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ABSTRACT 

Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network 

relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and 

the network. One efficient way of power management is to control the power at which the nodes transmit. 

In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN) 

communication architecture is considered and the power control of sensor nodes based on the approach 

of game theory is formulated. The use of game theory has proliferated, with a broad range of applications 

in wireless sensor networking. Approaches from game theory can be used to optimize node level as well 

as network wide performance. The game here is categorized as an incomplete information game, in which 

the nodes do not have complete information about the strategies taken by other nodes. For virtual 

multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is 

used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome 

shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best 

utility, by consuming less power. 
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1. INTRODUCTION 

The birth of wireless sensor network (WSN) has brought out the practical aspects of pervasive 

computing and networking. A wireless sensor network is a group of specialized sensor nodes 

each of which is small, lightweight and portable with a communication infrastructure intended 

to monitor and record conditions at diverse locations. Generally sensors are battery powered and 

have feeble data processing capability and short radio range [1]. The resource-constraint 

temperament of WSNs in terms of their size, cost, weight and lifetime [2] is a key area of 

apprehension for most applications using WSN. The best part of this resource constraint nature 

makes wireless sensor networks to be used in the context of high end applications, security 

applications and consumer applications [3]. The worst part of this calls for research on power 

limited capability thereby prolonging the network reliability and operation.  

Energy efficiency and achieving reliability is a key issue in wireless sensor networks. Battery 

capacity is limited and it is usually impossible to replace them. Any operation performed on a 

sensor consumes energy, involving discharge of battery power. Hence battery power efficiency 

is a critical factor while considering the energy efficiency of WSN. The three domains of energy 

consumption in a sensor are sensing, data processing and data communication, out of which 

communication is the main consumer of energy. Hence transmission at optimal power level is 

very essential. Optimal transmit power level implies the power level which reduces the 

interference, increases the successful packet transmission and provides the desired quality of 
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service. Maintaining the transmit power under control is furthermore favorable to decrease the 

packet collision probability, which if not leads to more retransmitted packets wasting even more 

energy. Hitherto energy efficiency has been investigated extensively and various approaches to 

achieve an energy efficient network includes, scheduling sensor nodes to alternate between 

energy-conserving modes of operation, competent routing algorithms, clustering, incorporating 

astuteness and use of spatial localization at every node to lessen transmission of redundant data. 

Nodes specialization to different roles such as idle, sensing, routing and routing/sensing to 

maximize the utility of the nodes [4] has been proposed. An approach for optimizing transmit 

power for an ad-hoc network scenario [5] where all the nodes uses a uniform transmit power, 

and numerical results of transmit power sufficient to satisfy the network connectivity has been 

proposed. In recent years there has been a growing interest in applying game theory to study 

wireless systems. [6], [7] used game theory to investigate power control and rate control for 

wireless data. In [8], the authors provide motivations for using game theory to study 

communication systems, and in particular power control. Distributed iterative power control 

algorithms have been proposed for cellular networks; these algorithms examine to find the 

power vector for all the nodes that minimizes the total power with good convergence [9], [10]. 

Decentralized, game theoretic adaptive mechanisms, which can be deployed to manage sensor 

activities with low coordination overhead has been explained [11].  

In recent years, power control has received deep interest for cellular radio systems and ad-hoc 

wireless networks. In [12], a power control method is described as a Markov chain. An 

interesting characterization of power control algorithms from a control theoretic perspective can 

be found in [13]. A move towards node energy conservation in sensor network is cooperative 

multi input-multi output transmission technique [14] has been proposed and analyzed. Virtual 

multiple input multiple output (VMIMO) based WSN model requires sensor cooperation. If 

some individual sensors cooperate with others for transmission and reception, a virtual MIMO 

can be constructed in an energy efficient way for wireless sensor networks. The best modulation 

and transmission strategy to minimize the total energy consumption required to send a given 

number of bits is analyzed [15].  In this paper, a game theoretic approach to regulate the 

transmit power level of the nodes in a VMIMO-WSN is considered and investigated. The 

concept of game theory has been used in networks for designing mechanisms to induce 

desirable equilibria both by offering incentives and by punishing nodes [16-19].  

The rest of the paper is organized as follows. Section 2 deals with the system model of 

VMIMO-WSN. In Section 3, the basics of game theory and its application in sensor networks is 

discussed. A non-cooperative power control game is constructed and a utility function suitable 

for VMIMO-WSN is designed. Simulation results are given and discussed in section 4. Finally, 

conclusion of the work is given in Section 5.  

2. VIRTUAL MIMO BASED WIRELESS SENSOR NETWORK 

The information theoretic predictions on large spectral efficiency of multiple-input-multiple-

output (MIMO), has motivated a great amount of research in various MIMO techniques for 

wireless communication. As the use of MIMO technology in wireless communication grows, 

MIMO interference systems have engrossed a great deal of attention. [20], [21] studied the 

interactions and capacity dependencies of MIMO interference systems and [22], [23] explored 

methods for power management and interference avoidance in MIMO systems. However, a 

drawback of MIMO techniques is that they require intricate transceiver circuitry and huge sum 

of signal processing power ensuing in large power consumptions at the circuit level. This fact 

has prohibited the application of MIMO techniques to wireless sensor networks consisting of 

battery operated sensor nodes. And also nodes in a wireless sensor network may not be able to 

accommodate multiple antennas. Due to the circuit complexity and obscurity of integrating 

separate antenna, virtual MIMO concepts are applied in wireless sensor networks for energy 

efficient communication to hoard energy and enhance reliability. Jayaweera [24] analyzed the 
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consumed energy of a sensor node which employs a MIMO transceiver. Dai and Xiao [25, 26] 

proposed cooperative MIMO systems and the use of V-BLAST techniques as a more power 

efficient scheme. The V-BLAST scheme there is no joint encoding requirement at the sensor 

nodes. The optimum time management and power budget allocation for virtual MIMO is 

proposed [27] and the analysis of this shows that virtual MIMO functions like actual MIMO for 

low signal to noise ratio.  

The concept of VMIMO is explained in Figure 1 which shows the scenario of using three 

transmitters and two receivers. The sender node, S, transmits a message to the destination node, 

D. First, S transmits the message to three transmitter nodes, t1, t2, and t3. These transmitter 

nodes transmit the message to the receiver nodes, r1 and r2. Then, the receiver nodes forward 

the message to the destination node, D.  

 

Figure 1. Virtual MIMO scenario 

The total power consumption along a signal path in a VMIMO can be alienated into two main 

components:  the power consumption of all the power amplifiers PPA and the power 

consumption of all other circuit blocks PC. 

The total power consumption of the power amplifiers can be approximated as 

( )PA outP = 1+ α P                                                                                  (1) 

where Pout is the transmit power which depends on the Friss free space transmission, α = ξ/η − 1 

with η being the drain efficiency of the RF power amplifier and ξ being the peak-to-average 

ratio (PAR) that depends on the modulation scheme and the constellation size. 

The total circuit power consumption for a VMIMO is estimated as  

( ) ( )C T DAC mix filt synth LNA mix IFA filr ADCRP N P +P +P +2P +N P +P +P +P +P≈                      (2) 

where PDAC, Pmix, Pfilt, Psynth, PLNA, PIFA, Pfilr and PADC  are the power consumption values for the 

D/A converter (DAC), the mixer, the active filters at the transmitter side, the frequency 

synthesizer, the low noise amplifier (LNA), the intermediate frequency amplifier (IFA), the 

active filters at the receiver side and the A/D converter (ADC).  

 

 The total power consumption Ptotal  and is given by, 

total PA CP P + P=                                                                (3) 

If the transmission power of each sending node in a single input single output network is Ptotal, 

the transmission power of each sending node in NT×NR network will be Ptotal/min(NT×NR), 
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3. GAME THEORY FOR SENSOR NETWORKS 

Game theory is a theory of decision making under conditions of uncertainty and 

interdependence. In game theory, behaviour in strategic situation in a mathematic mode is 

captured.  A strategic game consists of:  a set of players, which may be a group of nodes or an 

individual node, a set of actions for each player to make a decision and preferences over the set 

of action profiles for each player. In any game utility represents the motivation of players. 

Applications of game theory always attempt to find equilibriums. If there is a set of strategies 

with the property that no player can profit by changing his or her strategy while the other 

players keep their strategies unchanged, then that set of strategies and the corresponding payoffs 

constitute the Nash equilibrium.  

Game theory offers models for distributed allocation of resources and thus provides a way of 

exploring characteristics of wireless sensor networks. Energy harvesting technologies essential 

for independent sensor networks using a non cooperative game theoretic technique [28] is 

analyzed. Nash equilibrium was projected as the solution of this game to attain the optimal 

probabilities of sleep and wake up states that were used for energy conservation. The energy 

efficiency problem in wireless sensor networks as the maximum network lifetime routing 

problem is looked upon [29]. Here the transmit power levels is adjusted to just reach the 

anticipated next hop receiver such that the energy consumption rate per unit information 

transmission can be reduced. 

3.1. Non-Cooperative Game for Power Control 

Even though achieving agreeable QoS is crucial for users, they may not be willing to achieve it 

at arbitrarily high power levels, because power is itself a valuable resource. This motivates a 

reformulation of the entire difficulty using concepts from microeconomics and game theory. In 

this section, we will use such a reformulation to develop a mechanism for power control. The 

goal of this work is to control the total transmission power consumption of the sensor nodes in 

the VMIMO-WSN.  The game is considered when source node ‘i’ is transmitting to destination 

node ‘j’. A strategic game is considered which is a model of interacting decision-makers. In 

recognition of the interaction, the decision-makers are referred as players. Each player has a set 

of possible actions. The model captures interaction between the players by allowing each player 

to be affected by the actions of all players, and not only by his or her own action. 

The existence of some strategy sets p1,p2,…pN+1 for the nodes 1,2….N+1 is assumed. These sets 

consist of all possible power levels ranging from the minimum transmit power pmin to maximum 

transmit power  pmax . In this game, if node 1 chooses its power level p1, and node 2 chooses its 

power level p2, and so on, then, 

{ }1, 2 N+1
p= p p … .p                              (4) 

This vector of individual strategies is called a strategy profile. The set of all such strategy 

profiles is called the space of strategy profiles P′. The game is played by having all the nodes 

concurrently pick their individual strategies. This set of choices results in some strategy profile 

pε P′, and is called as the outcome of the game. At the end of an action, each node iεI receives a 

utility value,          

i i i iu (p) = u (p ,p )−                                  (5) 

p-i is the strategy profile of all the nodes but for the i
th
 node.  

The utility to any one node depends on the entire strategy profile. During every game, the node 

decides whether to transmit or not, rise or lower its power level, and chooses a power level if it 

decides to transmit. The ith node has control over its own power level pi only, and the utility if a 

node is transmitting is given as [30] 
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i i i i

i

br
u (p , p )= f ( )

Fp
− γ                       (6) 

 

where,       

b      is the number of information bits in a packet of size F bits 

r       is the transmission rate in bits/sec using strategy pi 

f(γj) is the efficiency function which increases with expected signal to noise ratio (SNR) of the     

receiving node.  

The efficiency function, is defined as ( ) ( )
F

j ef γ = 1-2P  

Where, Pe is the bit error rate (BER) and it is a function of SNR. With a noncoherent frequency 

shift keying (FSK) modulation scheme, 
j- γ

2
eP = 0 . 5 e  , with a differential phase shift keying 

(DPSK) modulation scheme j-γ

eP = 0 .5 e ,  and with a binary phase shift keying (BPSK) 

modulation scheme, jγ

e
P = 0 .5 e  . 

where γj  denotes the expected SNR of node j.  

It is assumed that the utility value obtained by a node when it decides not to transmit is 0. 

For a VMIMO-WSN, the net utility is given by  

 

( )

( )

R

T R

N
j

i i i jmin N ,N
j=1 i

i 1 T R

br
u (p , p )= f ( )

p
F

min N ,N

 −

=

γ∑
∑

                           

                         (7) 

where, NT,NR are the number of cooperative sensors which act as VMIMO antennas. 

The net utility is obtained by considering the penalty incurred by a node. The penalty incurred 

accounts for the energy drained by the nodes with the usage of transmission power. If the 

strategy of the ith node is to transmit at signal power pε P′, the cost incurred is a function of pi, 

which is denoted as A(pi). pi is a random variable denoting transmitting signal power of i
th
 node. 

( )i iA p =k×p                 (8) 

where k is the scaling factor. 

 

The net utility   

u���� � � u�	p�, p��   � A	p�    if transmitting
        0                                     if not transmitting�                                 (9)    

A node cannot transmit at arbitrarily high power and must make a decision on a maximum 

threshold power pt. Exceeding this threshold will bring in non beneficial net utility for the node. 

A node transmits at a power level pi  such that 0< pi ≤ pt. As far as Nash equilibrium point is 

concerned, the expected net utility for transmitting and for being silent should be equal at the 

threshold, i.e., pi = pt .  

F

s ep 1 (1 p )= − −                                                                    (10) 

where, ps is probability of successful transmission of a packet containing F bits from node ‘i’ to 

node ‘j’. 

4. RESULTS 

For performance evaluation, it is assumed that a source node is transmitting data to a destination 

node. The destination node not only hears from source but also from other neighbouring nodes 

if they are transmitting. If γj  is the SINR alleged by destination, then the bit error probability 
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for the link is given by some inverse function of γj. The bit corruption is assumed to be 

independently and identically distributed. The simulation was carried in MATLAB 7.8 and the 

simulation parameters are given in Table.1. The performance of the proposed VMIMO-WSN 

using game theoretic approach is evaluated in terms of net utility and power efficiency, for 

various power levels and varying channel conditions.  

 

Table 1. Simulation Parameters 

 

 Simulation Parameter Description  

Transmission Power  	pmin,pmax 1mW, 100mW 

Signal to interference noise ratio (SINR) -15dB to 15dB 

Number of information bits per frame (b)  32 bits 

Number of bits per frame  (F) 40 bits 

Modulation BPSK, DPSK, FSK 

Data Transmission rate  1 Mbps 

Number of transmitting and receiving antennas (NT, NR ) 2,2 

 

4.1 Average Probability of Error 

In the receiver side the bit error rate is affected by transmission channel noise, interference, 

distortion and fading. Figure 2 gives the average probability of error for different values of 

SINR(dB) alleged by node j.  

 
 

Figure 2. Average probability of bit error 

The result shows that with improvement in channel condition, the average bit error rate 

decreases i.e., in all the cases, the average probability of error decreases monotonically with 

SINR. DPSK and FSK exhibit higher error rates compared to BPSK which makes BPSK 

appropriate for low-cost passive transmitters. This feature enables BPSK to be used as the 

modulation scheme in IEEE 802.15.4, 868–915 MHz frequency band.  
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4.2 Probability of Successful Frame Transmission 

The primary concern of power control problem is to achieve a maximum of frame success rate, 

while inducing minimal power consumption. The probability of successful frame transmission 

is derived by considering the channel conditions and the modulation scheme. Figure 3 shows the 

frame success probability for different values of SINR(dB) perceived by node j. The results 

show that with increase in SINR, the average bit error rate decreases which in turn increases the 

probability of successful transmission. DPSK and FSK incur a higher probability of bit error 

compared to BPSK, which in turn leads to higher probability of frame error. 

 

Figure 3.  Probability of successful transmission 

4.3 Power Efficiency 

The performance of a modulation scheme is often measured in terms of its power efficiency.  

With the probability of successful transmission defined, the desired transmit power level for a 

link over which the packets are to be transmitted needs to be determined.  Before doing so, the 

expected power consumption has to be considered. A scenario where a node is allowed to 

retransmit a packet if a transmission is unsuccessful, and it continues to retransmit until the 

transmission is successful is considered. Let the power level chosen by the transmitter node be 

P, and there are (n-1) unsuccessful transmission followed by successful transmission. The 

expected power efficiency for power level P is an inverse function of the expected power 

consumption. Then, the optimal transmit power is the power level, which will maximize the 

expected power efficiency. 

Power efficiency describes the ability of a modulation technique to preserve the fidelity of the 

digital message at low power levels. Figures 4, 5 and 6 show the power efficiency attained both 

in the case of conventional and VMIMO scheme for different values of SINR. If SINR is low 

and transmitting power P is high, the power efficiency is almost zero. During worse channel 

conditions, a node should not transmit and if transmitting it only increases the power 

consumption. The result indicates that the increase in power efficiency in the case of VMIMO-

WSN is due to the exploitation of multiple antennas used during transmission and reception. 
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Figure 4. Power efficiency for SINR= -5dB 

 

Figure 5. Power efficiency for SINR= 5dB 
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Figure 6. Power efficiency for SINR= 10 dB 

At higher SINR, a node should transmit at low power to maximize its power efficiency and in 

this case all the modulation schemes considered provide near equal performance. 

4.4 Net Utility 

A non cooperative game model is adopted in which each node tries to maximize its net utility. 

Net utility is computed by considering the benefit received and the cost incurred A(pi) for 

transmissions as discussed in section 3.1.  Figure 7 and 8 shows the disparity of the net utility 

with increasing transmitting power. The game is formulated such that there will be an optimal 

value of pi, beyond which the net utility will only decline. A subset of nodes is assumed to be 

active and operate with fixed strategies. In VMIMO the subset of nodes cooperate to transmit 

the data from source to destination.  

 

          Figure 7. Net utility for uniform discrete power level 
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Figure 8. Net utility for non-uniform discrete power level 

For any viable link, the transmitter node calculates the optimum pi (0< pi ≤ pt ) such that the net 

utility function is maximized. When the transmitting power is 15mW, VMIMO-WSN provides 

an improvement of 5% in net utility as compared to the conventional scheme. As the 

transmitting power is increased further, at an optimal pi, there is an increase in net utility by 

27%.  From the graph, it is intuitive that a transmitting power level of 35mW gives the best 

response for the node. It is also evident from the graph that even if the node unilaterally changes 

its strategy and does not transmit with the optimum transmitting power level, the node will not 

get its best response and will not be able to reach Nash equilibrium. The Nash equilibrium point 

is the best operating point to increase the traditional utility function. 

5. CONCLUSIONS 

This paper provides a non cooperative game theoretic approach to solve the problem of power 

control found in wireless sensor networks. The nodes in the sensor network cooperate to 

transmit the data from source to destination. A utility function with an intrinsic property of 

power control was designed and power allocation to nodes was built into a non-cooperative 

game. The performance and existence of Nash equilibrium was analyzed. In the case of 

VMIMO-WSN the node transmits only when the channel conditions are good and its 

transmission power is below the threshold power level. Results show that the game theoretic 

approach used in VMIMO-WSN enhances the net utility by minimizing the power at which the 

nodes transmit.  The outcome of the simulation results also show the desired power level at 

which the nodes should transmit to maximize their utilities.    
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