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ABSTRACT 

 

Self adaptation has been proposed to overcome the complexity of today's software systems which results 

from the uncertainty issue. Aspects of uncertainty include changing systems goals,  changing resource 

availability and dynamic operating conditions.  Feedback control loops have been recognized as vital 

elements for engineering  self-adaptive systems. However, despite their importance, there is still a lack of 

systematic way of the design of the interactions between the different components comprising one 

particular feedback control loop as well as the interactions between components from different control 

loops . Most existing approaches are either domain specific  or too abstract to be useful. In addition, the 

issue of multiple control loops is often neglected and consequently self adaptive systems are often designed 

around a single loop. In this paper we propose a set of design patterns for modeling and designing self 

adaptive software systems based on MAPE-K. Control loop of IBM architecture blueprint which takes into 

account the multiple control loops issue. A case study is presented to illustrate the applicability of the 

proposed design patterns. 
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1. INTRODUCTION 

 
The development of today's software systems has become a very difficult task to accomplish. 

This is due to the dynamic and heterogeneous nature of these systems. It is rather difficult to 

build a software system that meets all requirements and make it survive without the need for a 

change either in response to new user requirements or to changing environmental conditions. 

Furthermore, many of these systems cannot afford too long downtime while the source code is 
being modified.  Traditional top-down engineering approaches are insufficient to handle the 

complexity and evolution problems inherent in decentralized, continually evolving software [19]. 

Therefore, there is an increasing need for the software systems to be able to self adapt to 

accommodate new requirements not foreseen at design time or in response to changes on 

contextual  conditions. 

 

 A self-Self-adaptive system (SAS) is a software-intensive system augmented with the ability to 

respond to a variety of changes that may take place in their environment, goals, or the system 

itself by adapting its structure and behavior at run-time autonomously [5, 22]. This vision 
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requires shifting the human role from operational to strategic. Humans define high level policies 

that state how a system should react to changes and the system then carries out corrective 

changes (adaptations) autonomously at run-time [6]. 

 

Research in self-adaptive systems have been conducted within the different areas of software 

engineering, including requirements engineering [2], software architecture [9, 10, 25], 

middleware [18], and component-based development [23].  

 

Feedback control loops [20]  from the control theory area have been identified as vital elements 

in engineering  self-adaptive software systems. Such control loops are typically organized by 

means of four components that are responsible for the fundamental functions of self-adaptation: 

Monitor, Analyze, Plan, and Execute, often referred to as the MAPE loop as in the IBM 

architecture blueprint [13]. In [7] these functions are referred to as collect, analyze, decide, and 

act.  

 

Despite the importance of feedback loops regarding the introduction of self adaptability to today's 

software systems, there is still a lack of systematic way of the design of the interactions between 

the different components comprising one particular feedback control loop. Existing approaches 

are either too specific for some domains or highly abstract to be useful in modeling a wide range 

of domains. Also, little attention has been given to modeling and designing multiple interacting  

control loops since most approaches assume the existence of only one single control loop and 

design their self adaptive systems accordingly. In addition, the responsibilities of each component 

in the feedback control loop are not defined properly and consequently each SAS designer tends 

to define them differently. The monitor responsibility, for instance, is often defined in a way that 

overlaps with the analyzer's where the monitor accomplishes the data collection, aggregation and 

reasoning tasks. This contradicts with the separation of concerns design principle. Such a design 

principle contributes to a clean and flexible design of software systems in general and self 

adaptive systems in particular. 

 

In this paper we introduce a set of design patterns which serves as an assisting tool for software 

designers of self adaptive systems. Such patterns support reuse of known solutions and evaluated 

ideas and architectures taken from well designed and accepted approaches for the area of self 

adaptive systems engineering. Our design patterns are based on the feedback control loop 

proposed by the IBM architecture blueprint [13]. 

 

The rest of the paper  is organized as follows. Section 2 reviews some background issues related 

to our proposed  design method of self adaptive systems. Section 3 introduces some related work 

on the self adaptive software systems development. Section 4 presents our proposed set of design 

patterns that depicts the well known solutions and ideas about the self adaptive systems 

engineering. In section 5, an evaluation case study is employed to evaluate and show the  

applicability of the proposed design patterns. The paper is concluded in section 6 with outlined 

directions for future work. 
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2. BACKGROUND 

 
2.1 Feedback Control Loop 
 

Feedback loops provide the generic mechanism for self-adaptation [3]. A feedback loop is a 

control loop where the output of the controlled system is fed back to the input. It allows therefore 

to adjust operations according to differences between the actual output and the desired output. In 

other words, feedback control loops are entities that observe the system and initiate adaption. A 

feedback loop typically involves four key activities: collect, analyze, decide, and act [7]. Sensors 

collect data from the running system and its environment which represents its current state. The 

collected data are then aggregated and saved for future reference to construct a model of past and 

current states. The data are then analyzed to infer trends and identify symptoms. The planning 

activity then takes place and attempts to predict the future and prepare change plan to act on the 

running system  through a set of effectors or actuators [3]. 

 

2.2 Managed and Managing Systems 
 

Self adaptation capabilities can be introduced to the software system either internally or 

externally [26]. In the internal approach, the adaptation logic (managing system) is intertwined 

with the core application (managed system) which may take the form of the exception handling. 

In this case, the adaptation engine is system dependent and thus difficult to maintain, evolve, and 

reuse. In contrast, in the external approach,  the concerns of the adaptation logic are separated 

from the core application.  Most of the existing approaches adopt the external approach since it 

enables the realization of some important software qualities such as the reusability and 

modifiability. The IBM architecture blueprint [13] is an example of this approach which is shown 

in Fig.1. As depicted in Fig.1, the managing system consists of four main activities: monitor, 

analyze, plan and execute. These activities share a knowledge base component which contains 

information about the system state as well as the policy engine that controls the system 

functioning. A set of sensors is used to collect the important data to the adaptation process and 

send them to the monitor for further processing while a set of effectors is used to apply the 

corrective changes stated in the plan. 

 

 

Fig. 1. Autonomic computing control loop [16] 
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2.3 Design Patterns 
 

A Software design pattern is a repeatable solution to a usually occurring problem in software 

designs. It is a template for how to solve a problem that can be used in many different situations 

[8]. Design patterns [8,17] have fundamentally changed the way we approach the design of large 

software systems. Applying design patterns not only helps system designers take advantage of the 

software community’s collective experience as captured in the patterns, it also enables others 

studying the system in question to gain a deeper understanding of how the system is structured, 

and why it behaves in particular ways.  

In [8], design patterns have been classified into three categories as follows:  

 

• Creational patterns which are concerned with creating the appropriate objects for a given 

case. This gives more flexibility to the program since choosing the right object to create 

is postponed to the runtime. 

• Structural patterns which are concerned with composing groups of objects into larger 

structures. 

• Behavioral patterns which define the communication between a set of objects in a 

software system and how the flow is controlled in such a system. 

 

A number of design patterns belonging to the categories listed above plays a crucial role in 

designing self adaptive systems. The observer design pattern, for instance, can fit nicely when 

establishing the relationship between the monitor component and the sensor. Also, the Strategy 

design pattern can be used to design and implement the plan component which contains a set of 

possible actions executed when some particular conditions hold.  Sometimes it is desirable and 

beneficial for the self adaptive systems to offer the option of reverting to previous system states 

(prior to the application of the plan changes). In the latter, the command design pattern comes in 

play and offers this feature.  It is similar to the system restore option offered by Windows where 

the system might encounter some problems and choosing a restore point might solve the issue. 

 

3. RELATED WORK 

 
Several approaches have been proposed to address the design of self adaptive software systems. 

These approaches can be classified to requirements engineering , software architecture , 

middleware, and component-based development . Since our approach is related to the design 

patterns and software architecture in general, this section is dedicated to previous works 

conducted in these two specific areas. In [9, 11], Garlan et al proposed the Rainbow framework 

which provides general, supporting  mechanisms for self-adaptation which can be customized for 

different classes of systems. It provides a language, called Stitch, to represent the adaptation 

knowledge using high-level adaptation concepts of strategies, tactics, and operators. The 

implementation of Rainbow is based on one large control loop that is in charge of all activities 

related to the self adaptability issue for the whole system under consideration. Ramirez and 

Cheng [24] describe a set of  design patterns at the software design level to facilitate the 

construction of a self-adaptive software system. Gomaa et al [12] proposed several patterns for 

dynamically reconfiguring specific types of software architectures at run time [11]. In particular, 

they extended the concepts of dynamic change management introduced by Kramer and Magee 

[18] by introducing four design patterns to specify the behavior required to dynamically 

reconfigure master/slave, centralized, server/client, and decentralized architectures. Iftikhar and 
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Weyns [14] propose ActiveFORMS, short for Active Formal Models, which contributes to the 

self adaptive systems  with an approach that guarantees the verified adaptation behavior at design 

time and provides support for dealing with dynamic goals at runtime. Ben Said et al [1] proposed 

a set of design patterns targeting the real time systems. Iglesia [15] in his PhD thesis proposed 

and modeled  the semantics for a set of MAPE-K formal templates for the design of self adaptive 

systems. In [27], a set of design patterns is introduced by the authors to model the various 

interactions between MAPE loops in decentralized control of self adaptive software systems. 

 

4. PROPOSED DESIGN PATTERNS 

 
Our proposed design patterns are built on some previous works carried out for addressing the 

development of self adaptive software systems. In particular,  we use the concepts proposed by 

IBM architecture blueprint [13] for modeling the feedback control loops, namely the  Monitor, 

Analyze, Plan, and Execute. We also take advantage of the work presented in [3, 6] in which the 

design space of self adaptive systems is presented as a set of dimensions whereas each dimension 

is defined by  a design question. We also studied the design patterns  introduced in [27] to model 

the various interactions between multiple MAPE loops of self adaptive software systems. 

 

4.1 Metamodel of self adaptive systems  
 

This section is dedicated to introduce the metamodel for the MAPE-K based self adaptive 

systems. It shows, in a high level view, the concepts involved in the MAPE-K control loop as 

well as the relationships and interactions between these concepts. This metamodel is an attempt  

to accommodate the various possible  interactions between  MAPE-K components which might 

emerge in many different situations or domains. In some situations, for example, a number of 

sensors must notify a monitor of some specific system properties where in others one sensor is 

linked to only one monitor. Likewise, it is sometimes necessary for the analyzer to accomplish its 

task is to be notified by a set of monitors each responsible for monitoring one particular part of 

the whole system. In addition, it might be necessary in some situations to have interactions 

between two components of the same type (monitor-to-monitor, analyzer-to-analyzer, etc) and 

therefore it is important to accommodate this interaction as well. Also, the notification process, 

from the sensor to the monitor for instance,  can be conducted either periodically or based on 

some specific events. Regarding the adaptation application, a plan component might send the 

change plan, called strategy in the metamodel, to a number of execute components and similarly, 

an execute component could make use of a set of actuators to apply the change actions. Fig. 3 

shows this metamodel using UML class diagrams. As it can be noticed from Fig. 3 the closed and 

continuous control loop starts with the measurement conducted by the sensors and ends by 

changes made through the actuators. The dotted arrow shows the process of the applying the 

changes plan which should cause the runtime system state to be brought back to a desirable and 

acceptable state according to some predefined goals and requirements.  
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Fig. 2. Metamodel of MAPE-K based Self Adaptive Systems 
 

4.2 SAS Design Patterns 
 

Below, we introduce the five design patterns: SAS Monitor, SAS Analyzer, SAS Plan, SAS 

Execute and SAS Knowledge. Each design pattern proposed here is partially complied with the 

Gamma [8] template structure. Each pattern is described by six fields, namely the pattern name,  

intent, context, motivation, structural view and participants. UML diagrams are used here to 

depict the structural and behavioural views of the design patterns. 
 

SAS Monitor design pattern 
 

Pattern Name: SAS Monitor. 
 

Intent: to establish the relationships between the components participating in accomplishing the 

monitoring activity of self adaptive systems using the MAPE control loop. 
 

Context: this pattern is used in the first stage of the feedback control loop process aiming at 

introducing self adaptability to software systems. In this stage, what properties to monitor 

question is answered.  

 

Motivation:  the detection of a property threshold violation represents the trigger of the adaptation 

process in self adaptive systems. Therefore, in order to accomplish the detection process, a 

monitor component must be introduced.    

 

Structural view: the components involved in the monitoring activity as well as  their relationships 

are described using the UML class diagram shown in Fig. 3. As stated earlier, the relationship 

between the monitor and sensor is established using the observer design pattern. The monitor is 

interested in collecting data (property readings) from a set of sensors therefore it takes on the 

observer role while the sensors play the subject role. However, in this case the monitor (the 

observer) registers its interest of change notifications with a number of sensors (subjects) in a 
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one- to- many relationship.  There is a concurrency taking place here since the sensors keep 

running simultaneously and notifying the monitor of any change occurred to the properties of 

their direct responsibility. To handle concurrency, most modern programming languages such as 

Java offer the multithreading technique where a number of threads are executing apparently at the 

same time. Therefore, the sensor class in Fig.3 is stereotyped with the word "Thread". Also since 

this concurrency leads to many threads attempting to access the same program (the monitor 

object), a synchronization mechanism should be put in place. This is realized in Java by 

preceding the operation in question (the update operation of monitor class) by the keyword 

synchronized. 

 

 
Fig. 3. UML Class diagram for the monitoring activity components. 

 

Participants: lists the classes involved in the pattern and describes each class's responsibilities. 
 

Sensor.  Its sole responsibility is to collect data about the system property of high interest to the 

adaptation process and then send it to the monitor. Accomplishing this task can be conducted at 

fixed delay,  in response to an event and/or on demand. When adopting the fixed delay form,  the 

sensor sends the system property measurement to the monitor each x seconds where x > 0. 

However, the sensor may send the property measurement once the event of  property threshold 

violation has occurred not waiting for the current time window to finish. Therefore, there are two 

kinds of sensor namely the time-triggered and event-triggered sensors. 
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System property. Also referred to as the context element, this is the property that is of a direct 

connection and great interest to the adaptation process. This property is the target of the 

monitoring activity and the main concern of the monitor component is to  keep its value within a 

desirable or acceptable range. Often, a threshold is used to accomplish this task. Examples of 

system properties include server load,  server throughput, response time and bandwidth usage. 

The system property contributes to the runtime system state. 

 

Environment property. Tthe environment is defined as any external actor that affects the 

system in some way. Therefore, the environment property represents any contextual information 

that is external to the system in question and contributes to its runtime state. Examples of such 

properties include  the time of operating, the current client connections in client-server 

architecture, etc. 

 

Threshold. this is the value that the monitor component will compare against to decide whether 

the current value of the  system property is still within a desirable or acceptable range.  A 

threshold might have two values for the lower and upper bounds. An example of a threshold 

would be if server CPU load becomes greater than 50%, or if load changes by more than 20%. 

 

System runtime state.  At  runtime, the system state is represented by the combination of the 

values of system properties and the properties representing the environment or the context within 

which the system is operating. Each system has a desirable state driven by its goals and non 

functional requirements. Often the deviation from this desirable state is the trigger of the 

adaptation process. 

 
Monitor. It is responsible for collecting data from a set of sensors, filtering and aggregating this 

data and sending it to the analyzer component for any possible symptoms of system goals 

violation. The combined data collected from the sensors represent and form the system (or 
subsystem) runtime state.  Conceptually, the monitor plays the role of the master in the master-

slave relationship while the sensors play the slave roles. However, in terms of software design 

patterns, the observer pattern is used here where the monitor plays the observer role while the 

subject role is played by the sensor(s).  
 

Behavioral view. The behavioral view depicts the interactions between the different components 

involved in the monitoring activity using UML Sequence diagram as shown in Fig. 4. 

 



International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.4, July 2015 

19 

 

 

Fig. 4. The behavioral view of the monitoring activity of MAPE-K 

 

SAS Analyzer design pattern 

 
Pattern Name: SAS Analyzer. 

 

Intent: to establish the relationships between the components participating in accomplishing the 

analyzer activity of self adaptive systems using the MAPE control loop. 

 

Context: this pattern is used in the stage of evaluating the collected data by the monitor 

component for any possible symptoms of system goals and requirements violation. In this stage, 

the question of whether an adaptation is required or not is answered. 

 

Motivation:  detection of a system property (or system state violation) threshold violation 

represents the trigger of the adaptation process in self adaptive systems. Therefore, in order to 

accomplish the detection process, an analysis activity must be carried out which is performed 

here by the SAS analyzer pattern. 

 

Structural view: the components involved in the analyzer activity of self adaptive systems as well 

as  their relationships are described using the UML class diagram shown in Fig. 5.  The central 

class of this activity is the analyzer which contains the update operation where it receives the 

collected data (SystemStateLog) from the monitor. It also notifies the plan component of any 

required adaptation. Therefore, it is linked with the monitor and plan components using the 

Observer design pattern where it plays both the subject role (with the plan) and the observer role 

(with the monitor) and thus has to implement two interfaces, namely the observer and the subject. 

The symptom class is mainly composed of an associative array where a key-value entry is used to 

store each symptom. The key can represent the event of the symptom (e.g. database connection 

failure) and the value is representing the conditions associated with this event. Different 

implementations of different programming languages offer classes and interfaces to implement 

this which include the Map (Java), dictionary (Python) and associative arrays (PHP). 
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Fig. 5. UML Class diagram for the Analysis activity components 

 

Participants: lists the classes involved in the pattern and describes each class's responsibilities. 

 

Analyzer. Its responsibility is to receive collected and logged data (from monitor) representing 

the system (or subsystem) state history and analyze them for any possible symptoms of system 

goals and requirements violation. The analyzer notifies the plan of any necessary adaptations via 

sending an adaptation request. 

 

Symptom. Represents one of the undesirable states that the system in question must detect and 

take corrective actions against. A highly loaded server is an example of such symptoms. 

Symptoms work with a set of combined conditions and when these conditions are satisfied, the 

analyzer raises an adaptation request signal and sends it, along with the necessary information, to 

the plan component.  

 

AdaptationRequest. Once the analyzer analyses the received data from the monitor and decides 

that some symptoms  exist, an adaptation request is created and sent to the plan component along 

with the necessary information. The latter include the event describing the symptom (e.g. highly 

loaded server) and the occurrence of this event in a specified time window (e.g. last two hours).  

 

SymptomRepository. It contains a set of predefined symptoms that the system in question 

should avoid and heal up from. It also provides a facility to add new emerging symptom at 

runtime via the addSymptom operation. This component is usually part of the knowledge base of 

the feedback control loop.  
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Behavioral view: The behavioral view depicts the interactions between the different components 

involved in the analysis activity using UML Sequence diagram as shown in Fig. 6. Notice that 

both the analyzer and plan components have the update operation, which is part of the Observer 

interface, since they both play the observer role in this interaction. The analyzer receives the 

collected data from the monitor  (the trigger of the analysis activity) and the plan receives the 

adaptation request signal from the analyzer once a symptom of undesirable system state is 

detected. 

 

 
 

Fig. 6. The behavioral view of  analysis activity of MAPE-K 

 

SAS Planner design pattern 

  

Pattern Name: SAS Plan. 

Intent: to establish the relationships between the components participating in accomplishing the 

plan activity of self adaptive systems using the MAPE-K control loop. 

 
Context: this pattern is used in the stage of constructing the change plan which is composed of a 

set of corrective actions in response to an adaptation signal raised by the analyzer component. In 

this stage, the questions of what actions to be taken and in what order.  

 

Motivation:  When modeling a self-adaptive systems, designers need to specify the adaptation 

strategy to use to calculate the adaptation decisions. 

 
Structural view: the components, and their relationships, involved in the plan activity of self 

adaptive systems are described using UML class diagrams as shown in Fig.7. 
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Fig. 7. UML Class diagram for the Planning activity components 
 

Participants: lists the classes involved in the pattern and describes each class's responsibilities as 

follows:  
 

Plan. It is responsible for constructing the change plan in response to an adaptation request 

received from the analyzer. The plan component uses the policy engine for accomplishing its task 

and then sends the constructed change plan to the execute component to dispatch these changes. 

The plan is linked with the analyzer and execute using the observer design pattern where it takes 

on both the observer and subject roles respectively and thus implements the Observer and Subject 

interfaces.  
 

PolicyEngine. It contains the policies (high level goals) that control the operating and 

functioning  of the system in question. Policies take the form of Event-Condition-Action (ECA) 

rules which determine the actions to be taken when an event is raised provided some specific 

conditions are met. A general form of a policy rule can be written as: 
 

on event if condition do action. 

 

The policy engine belongs to the knowledge base of the feedback control loop. It provides the 

necessary interface for the system administrators to define and modify the policies of the system 

at hand. 
 

ChangePlan. It contains the actions that should be dispatched to the execute component in order 

to perform the adaptation and corrective actions. It is often called the strategy in which the 

actions are performed in specific and logical order. 
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Behavioral view: The behavioral view depicts the interactions between the different components 

involved in the planning activity using UML Sequence diagram as shown in Fig.8. 

 

 

Fig. 8.The behavioral view of planning activity of MAPE-K 

 

SAS Execute design pattern 

  

Pattern Name: SAS Execute. 

Intent: to establish the relationships between the components participating in accomplishing the 

execute activity of self adaptive systems using the MAPE control loop.  

 

Context: this pattern is used in the stage of executing the adaptation actions or change plan that is 

received from the plan component. These actions must be executed in some specific order 

(sequentially or concurrently or maybe mixed of the two) as stated in the plan. The execute 

component uses a set of actuators or effectors to apply the required changes to the system and 

usually involve setting new values to the system properties which are collectively constitute the 

system state. In this stage, what properties to change question is answered. 

 

Motivation:  this pattern models and design the last activity of the MAPE-K which involves 

dispatching some corrective actions to a number of effectors in order to bring the system back to  

a desirable or acceptable state. Executing the adaptation in the order stated in the change plan is 

crucial for a successful transition from an undesirable to desirable state.  

 

Structural view: the components and their relationships are described using UML class diagrams 

as shown in Fig.9. The central class of this activity is the executor which contains the update 

operation where it receives the change plan (corrective actions) from the plan. Once it has 

received the corrective actions, it dispatch them to a set of effectors to apply the changes to the 

target system and environment properties (referred to as context element in Fig. 9). Therefore, it 

is linked with the plan and effector components using the Observer design pattern where it plays 

both the observer role ( with the plan) and the subject role (with the effector) and thus has to 

implement two interfaces, namely the observer and the subject. 

 

Participants: lists the classes involved in the pattern and describes each class's responsibilities. 

Executor.  It is responsible for sending the corrective actions to one or more effectors in a 

specific order. 

 

Effector.  It is responsible for applying changes to system or environment properties according to 

some actions received from the executor component. 
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Fig. 9. UML Class diagram for the Execute activity components 

 

Behavioral view: the behavioral view depicts the interactions between the different components 

involved in the execute activity using UML Sequence diagram as shown in Fig.10. 

 

 
 

Fig. 10. The behavioral view of  Execute activity of MAPE-K 
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5. EVALUATION CASE STUDY 
  

We evaluate the effectiveness of our devised design patterns in introducing self adaptation to an 

existing  systems in two aspects: (1) How easy to introduce the self adaptation capability to a 

software system? (2) How flexible are the design patterns in accommodating  the different 

scenarios of feedback control loop interactions?. To carry out the evaluation , we introduce here 

the case study of augmenting Virtual Learning Environments (VLE), such as Moodle and 

Blackboard, with self adaptive capabilities. Architecturally, these environments are viewed and 

designed using the client-server style where such environments provide E-learning services 

through a set of servers (server farm) which can be accessed by a number of learners as well as 

instructors (clients). One of the major concern of these environments is to achieve scalability 

(scale up/down) to either accommodate more clients accessing the system or to cut down the 

operating cost by switching off some servers.  When managing a client-server based software 

system, the load balancing technique largely contributes to solving many server related problems 

including the response time, throughput and scalability.  Therefore, the feedback control loop is 

necessarily composed of components concerned with the load balancing mechanism. Such 

components include load monitor, load analyzer,  load balancing planner and load balancing 

executor.  A knowledge base component is used here by these components to achieve their tasks.  

The candidate properties that can be identified here for monitoring along with the components 

that they may apply to are as follows: 
 

• load  and throughput properties which are associated with the server component. Load 

expresses how many processes are waiting in the queue to access the server processor or 

can be measured by the CPU usage while throughput measures the amount of messages 

that a server processes during a specific time interval. 

• latency property is associated with the client component  since latency is measured from 

the client machine which is the time taken from sending a request  to receiving a reply. 

• cost property  is associated with the Server component (number of active servers). 
 

The adaptation process is triggered by the outcome of the observation of the server load. The 

possible adaptations, which depend on the current system state and on the system goals, are as 

follows: 

 

• Add server: this operation causes the addition of a new server to the server farm as a 

corrective action to the sever high load provided that this wouldn't affect the operating 

cost. 

• Remove server: this operation causes the removal of a server from the server farm either 

because of a low load at specific time or as a response to an unresponsive server. 
 

As stated earlier, the main objectives of this system is to keep the E-Learning services available 

to learners and instructors while maintaining the operating cost at a specific range. Thus, the 

availability and operating cost issues are of a great interest to the feedback control loop. The 

process of ensuring the latter Quality of Service (QoS) attributes can be described as follows: 

There will be a number of sensors, one for each active server to measure the current reading of 

the server load and send it to the monitor. Collectively, these readings represent the runtime 

system state of the server farm. Each sensor reports its reading of server load once the latter has 

changed by 20% for instance (change of load reading is affected by the access requests of the 

learners and instructors). Upon receiving a new reading from any sensor, the monitor constructs a 

new runtime system state and save it in the system log and send it to the analyzer. Then the 

analyzer analyzes the received data for any possible symptoms of undesirable events. Three 

symptoms or events can be identified here, namely the high load, very low load and 
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unresponsive. The high load event is raised when a server load becomes greater than 70% (upper 

bound threshold) while the very low load event is detected when the load is less than 5% (lower 

bound threshold) for some specific period (last two hours for instance). The unresponsive event is 

raised when no new reading  of server load is received from the sensor for some specific period. 

The plan then constructs the corrective actions based on the system policies. 
 

The two main policies of this system are:(1) add new server when a high load event is raised 

provided that the new number of active servers does not exceed the defined threshold (5 for 

example) , and (2) remove server from the system when either the very low load or unresponsive 

event is raised.  
 

So far, we have demonstrated how to map the concepts presented in our design patterns to 

concepts in a real world example. To illustrate the flexibility of accommodating  the different 

scenarios of feedback control loop interactions, we construct the possible organisation (shown in 

Fig. 11) of the self adaptive system which is tailored for this case study. A number of interactions 

can be recognized in Fig. 11. A monitor to monitor and execute to execute  are two examples of 

an interaction where the two components are of the same type. We were able to model this kind 

of the interactions because we have designed the monitor and execute components (the same 

applies to the analyzer and plan)  as both an observer and subject  according to the Observer 

design pattern. In the register operation of the Subject interface, for example, the required 

parameter is of Observer type, therefore a monitor can register with another monitor to be 

notified of possible changes. Here, each monitor is responsible for collecting the server load of its 

subsystem (e.g. VLE.server_1 ) from the sensor  and then report it to the monitor in the main 

control loop whose responsibility is to aggregate the collected data from the monitors and send it 

to the analyzer. Scalability (up/down) can be easily accomplished here since whenever we 

add/remove server to or from the server farm, we register or unregister the main monitor with or 

from the monitor of the recently added or removed server. 

 

 

 

Fig. 11. Possible feedback control loop interactions for Self Adaptive VLE 
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6. CONCLUSIONS 

 
In this paper, we have introduced a set of design patterns to model the four main activities of the 

MAPE-K control loop which are used to engineer self-adaptive systems (SAS). Accordingly, 

such patterns are termed as SAS Monitor, SAS Analyzer, SAS Plan and SAS Execute. Also, the 

interactions between the different MAPE-K components are modeled and designed. Such 

interactions include Sensor-Monitor, Monitor-Analyzer, Analyzer-Plan, Plan-Execute and 

Execute-Effector. We have applied the Observer design pattern for each interaction where all 

components (except for the sensor and effector)  play both the observer and subject roles and  

thus implement two interfaces namely the observer and subject. This, besides the stated  above 

interactions, enables the establishment of the interaction between two component of the same 

type (monitor for instance) which is needed in some situations. The E-learning system case study 

was used to illustrate the applicability of part of these design patterns. As future work and 

suggested research, the following issues need to be addressed:  

 

• A more detailed case study to illustrate the application of our proposed deign 

patterns. 

• The application of our design patterns to introduce the self adaptation capability to 

VLEs at the core services level. Such services include a self adaptive user interface 

and self adaptive learning paths. In the case study presented here, we were interested 

in providing the scalability at the hardware level (server farm). The server farm  

represents the platform where  theVLEs are executed. 

• Modeling and programming the different states that each MAPE component goes 

through during the management  of the managed system. 

• A complete lifecycle for the development of self adaptive systems. 

• The impact of the architectural style of the system under development on the 

feedback control loops organization (decentralized for instance). 
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