
International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

DOI : 10.5121/ijsea.2015.6502 9

STRATEGIES TO REDUCE REWORK IN SOFTWARE

DEVELOPMENT ON AN ORGANISATION IN

MAURITIUS

Vimla Devi Ramdoo

1
 and Geshwaree Huzooree

2

1
Department of Computer Science and Engineering, University of Mauritius

2
Department of IT, Charles Telfair Institute, Mauritius

ABSTRACT

Rework is a known vicious circle in software development since it plays a central role in the generation of

delays, extra costs and diverse risks introduced after software delivery. It eventually triggers a negative

impact on the quality of the software developed. In order to cater the rework issue, this paper goes in depth

with the notion of rework in software development as it occurs in practice by analysing a development

process on an organisation in Mauritius where rework is a major issue. Meticulous strategies to reduce

rework are then analysed and discussed. The paper ultimately leads to the recommendation of the best

strategy that is software configuration management to reduce the rework problem in software development.

KEYWORDS

Rework, Software development, Software Quality, Software Configuration Management

1. INTRODUCTION

Rework in software development is the additional effort of redoing a process or activity that was

incorrectly implemented in the first instance or due to changes in requirements from clients [2]. It

usually results from errors, omissions, failures, changes, poor communications and poor

coordination. Organisations invest in time, money and effort in order to continuously improve

software quality in the evolving business environment [1]. Rework directly impacts the

performance and productivity and ultimately the profit margins of the firm. Therefore, it is crucial

to identify and eliminate rework that could have been avoided. One famous quote of Total Quality

Management (TQM) is “Do the right things, right the first time, every time” implying the

complete elimination of rework in the context of software development. However, literature also

shows that there is some part of rework that is inevitable when dealing with software engineering.

2. RELATED WORK

Boehm’s (1987) research shows that rework costs are about 40% to 50% of all software

development expenditures and stated that the cost of rework could be reduced by up to 30-50% by

finding more faults earlier. According to Charette, ‘Studies have shown that software specialists

spend about 40 to 50 percent of their time on avoidable rework rather than on what they call

value-added work, which is basically work that’s done right the first time. Once a piece of

software makes it into the field, the cost of fixing an error can be 100 times as high as it would

have been during the development stage’ (Charette 2005). Measuring and reducing the percentage

of avoidable rework should be one objective of most process improvement initiatives.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 10

Though understood as a major software development activity, rework is often poorly defined and

understood. Rework is a common problem in software engineering and an ongoing research area

[4]. The importance of studying rework is highlighted in modelling projects where the rework

cycle is at the heart of dynamic models. The principle is as follows: when development is done, it

is not necessarily correct as it may contain errors that are undetected. The tasks go through testing

where the errors are discovered, and eventually lead to rework, hence additional work to be done.

This is because when rework increases, both elapsed time and project effort increases [16]. The

rework cycle is actually one of the major research and application areas, especially in dynamic

modelling. [7].

The cost associated with rework remains one of the main concern in software development since

cost is an important parameter defining the success of software projects [5, 20]. It is essentially

the monetary cost associated to fix a work that has already been completed. Rework is a

prevailing scourge as it consumes up to 40 to 70 % of a project’s budget. Project management

problems such as communication and work conditions introduce rework in software projects and

research shows that rework could be identified and avoided at an early stage. But in this era of

software development, not much consideration has been given to studying rework since it is

challenging and complex [6]. Research on rework has focussed on minimizing the amount of

rework that a software project may acquire, through formal reviews, inspections and tests with the

aim to detect and enable the correction of problems as early in the software life cycle as possible.

Some researchers mention modelling as a technique to prevent costly rework through prediction

and good programming practice [17] while others made use of metrics in order to understand and

reduce software rework [18, 19]. Nevertheless, it is generally accepted that rework cannot be

eliminated entirely, some are inevitable. However addressing this issue is of utmost importance to

keep rework at a minimal level [8,9,10].

3. METHODOLOGY

After reviewing relevant literature, a study was carried out in a software organisation in Mauritius

in order to determine the root causes of rework in their software development process. Figure 1

depicts the results of the survey through the traditional Ishikawa cause and effect diagram (also

known as the fish-bone diagram).

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 11

Figure 1. Root cause analysis of rework in software development

The identified root causes of rework are as follows:

2.1. Ambiguous Project Requirements

Requirement issues remain a major problem in software development [2] as some requirements

do not become apparent until the software exists. There were problems regarding the

requirements in the production team since they were uncertain of the exact requirements of the

software due to the following reasons: 1) Poorly defined and/or incomplete requirements, 2)

Unrealistic expectations of the customers due to communication issues, 3) Conflicting

requirements from different members of the production team, 4) Requirement gathering becomes

difficult when key members are on leave, 5) Not all members are available at the same time and

their degree of involvement differs, 6) Changes in requirements were not documented on a single

repository. Information about changes was disseminated on emails, phone conversations and

meeting proceedings.

2.2. People

Stakeholders’ needs and expectations reflect the requirements of the software but they often do

not know what they want until they see it. Significant number of studies evaluated the importance

of stakeholders in software development. In the organisation, the stakeholders had articulation

problems to express their needs and expectations. The developer and the client have different

views of the requirements, thus leading to misunderstanding and misconception. People related

issues also occurred due to the following reasons: 1) The members of the production team

underestimated the importance of the requirement engineering and design phase, 2) The team

lacked technical insight and stick to their own opinions, 3) Wrong/Improper coding methodology

was eventually applied, 4) The developer was involved in parallel development and rework that

resulted into additional schedule pressure in the development process leading to a decrease in

code quality; haste makes waste.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 12

2.3. Testing

Since rework was a major issue, there were schedule constraints generating pressure on the

developers causing a lack of involvement in the testing phase of software development.

Moreover, there was a lack of dedicated testing team or automated tool to perform the required

testing. More reasons include: 1) There were a limited amount of test cases provided during

development for testing and only basic testing were performed, 2) No proper documentation were

available to validate the test plan and/or test results, 3) Poor fixing of bugs due to tight deadlines

without considerations for reusability of the codes (hard coding / first solution that comes), and 4)

Volatility of requirements during implementation or testing.

2.4. History and Versioning

It was time consuming to search for histories and versions of documentations and codes due to

lack of traceability. Backups were done locally at the developer’s workplace and on a remote

server. However since there are no proper versioning and backups procedures, there were

inconsistencies between the remote server and the local version resulting into an ad-hoc backup

procedure. Moreover changes in the requirements and specifications were not documented

properly as discussed in Section 2.1.

4. ANALYSIS OF ALTERNATIVES TO REDUCE REWORK

This section evaluates the alternatives proposed in literature with the aim to reduce rework in the

software development process of the software organisation. Their respective advantages and

disadvantages are evaluated to determine their feasibility and appropriateness in reducing rework

in software development.

4.1. Alternative I: Standards and Procedures

Standards and procedures are the key to effective quality management that may be organisational

or project standards as proven in many research. There are 2 types of standards namely product

standards (define characteristics that all components should exhibit e.g. a common programming

style), and process standards (define how the software process should be enacted). Standards and

procedures encapsulate best practices thus avoiding repetition of past mistakes thereby reducing

rework such as Capability Maturity Model (CMM) and International Organization for

Standardization (ISO) that are based on the well-documented facts to produce a better product

through continuous improvement. The commonly mentioned standards in literature are

Information Technology Infrastructure Library (ITIL), Control Objectives for Information and

Related Technology (CobiT), Capability Maturity Model Integration (CMMI), and ISO 9001 [12,

13, 14]. Another principle of building quality products through a quality culture is TQM by doing

the right thing at the right time. Other frameworks gaining recent awareness are Balanced

Scorecard, ISO 17799 (IT security techniques), Project Management Book of Knowledge

(PMBOK) and PRojects IN Controlled Environments (Prince) 2 [14]. Rework is also considered

as a measure in CMM, along with quality and productivity [8]. The option of adopting standards

and procedures in order to reduce rework in software development is evaluated in Table 1.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 13

Table 1. Analysis of standards and procedures

Advantages Disadvantages

Help to reduce ad-hoc processes and

procedures in the organisation.

Difficult to set up and maintain. It takes time

to inculcate standards and procedures into

the culture of an organisation.

Develop and maintain best practices. Expertise is needed to train resources.

Provide coding and module naming

conventions.

Certification costs are high.

Identification of specifications, test plans and

procedures, programming manuals, and other

documents.

Dependant on external auditors leading to

more labour cost.

Appropriate procedures are provided to be

used for the identification and resolution of

bugs.

Employees tend to check compliance to

standards only when auditing is near.

Standards and procedures will help in reducing rework by:

1) Verification of compliance with established standards and procedures,

2) Defined and structured standards to follow when carrying out the rework process,

3) Help reduce rework process time by providing appropriate guidelines.

However, the high cost factor remains a major consideration when integrating frameworks [14,

15]. Their concepts can however be inspired, such as the configuration management from ITIL,

managing human resources and quality from CobiT, quality assurance from CMMI and quality

audits from ISO 9001.

4.2. Alternative II: Audits and Reviews

Audits and reviews are principal methods of validating the quality of a process or of a product. It

consists of entry criteria, procedures and exit criteria [21]. During the development process,

auditors and reviewers examine part or all of a process or system and its potential documentation

to find potential problems to ensure developed projects meet customer’s expectation effectively

and efficiently, and to drive continuous improvement in software quality [22]. For reducing

rework, audits and reviews help in the discovery of system defects and inconsistencies.

Some examples of such processes are: 1) software process assessment that evaluates software

development against benchmarks, 2) technical review that checks for correctness and 3) post

mortem report that evaluates a project at the end similarly as an audit but less formal [22].

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 14

Table 2. Analysis of audits and reviews

Advantages Disadvantages

Discover defects and inconsistencies in the

process.

Time and resource consuming process to

carry out audits and reviews.

Provides quality reviews by validating the

quality of the process.

If review result is classified as “No Action”,

the review effort will not have any

significant contribution to the rework issue.

Help to examine the documentation to find

potential inconsistencies leading to rework.

If review result is classified as “Reconsider

overall design”, top management may be

unwilling to adopt this approach due to

costing, resources and schedule constraints.

Consider whether necessary actions are being

taken promptly to remedy any significant

failings or weaknesses.

Need expertise and dedicated employees.

Audits and reviews will help in reducing rework by:

1) Carrying out technical analysis of the software and documentation to find possibilities of

rework between the specification and the design, code or documentation,

2) Discovering defects and inconsistencies at an earlier stage to prevent rework.

4.3. Alternative III: Configuration Management

Software configuration management (SCM) is the process of tracking and controlling changes to

software and hardware. General SCM systems provide tracing information within the

development environment [23]. Configuration management practices include revision control and

the establishment of baselines. The necessity of SCM tools have increased in software

development organisations since software is continuously growing in size and complexity, and

standards such as ISO emphasizes traceability management as a core factor in determining

software quality and customer satisfaction [23, 24]. Interdependencies between software project

parameters and changes are often not explicitly documented leading to rework [24]. SCM is a

proven practice which can be adopted to reduce rework and thus bring quality to the software

development process [25].

There are software tools available for performing software configuration management, notably

history and versioning. They provide an automated support for the change process in both

software and documentations. Some of most widely used tools in the software industry are

Redmine and Apache Subversion [27], as well as others such as Git/Github that has recently

started gaining popularity by means of the open source developer’s community.

Redmine is a free and open source, web-based project management and bug-tracking tool [26,

29]. It includes calendar and Gantt charts to aid visual representation of projects and their

deadlines. It supports multiple projects. Redmine provides integrated project management

features, issue tracking and support for multiple version control options. Moreover, it has the

productivity underlying feature of software configuration management. Further characteristics of

Redmine are:

1) It is a flexible project management web application,

2) It integrates Subversion (Software Configuration Management),

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 15

3) It supports multiple projects,

4) It enables flexible role based access control (multiple users),

5) It is a flexible bug tracking system,

6) Gantt chart (time tracking) and calendar facilities are included,

7) News, documents and files management can be performed,

8) It can send feeds and email notifications,

9) It provides a wiki per project that contains valuable project information e.g. database

details,

10) It provides multiple LDAP authentication support (use of business email and password

to login directly),

11) It has multi-language support,

12) Multiple databases support is accessible.

Apache Subversion is an open source software versioning and a revision control system used to

track the changes to directories of files under version control [30]. Developers use Subversion to

maintain current and historical versions of files such as source code, web pages and

documentation. Its goal is to be a mostly-compatible successor to the widely used Concurrent

Versions System (CVS) in software development [28]. It is simple to use and it supports the

needs of a wide variety of users and projects, from individuals to large-scale enterprise

operations. Ben Collins-Sussman stated that the Subversion project is a kinder and gentler

versioning system [27] and it is widely used in software organisations.

Table 3. Analysis of configuration management

Advantages Disadvantages

Facilitate prioritisation. Time consuming to use.

Control and monitor rework and help to track

the evolution of the project.

Employees might be unwilling to accept

the new system.

Centralised system that motivates team work. Training is required.

Provide accurate versioning of scripts

promoting traceability.

Employees may fail to keep the system

up-to-date on a long term basis.

Reduced time consumption of rework by

providing history of changes.

Promote security by assigning ownership to

tickets.

Eliminate ad-hoc working environment.

A system of configuration management will help in reducing rework by:

1) By providing versioning of all rework, the developer will not waste additional time in

searching archives/ backups,

2) History will facilitate tracking of all user access and updates done on the scripts via

ticketing,

3) Each advantage will help in building quality in the software development process,

4) Enable developer to work in a controlled manner (instead of ad-hoc as currently the case).

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 16

5. RESULTS & RECOMMENDATION

Multiple criteria were chosen for evaluation of the alternatives in order to come up with the best

recommendation to resolve the rework issue from software development in the organisation. The

criteria are:

1) Production, as it is the software production environment which is flecked by rework

issues,

2) Cost, as rework causes an increase in the cost of the software project in terms of scope,

time and resources,

3) Time, as rework involve time consumption causing delays and schedule pressure in the

software project, and

4) Resources, such as human resources as rework involves many people from the production

team to re-do tasks that they had already done in the past.

Table 4 shows an evaluation of the alternatives proposed in Section 4 based on the selected

criteria.

Table 4. Evaluation of alternatives

Criteria Standards and

Procedures

Audits and Reviews Configuration

Management

Production Bring in quality and

control by ensuring

established standards

and procedures.

Provide appropriate

guidelines to follow.

Ensure consistencies

between specification

and design, code or

documentation.

Bring in quality and

traceability.

Helps in maintaining

accurate history and

documentation.

Enable monitoring and

control with user-

friendly interface.

Cost Costly to recruit

experts for setting up

standards.

Certification costs.

Certification costs.

Costly to make

changes to the system

after the reviews.

Costly to invest in

external audits and

reviews.

Open-source software

such as Redmine and

Subversion are available

for free.

Time Time consuming to

set up and carry out.

Time consuming to

carry out auditing and

review process.

“No action” result

after reviews render

the audit time

consumption

unworthy.

The installation is done

only once and need to

be maintained during

software projects

development.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 17

Resources No available resource

person with expertise.

Dependant on

auditors.

Currently no expertise

to perform audit and

reviews in the

organisation.

No external expertise

required.

Tools are well-

documented, and can be

used for installation,

configuration and

training. Thus, it is

considered to be a plug

and play option for a

developer.

Based on the root-cause analysis shown in the Ishikawa diagram of Figure 1, the following

criteria was selected in order to reduce rework:

1) Traceability / Versioning

2) Quality

3) Documentation

4) History of rework

5) Cost Efective

Figure 2 show the evaluation of the most feasible option for the organisation based on literature of

the alternatives.

Figure 2. Feasibility of alternatives

Configuration management, that is a proper tracking and versioning system proved to be the most

viable option as it will resolve most of the root causes of rework as compared to the other two

options. One example of such a system is Redmine with Apache Subversion (SVN) that comes

with a good documentation on the official Redmine website [31]. The recommended option was

implemented at the start of one particular software project. Table 5 shows the test cases needed to

be executed to check if the versioning system is up and running. Table 6 shows the test cases

needed to be executed to check if the tracking system (Redmine) was up and running.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 18

Table 5. Test case of versioning system

 Test Cases for checking SVN Expected Result

1 Developer update from server and opens

test.aspx

Version of developer is the latest one (V

1.0)

2 Team Leader update from server and opens

test.aspx

Version of Team Leader is the latest one (V

1.0)

3 Developer modifies the file, update from

server and commit to server

Version on server is updated (V 1.1)

4 Team Leader modifies the file, update from

server and commit to server

Version on server is updated (V 1.2)

Table 6. Test case of tracking system

 Test Cases for checking Redmine Expected Result

1 Team leader logs in a ticket (#0001) and

assigns the ticket to developer

The ticket is recorded in Redmine as status

“new”

2 Developer receives an email that ticket

#0001 has been assigned to him/her

The ticket is updated to status “assigned”

3 Developer takes updates from server, work

the ticket, update to server and commit the

changes (V 1.5).

Developer records the version number on

Redmine and assigned the ticket to Team

Leader as Resolved

The link to codes is made automatically by

Remine (V 1.5) includes modified files

X.aspx, Y.aspx and Z.aspx, with specified

line modified. The ticket changes status to

“Resolved”

4 Team leader tests the modifications made

and closes the ticket. History of versions

worked and descriptions are archived in the

ticket

The ticket changes status to “Closed” and is

archived

In order to determine the gain in rework, several key performance indicators (KPI) may be

monitored within the organisation after the implementation of the configuration management

system of tracking and versioning as a future work. Such a KPI measure is annual costing, used in

the organisation to have an overall view of additional costs associated with software development.

Similarly the number of requirements and tickets are used to account the amount of tasks that was

present on a similar previous software project, compared with the amount of tasks in the software

project after implementation of the software configuration management system. These indicators

can be used as a measure to monitor the effect of rework reduction on the organisation.

6. CONCLUSION

Despite successes in reducing rework, we acknowledge that rework cannot be eliminated entirely

as it is inevitable due to many factors mentioned in the paper. Also, not doing a task ‘right the

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 19

first time’ eventually creates more work and lead to rework as a consequence. In addition, not all

rework-inducing problems can be detected as soon as they occur; some problems will only be

caught at some distance downstream. Nevertheless, the rework process need not be as difficult as

many make it. The software organisation considered in this paper was having serious problems

regarding rework, and a major part of it was caused by a lack of software configuration

management, among other reasons such as traditional requirements problems. This particular area

of deficiency was improved by introducing a proper history and version control system by

introducing Redmine and Apache Subversion in the organisation. Preliminary results showed a

gain in productivity as rework was greatly reduced. As a future work, metrics such as key

performance indicators could be used to measure the effect of rework reduction and gain in

productivity through software configuration management tools in the organisation. Regular audits

and reviews can also be performed to ensure continuous improvement of the development process

within the organisation at a later stage. This will facilitate improvement of other deficiencies

related to causing rework to occur. To conclude, rework is not ‘bad luck’ and is absolutely

manageable if given due considerations to the causes of rework.

REFERENCES

[1] Vimla Devi Ramdoo, Geshwaree Huzooree, and Oomesh Gukhool, The study of the complexity of

software quality to promote sustainable growth in business through the delivery of quality software,

Uom Research Week 2012, University of Mauritius 2012.

[2] Geshwaree Huzooree and Vimla Devi Ramdoo. A Systematic Study on Requirement Engineering

Processes and Practices in Mauritius. International Journal of Advanced Research in Computer

Science and Software Engineering, v5.2, 40-46, 2015.

[3] Helio Yang, Y., Software quality management and ISO 9000 implementation, Industrial Management

& Data Systems 101.7: 329-338, 2001.

[4] Rúbio, Thiago RPM, and Carlos ASJ Gulo. Characterizing Developers’ Rework on GitHub Open

Source Projects. Doctoral Symposium in Informatics Engineering. 2015.

[5] Raja, Uzma, and Marietta J. Tretter. Defining and evaluating a measure of open source project

survivability. Software Engineering, IEEE Transactions on38.1: 163-174, 2012.

[6] Zahra, Sobia, et al. Performing Inquisitive Study of PM Traits Desirable for Project Progress.

International Journal of Modern Education and Computer Science (IJMECS) 6.2: 41, 2014.

[7] Rahmandad, Hazhir, and Kun Hu. Modeling the rework cycle: capturing multiple defects per task.

System Dynamics Review 26.4: 291-315, 2010.

[8] Diaz, Michael, and Jeff King. How CMM impacts quality, productivity, rework, and the bottom line.

CrossTalk 15.3: 9-14, 2002.

[9] Cass, Aaron G., Stanley M. Sutton Jr, and Leon J. Osterweil. Formalizing rework in software

processes. Software Process Technology. Springer Berlin Heidelberg, 16-31, 2003.

[10] Haley, Tom, et al., Raytheon Electronic Systems Experience in Software Process Improvement. No.

CMU/SEI-95-TR-017. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1995.

[11] Charette, R.N., Why software fails. IEEE spectrum, 42.9 (36), 2005.

[12] Vidal, H.,Wan, J And Han, X.. Capability Models: ISO and CMM. Kansas: Department of Computing

and Information Sciences, Kansas State University, 1998.

[13] Gerke, L., And Ridley G. Towards an abbreviated COBIT framework for use in an Australian State

Public Sector, 2006.

[14] Cater-Steel, A., Wui-Gee, T., And Toleman M. Challenge of adopting multiple process improvement

frameworks. Proceedings of 14th European conference on information systems, 2006.

[15] Paulk, M. C.. Surviving the quagmire of process models, integrated models, and standards, 2004.

[16] Gopal, Anandasivam, Tridas Mukhopadhyay, and Mayuram S. Krishnan. The role of software

processes and communication in offshore software development. Communications of the ACM 45.4:

193-200, 2002.

[17] Basili, Victor R., et al. Characterizing and modeling the cost of rework in a library of reusable

software components. Proceedings of the 19th international conference on Software engineering.

ACM, 1997.

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.5, September 2015

 20

[18] Morozoff, Edmund P. Using a line of code metric to understand software rework. Software, IEEE

27.1: 72-77, 2010.

[19] Conroy, Patrick, and Philippe Kruchten. Performance norms: An approach to rework reduction in

software development. Electrical & Computer Engineering (CCECE), 2012 25th IEEE Canadian

Conference on. IEEE, 2012.

[20] Basili, Victor R., et al. Characterizing and modeling the cost of rework in a library of reusable

software components. Proceedings of the 19th international conference on Software engineering.

ACM, 1997.

[21] IEEE Computer Society, IEEE Standard for Software Reviews and Audits, 2008.

[22] Fallan, M. Hosein, et al. Development process audits and reviews. AT&T Technical Journal 70.2: 99-

108, 1991.

[23] Kim, Dae-Yeob, and Cheong Youn. Traceability enhancement technique through the integration of

software configuration management and individual working environment. Secure Software

Integration and Reliability Improvement (SSIRI), Fourth International Conference on. IEEE, 2010.

[24] Vanbrabant, Bart, and Wouter Joosen. A framework for integrated configuration management tools.

Integrated Network Management (IM 2013), IFIP/IEEE International Symposium on IEEE, 2013.

[25] Khan, Chaudry Bilal Ahmad, and Ali Ahsan. Recommended configuration management practices for

freelance software developers. Software Engineering and Service Science (ICSESS), 2014 5th IEEE

International Conference on. IEEE, 2014.

[26] Lang, J., and E. Davis. Redmine-open source project management web-application, 2010.

[27] Collins-Sussman, Ben, Brian Fitzpatrick, and Michael Pilato. Version control with subversion.

O'Reilly Media, Inc., 2004.

[28] Collins-Sussman, Ben. The subversion project: building a better CVS. Linux Journal 2002.94: 3,

2002.

[29] Redmine, available on http://www.redmine.org/ (accessed on 18/09/2015).

[30] Apache Subversion, available on https://subversion.apache.org/ (accessed on 18/09/2015).

[31] HowTo configure Redmine for advanced Subversion integration, available on

http://www.redmine.org/projects/redmine/wiki/HowTo_configure_Redmine_for_advanced_Subversio

n_integration (accessed on 18/09/2015).

