RBF, K-means}  

 

Data pre-process:  

a) Apply Replace missing values to D  

b) Apply Discretize to D  

Test Model - cross validation (10 folds):  
for each D do for each M do  

 Perform cross-validation using 10-folds  

end for  

Select accuracy  

Select Mean Absolute Error (MAE) Select F-measure end for  

Output:  
a) Accuracy  

b) Mean Absolute Error  

c) F-measure  

Experiment Procedure:  

Input:  
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Table 4. Performance of different machine learning methods with cross validation test mode based on F-

measure 

 

    Supervised learning    Unsupervised learning 

Datas

ets 
NayeBay 

es MLP SVM AdaBoo 
st Bagging Decision 

Trees 
Random 
Forest J48 KNN RBF K-

means 
AR1 0.90 0.94 0.96 0.95 0.96 0.94 0.96 0.95 0.79 0.95 0.94 

AR6 0.90 0.91 0.93 0.90 0.92 0.90 0.92 0.90 0.84 0.92 0.90 

CM1 0.91 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.91 0.95 0.93 
JM1 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.88 0.80 0.90 0.86 
KC1 0.90 0.92 0.92 0.91 0.92 0.92 0.92 0.91 0.89 0.92 0.91 
KC2 0.90 0.90 0.90 0.88 0.90 0.89 0.89 0.88 0.86 0.90 0.88 
KC3 0.91 0.94 0.95 0.95 0.95 0.95 0.94 0.94 0.72 0.95 0.93 
MC1 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00 
MC2 0.82 0.78 0.82 0.80 0.81 0.77 0.80 0.78 0.76 0.81 0.77 
MW1 0.90 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.89 0.96 0.93 
PC1 0.94 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.94 0.96 0.96 
PC2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 
PC3 0.60 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.77 0.95 0.93 
PC4 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.72 0.93 0.92 
PC5 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.80 0.99 0.99 

Mean 0.89 0.93 0.942 0.93 0.94 0.93 0.93 0.93 0.82 0.93 0.92 

 

3.5 Experiment Results  

 
Table 2, 3 & 4 show the results of the experiment. Three parameters were selected in order to 

compare them such as Accuracy, Mean absolute error and F-measure. In order to compare the 

selected algorithms the mean was taken for all datasets and results are shown in Figures 1-3.  

 

 

 

Figure 1. Accuracy results for selected machine learning methods  
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Figure 2. MAE results for selected machine learning methods  

 

 

 

Figure 3. F-measure results for selected machine learning methods 

 

4. DISCUSSION & CONCLUSION  
 
Accuracy, F-measure and MAE results are gathered on various datasets for different algorithms 

as shown in Table 2, 3 & 4. The following observations were drawn from these experiment 

results:  

 

NaiveBayes classifier for software bug classification showed a mean accuracy of various datasets 

83.47. It performed really well on datasets MC1, PC2 and PC5, where the accuracy results were 

above 95%. The worst performance can be seen on dataset PC3, where the accuracy was less than 

50%. MLP also performed well on MC1 and PC2 and got overall accuracy on various datasets 

89.14 %. SVM and Bagging performed really well as compared to other machine learning 

methods, and got overall accuracy of around 89 %. Adaboost got accuracy of 88.59, Bagging got 

89.386, Decision trees achieved accuracy around 88.47, Random Forest got 89.08, J48 got 88.33 

and in the case of unsupervised learning KNN achieved 71.99, RBF achieved 88.87 and K-means 

achieved 87.29. MLP, SVM and Bagging performance on all the selected datasets was good as 

compared to other machine learning methods. The lowest accuracy was achieved by KNN 

method.  
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The best MAE achieved by SVM method which is 0.10 on various datasets and got 0.00 MAE for 

PC2 dataset. The worst MAE was for KNN method which was 0.27. K-means, MLP, Random 

Forest and J48 also got better MAE around 0.14. In the case of F-measure, higher is better. 

Higher F-measure was achieved by SVM and Bagging methods which were around 0.94. The 

worst F-measure as achieved by KNN method which was 0.82 on various datasets. 

 

Software bugs identification at an earlier stage of software lifecycle helps in directing software 

quality assurance measures and also improves the management process of software. Effective 

bug’s prediction is totally dependent on a good prediction model. This study covered the different 

machine learning methods that can be used for a bug’s prediction. The performance of different 

algorithms on various software datasets was analysed. Mostly SVM, MLP and bagging 

techniques performed well on bug’s datasets. In order to select the appropriate method for bug’s 

prediction domain experts have to consider various factors such as the type of datasets, problem 

domain, uncertainty in datasets or the nature of project.  

 

Lastly, neuro-fuzzy techniques [41-47] and software agents [48] can be used to generate test 

cases, increasing the efficacy of bug detection. Multiple techniques can be combined in order to 

get more accurate results.  

 

ACKNOWLEDGEMENT  
 
The authors would like to thank Dr. Jagath Samarabandu for his constructive comments which 

contributed to the improvement of this article as his course work.  

 

REFERENCES 
 
[1] J. Xu, D. Ho & L. F. Capretz (2010) "An empirical study on the procedure to derive software quality 

estimation models", International Journal of Computer Science & Information Technology (IJCSIT), 

AIRCC Digital Library, Vol. 2, Number 4, pp. 1-16. 

[2] S. Kumaresh & R. Baskaran (2010) “Defect analysis and prevention for software process quality 

improvement”, International Journal of Computer Applications, Vol. 8, Issue 7, pp. 42-47.  

[3] K. Ahmad & N. Varshney (2012) “On minimizing software defects during new product development 

using enhanced preventive approach”, International Journal of Soft Computing and Engineering, Vol. 

2, Issue 5, pp. 9-12. 

[4] C. Andersson (2007) “A replicated empirical study of a selection method for software reliability 

growth models”, Empirical Software Engineering, Vol.12, Issue 2, pp. 161-182.  

[5] N. E. Fenton & N. Ohlsson (2000) “Quantitative analysis of faults and failures in a complex software 

system”, IEEE Transactions on Software Engineering, Vol. 26, Issue 8, pp. 797-814.  

[6] T. M. Khoshgoftaar & N. Seliya (2004) “Comparative assessment of software quality classification 

techniques: An empirical case study”, Empirical Software Engineering, Vol. 9, Issue 3, pp. 229-257.  

[7] T. M. Khoshgoftaar, N. Seliya & N. Sundaresh (2006) “An empirical study of predicting software 

faults with case-based reasoning”, Software Quality Journal, Vol. 14, No. 2, pp. 85-111.  

[8] T. Menzies, J. Greenwald & A. Frank (2007) “Data mining static code attributes to learn defect 

predictors”, IEEE Transaction Software Engineering., Vol. 33, Issue 1, pp. 2-13.  

[9] R. Spiewak & K. McRitchie (2008) “Using software quality methods to reduce cost and prevent 

defects”, Journal of Software Engineering and Technology, pp. 23-27.  

[10] D. Shiwei (2009) “Defect prevention and detection of DSP-Software”, World Academy of Science, 

Engineering and Technology, Vol. 3, Issue 10, pp. 406-409.  

[11] P. Trivedi & S. Pachori (2010) “Modelling and analyzing of software defect prevention using ODC”, 

International Journal of Advanced Computer Science and Applications, Vol. 1, No. 3, pp. 75- 77.  

[12] T. R. G. Nair & V. Suma (2010) “The pattern of software defects spanning across size complexity”, 

International Journal of Software Engineering, Vol. 3, Issue 2, pp. 53- 70.  



International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015 

21 

 

[13] S. Lessmann, B. Baesens, C. Mues & S. Pietsch (2008) “Benchmarking classification models for 

software defect prediction: A proposed framework and novel finding”, IEEE Transaction on Software 

Engineering, Vol. 34, Issue 4, pp. 485-496.  

[14] K. El-Emam, S. Benlarbi, N. Goel, & S.N. Rai (2001) “Comparing Case- Based Reasoning Classifiers 

for Predicting High-Risk Software Components”, Journal of Systems and Software, Vol. 55, No. 3, 

pp. 301-320. 

[15] L.F. Capretz & P.A. Lee, (1992) “Reusability and life cycle issues within an object-oriented design 

methodology”, in book: Technology of Object-Oriented Languages and Systems, pp. 139-150, 

Prentice-Hall. 

[16] K. Ganesan, T. M. Khoshgoftaar & E.B. Allen (2000) “Case-Based Software Quality Prediction”, 

International Journal of Software Engineering and Knowledge Engineering, Vol. 10, No. 2, pp. 139-

152. 

[17] T. C. Sharma & M. Jain (2013) “WEKA approach for comparative study of classification algorithm”, 

International Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, 

Issue 4, 7 pages. 

[18] K. O. Elish & M. O. Elish (2008) “Predicting defect-prone software modules using support vector 

machines”, Journal of Systems and Software, Vol. 81, pp. 649–660. 

[19] L. Guo, Y. Ma, B. Cukic & H. Singh (2004) “Robust prediction of fault proneness by random 

forests”, Proceedings of the 15th International Symposium on Software Reliability Engineering 

(ISSRE’04), pp. 417–428. 

[20] H. A. Al-Jamimi & L. Ghouti (2011) “Efficient prediction of software fault proneness modules using 

support vertor machines and probabilistic neural networks”, 5th Malaysian Conference in Software 

Engineering (MySEC), IEEE Press, pp. 251-256. 

[21] T. Khoshgoftaar, E. Allen, J. Hudepohl & S. Aud (1997) “Application of neural networks to software 

quality modeling of a very large telecommunications system”, IEEE Transactions on Neural 

Networks, Vol. 8, No. 4, pp. 902–909. 

[22] P. J. Kaur & Pallavi, (2013) “Data mining techniques for software defect prediction”, International 

Journal of Software and Web Sciences (IJSWS), Vol. 3, Issue 1, pp. 54-57.  

[23] A. Okutan & O. T. Yıldız (2014) “Software defect prediction using Bayesian networks”, Empirical 

Software Engineering, Vol. 19, pp. 154-181. 

[24] N. Fenton, M. Neil & D. Marquez, (2008) “Using Bayesian networks to predict software defects and 

reliability”, Journal of Risk Reliability, Vol. 222, No. 4, pp. 701–712. 

[25] T. Wang, W. Li, Weihua, H. Shi & Z. Liu (2011) “Software defect prediction based on classifiers 

ensemble”, Journal of Information & Computational Science, Vol. 8, Issue 1, pp. 4241–4254.  

[26] S. Adiu & N. Geethanjali (2013) “Classification of defects in software using decision tree algorithm”, 

International Journal of Engineering Science and Technology (IJEST), Vol. 5, Issue 6, pp. 1332-1340.  

[27] S. J. Dommati, R. Agrawal, R. Reddy & S. Kamath (2012) “Bug classification: Feature extraction and 

comparison of event model using Naïve Bayes approach”, International Conference on Recent Trends 

in Computer and Information Engineering (ICRTCIE'2012), pp. 8-12. 

[28] J. Han, M. Kamber & P. Jian (2011) Data Mining Concepts and Techniques, San Francisco, CA: 

Morgan Kaufmann, Publishers.     

[29] L. Breiman (1996) “Bagging predictors”, Machine Learning, Vol. 24, No. 2, pp. 123 – 140.  

[30] Y. Freund & R. Schapire (1996) “Experiments with a new boosting algorithm”, Proceedings of 

International Conference on Machine Learning, pp. 148-156. 

[31] L. Breiman (2001) “Random forests”, Machine Learning, Vol. 45, No. 1, pp. 5 – 32. 

[32] L. Rokach (2009) “Taxonomy for characterizing ensemble methods in classification tasks: A review 

and annotated bibliography”, Computational Statistics & Data Analysis, Vol. 53, No. 12, pp. 4046 – 

4072. 

[33] A. Mccallum & K. Nigam (1998) “A Comparison of Event Models for Naive Bayes Text 

Classification”, Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98)- 

Workshop on Learning for Text Categorization, pp. 41-48.  

[34] V. Vapnik (1995) The Nature of Statistical Learning Theory, Springer-Verlag, ISBN:0-387-94559-8, 

138-167. 

[35] Y. EL-Manzalawy (2005) “WLSVM: Integrating libsvm into WEKA environment”. Software 

available at http://www.cs.iastate.edu/~yasser/wlsvm/. 

[36] R. Collobert & S. Bengio (2004) “Links between Perceptron’s, MLPs and SVMs” Proceedings of 

International Conference on Machine Learning (ICML), pp. 23-30. 



International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015 

22 

 

[37] P. V. Yee & S. Haykin (2001) Regularized Radial Basis Function Networks: Theory and 

Applications, John Wiley. ISBN 0-471-35349-3. 

[38] P. S. Bishnu & V. Bhattacherjee (2012) “Software Fault Prediction Using Quad Tree-Based K-Means 

Clustering Algorithm”, IEEE Transactions on knowledge and data engineering, Vol. 24, No. 6, pp. 

1146-1150. 

[39] G. Boetticher, T. Menzies & T. Ostrand (2007) PROMISE Repository of Empirical Software 

Engineering Data, http://promisedata.org/, West Virginia University, Department of Computer 

Science.  

[40] WEKA, http://www.cs.waikato.ac.nz/~ml/weka, accessed on December 13th, 2013. 

[41] A. B Nassif, L. F. Capretz & D. Ho (2011) “Estimating software effort based on use case point model 

using Sugeno fuzzy inference system”, 23rd IEEE International Conference on Tools with Artificial 

Intelligence, Boca Raton, FL, pp. 393-398. 

[42] A. B. Nassif, L. F. Capretz, D. Ho & M.A. Azzeh (2012) “Treeboost model for software effort 

estimation based on sse case points”, 11th IEEE International Conference on Machine Learning and 

Applications, Boca Raton, FL, pp. 314-319. 

[43] A. B. Nassif, L. F. Capretz & D. Ho (2010) “Enhancing use case points estimation method using soft 

computing techniques”, Journal of Global Research in Computer Science, Vol. 1, No. 4, pp. 12-21. 

[44] L. F. Capretz & V. A. Marza (2009) “Improving effort estimation by voting software estimation 

models”, Journal of Advances in Software Engineering, Vol. 2009, pp. 1-8.  

[45] F. Ahmed, L. F. Capretz & J. Samarabandu (2008) “Fuzzy inference system for software product 

family process evaluation”, Information Sciences, Vol. 178, No. 13, pp. 2780-2793. 

[46] F. Ahmed & L. F. Capretz (2011) “An architecture process maturity model of software product line 

engineering”, Innovations in Systems and Software Engineering, Vol. 7, No. 3, pp. 191-207. 

[47] F. Ahmed, L. F. Capretz & S. Sheikh (2007) “Institutionalization of software product line: An 

empirical investigation of key organizational factors”, Journal of Systems and Software, Vol. 80, No. 

6, pp. 836-849. 

[48] H. F. El Yamany, M. A. M. Capretz & L. F. Capretz (2006) "A multi-agent framework for testing 

distributed systems, 30th IEEE International Computer Software and Applications Conference 

(COMPSAC), Vol. II, pp. 151-156. 

 

AUTHORS BIOGRAPHY  
 
Saiqa Aleem received her MS in Computer Science (2004) from University of Central 

Punjab, Pakistan and MS in Information Technology (2013) from UAEU, United Arab 

Emirates. Currently, she is pursuing her PhD. in software engineering from University of 

Western Ontario, Canada. She had many years of academic and industrial experience 

holding various technical positions. She is Microsoft, CompTIA, and CISCO certified 

professional with MCSE, MCDBA, A+ and CCNA certifications. 

 
Dr. Luiz Fernando Capretz has vast experience in the software engineering field as 

practitioner, manager and educator. Before joining the University of Western Ontario 

(Canada), he worked at both technical and managerial levels, taught and did research on 

the engineering of software in Brazil, Argentina, England, Japan and the United Arab 

Emirates since 1981. He is currently a professor of Software Engineering and Assistant 

Dean (IT and e-Learning), and former Director of the Software Engineering Program at 

Western. His current research interests are software engineering, human aspects of 

software engineering, software analytics, and software engineering education. Dr. Capretz received his 

Ph.D. from the University of Newcastle upon Tyne (U.K.), M.Sc. from the National Institute for Space 

Research (INPE-Brazil), and B.Sc. from UNICAMP (Brazil). He is a senior member of IEEE, a 

distinguished member of the ACM, a MBTI Certified Practitioner, and a Certified Professional Engineer in 

Canada (P.Eng.). He can be contacted at lcapretz@uwo.ca; further information can be found at: 

http://www.eng.uwo.ca/people/lcapretz/  

 

 

 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.3, May 2015 

23 

 

Dr. Faheem Ahmed received his MS (2004) and Ph.D. (2006) in Software Engineering 

from the Western University, London, Canada. Currently he is Associate Professor and 

Chair at Thompson Rivers University, Canada. Ahmed had many years of industrial 

experience holding various technical positions in software development organizations. 

During his professional career he has been actively involved in the life cycle of software 

development process including requirements management, system analysis and design, 

software development, testing, delivery and maintenance. Ahmed has authored and co-

authored many peer-reviewed research articles in leading journals and conference 

proceedings in the area of software engineering. He is a senior member of IEEE. 


