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Abstract.  
 
Digital photography faces the challenges of image storage, retrieval and provenance at the consumer and 

commercial level. One major obstacle is in the computational cost of image processing. Solutions range 

from using high-throughput computing systems to automatic image annotation. Consumers can not 

dedicate computing systems to image processing and handling nor do consumers have large-scale image 

repositories to make automatic image annotation effective. Nevertheless, we consider an alternative 

approach: reducing computational cost in image processing. Using a 25,000 image collection, we consider 

using a sub- set of image features to evaluate image similarity. We discover several robust features 

displaying comparable relevancy performance with the additional benefit of reduced processing cost. 

 

1. Introduction 

 
The rise of digital photography has grown enormously in the past several decades due to the 

prevalence of digital cameras. As a byproduct, consumer photography has soared and creates a 

new challenge of how to organize and share personal images. The record keeping of family 

events, special occasions and memorable moments becomes cumbersome since storage of digital 

images are spread amongst folders on a personal computer, portable storage devices and photo 

sharing portals. No longer are photo albums purely in a physical form with dry-mount, slip-in or 

self-adhesive magnetic options. 

 

Photo-taking has become relatively inexpensive since digital cameras do not require photo film. 

As a result, users tend to take many more photos and, some- times, these photos are of the same 

or similar images. An amateur photographer must then perform the photowork of downloading, 

filtering, storing and sharing their photo collection [15] making use of multiple storage devices. 

Due to the data capacities of digital cameras, users frequently opt to use their cameras as storage. 

If a photo is important for sharing or as a keepsake, personal computers or external storage 

mediums e.g. a USB drive tends to become the new storage device. For photo-sharing, images are 

stored on web-based servers to minimize the data load on email accounts. 

 

The challenge that consumer photography faces is supporting a streamlined photowork process on 

one hardware component. Each storage device described above covers specific photowork 

activities. Personal computers are used as image editing and storage, USB drives serve as an 

archive and photo-sharing portals display the recent keepsakes. One major hinderance in properly 

supporting con- sumer photography is in the computational cost of image processing. Image 

retrieval research tends to focus on commercial photo collections which takes advantage of high-

throughput computing systems. With high performance machinery, image categorization, archival 

and retrieval has a low computational cost and time. 
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Personal computers have multifaceted uses and can not dedicate all of its resources to image 

processing. The reduction of image processing cost can allow for improved photowork 

capabilities on a desktop computer. In this paper, we address the retrieval aspect by reducing the 

image processing cost. The feature extraction stage of image processing is costly and usually 

performed offline in many image retrieval research. We identify features that are common in 

image processing, including color histogram, color moment, homogeneous texture, texture edge 

and texture tamura, and test the robustness of each feature in effectively/accurately returning 

relevant results. 

 

The contributions of this paper are: (1) discuss the benefits and disadvantages of common 

features color histogram, color moment, edge histogram, homogeneous texture, texture edge and 

texture tamura, and (2) compares the result accuracy of using all or a subset of these image 

features on a 25,000 MIRFLICKR image database. 

 

2. Related Work 
 

Content-based image retrieval research has three focuses: image features, data analysis methods 

and image datasets. Image features can be enhanced [9] or creating new features [4, 5, 16, 23] 

with the expectation that better semantic information can be extracted through the low-level 

visual descriptors. To evaluate the usefulness of the image features, clustering and/or 

classification techniques [4, 5, 7, 10, 22, 23] are designed to efficiently determine the most 

relevant images. This evaluation may be biased due to the image dataset used in the experiment. 

In small datasets, clustering models are applied to identify similar images where larger datasets 

make use of classification methods are intended to gauge the repeatability of the assignment 

policy for similar images. These datasets vary in their color palette (color or grayscale), number 

of images (1K-12K), image content (faces, landscapes, indoor/outdoor, etc.) and average image 

size. Ultimately, the scalability of evaluating heterogeneous large-scale image datasets has 

become the growing problem. 

 

In managing digital photos, management systems tend to focus on the classification of consumer 

photography [1–3, 13]. The EXIF metadata embedded in jpeg images captures the timestamp and 

other distinctive characteristics of photos. However, if the original photograph is deleted or 

modified, the timestamp data is adjusted. The change in timestamp can make classification in 

photo management systems difficult. Boutell et al. [2, 3] consider indoor-outdoor and sunset 

detection using camera metadata such as timestamp data to improve classification performance. 

The EXIF metadata cues outperforms content-based cues, given the caveat that the EXIF 

metadata does not alter. EXIF metadata has also been used to cluster photographs with 

corresponding geographical information [19], but only newer digital cameras have GPS data in 

EXIF metadata. 

 

Image collections have been the focus of a majority of image retrieval research e.g. [8,12,14]. 

Datta et al. [8] survey over 300 publications on image retrieval contributions, automatic image 

annotation, and introduce new related subfields. Huiskes et al. [12] outlines three challenges to 

image retrieval relevance feedback: image representation quality, cost and inconsistency of 

relevance feedback and topical ground truth. For consumer photography, the image quality tends 

to be better than commercial-use photos while relevance feedback and ground truth 

determinations are highly subjective making consistent evaluations and repeti- tive results 
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difficult. Ke et al. [14] finds near-duplicates for cases of forgery and copyright violations, but 

requires image preprocessing and numerous optimiza- tions to achieve good performance. 

 

To handle the complexity of image search, researchers typically either perform processing 

optimizations [21] or use annotations [6]. Annotations are recognized as subjective, sometimes 

generic, descriptions without semantic perceptions. For example, a phrase ‘little boy running 

away from man in park’ would be tagged as {boy, man, park} where the relationship between the 

boy and man and name of the boy, man and park are unknown. In consumer photography, we 

would like to know who are the boy and man in the picture and where the park is located. The 

work in [21] shows the optimization of mean and standard deviation computation through single-

loop vectorization led to an average speedup of 1.85. However, the image size can be considered 

small (maximum size of 4096 x 4096) as consumers desire high quality pictures as keepsakes. 

The tradeoff observed in both approaches is the off-line preprocessing stage to control 

performance time and use of business-scale computing systems, which can not be replicated for 

personal use. 

 

The developing subarea of consumer photography has revealed other limita- tions and 

applications that commercial-use photography do not address. For ex- ample, a human subject 

study in [18] documents the concern for privacy and lack of integration with current 

communication channels. With a reduction in image processing costs, the users gain more control 

of personal images without relying on photo-sharing portals. Consumer-driven applications using 

photography are being designed and implemented for various purposes [11]. The Bookmarkr 

system [11] constructs a digital-physical link between a digital photo and the print photo in order 

to better catalog print photos from the original digital version. Due to a heavy preprocessing load, 

Bookmarkr can not be easily executed on personal computers. 

 

In these prior works, image processing is circumvented in some manner to provide better 

efficiency. Traditionally, multiple features represent an image dig- itally as more information is 

better for more accurate performance. To the best of our knowledge, we are the first to challenge 

this notion in order to make consumer photography become more accessible to real-world 

applications. 

 

3. Robustness Discovery 
 
In this section, we first discuss two existing methods, Euclidean distance and Feature 

Independent, in identifying image similarity using features. Then, we propose the use of a single 

image feature to determine closeness of an image to a query image. The Feature First relies on 

one image feature for all queries. For each existing and proposed method, we examine the impact 

of computational cost. 

 

To compute image similarity, the image collection C = Q ∪ Rq where Q represents the query 

images and Rq denotes the set of relevant images for each query image q ∈ Q. Each image is a 

collection of features F. A feature captures a specific quality of an image that is represented in a 

numerical form. We have features F
1
, . . . , F

n
 in which each feature F

i
 comprises of dimensions 

such as F
i
1,..., F

i
m. We refer to the rank order of a dimension as a input ranker. The input rankers 

serve as input into the Average method, which orders according to the average rank of each 

image. In our experimentation, we impose the use of the first K for the input rankers and 

aggregate ranker (result of Average method). 
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Existing Approaches 

 

Euclidean Distance (ED).  
 

A common approach to determining similarity is using a distance function such to maximally 

leverage the image contents and balance a dimension’s importance and independence in relation 

to other dimensions. For simplicity in image processing, researchers assume that the dimensions 

are equally important and independent. Hence, ED is typically selected as the distance function 

since it is best suited for finding the similarity between two images. ED relies on magnitude 

comparisons of each dimension that can bias the positive and negative intermediate differences 

across dimensions. On a positive note, partial matching of a query image’s dimension can be 

measured and incorporated into the final computed value. 

 

Minkowski Form. If the dimensions are equally important and independent, then the Minkowski 

distance is best suited to find the similarity between two images. If p=2, then we have the 

Euclidean distance. 

 

dist(q,c)=(Σ1≤f≤nΣ1≤d≤m | c
f
d −q

d
f | 

p
)

1/p 

 

For ED, each dimension of the features are accessed over the entire image collection. Then the 

resulting similarity value for each image is sorted. The computational complexity becomes O(c ∗ 

n ∗ m + c log(c)) where c is the number of images in C, n is the number of features, m is the 

number of dimensions per feature and cost of the mergesort algorithm. 

 

Feature Independent (FI) [17].  
 

Each dimension of every feature is considered individually as an independent contributor to the 

similarity evaluation. Thus, repeatedly observed images across features can be identified and 

improve their likelihood to appear at the top of the rank list. In strict contrast to more traditional 

methods ,such as Euclidean distance, partial matching is unavailable as only multiple appearances 

of exact match images can potentially elevate an image’s ranking. 

 

1: for feature f do 

2:  for dimension d do 

3:   for candidate c do  

4:    simd =dist(qd
f
, cd

f
) 

5:   rd = sort(simd) 

6:   inputs ← inputs ∪ rd  

7: rA =A(inputsK) 

8: return rK
A
 

 

For FI, the computational cost increases since mergesort is performed after each dimension is 

processed. Hence, the computational complexity becomes O(c∗ n∗m∗clog(c)). 

 

The major distinction between ED and FI is in the ranking scheme. ED is a score-based ranking 

function using the actual raw value of dimension values. In contrast, FI considers rank-based 

ordering in which dimension similarity is evaluated as a monotonically increasing function. 
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Score-based ordering may be more accurate in computation; however, rank-based ordering can 

better fulfill the information need of the request. 

 

Features 
 

The features commonly used in computing the Euclidean distance are color histogram, color 

moment, homogeneous texture, texture edge and texture tamura. There are other features such as 

color layout, edge histogram and scalable color, but they are not as informative. Below we 

discuss each selected feature in addition to its strengths and disadvantages. In our experimental 

evaluation, we produce the top results of the individual features according to the results observed 

in [17] by aggregating the dimensions using the Average method. 

 

Color Histogram (CH). A 5-dimension image feature that aims to represent the distribution of 

color throughout an image using the RGB values within the pixels. We construct the color 

histogram from the RGB color space reducing the 256 colors into 4 bins. Bin 0 corresponds to 

intensities 0-63, bin 1 contains the 64-127 intensities, bin 2 contains the 128-191 intensities, and 

bin 3 contains the 192-255 intensities. We count the number of pixels that fall within each RGB 

color intensity. CH provides a general overview of the colors within an image and unaffected by 

image rotation; however, if the color palette is not uniform across the relevant images, then CH 

may not be a distinctive feature. 

 

Color Moment (CM). The 2-dimensional feature also relies on distribution of color throughout an 

image. The first color moment is defined as mean: 

 

Ei = ∑j=1(1/N)(pij) 

 

The mean represents the average color value within the image. The second color moment is 

defined as standard deviation: 

 

δi = √((1/N) ∑ (pij −Ei)
2
) 

 

The second color moment represents the variance in the distribution. Image similarity between 

two image distributions is defined as: 

 

dmom(qi, ci) =w1|Ei
1
 − Ei

2
| + w2|δi

1
 − δi

2
 | 

 

Thus given a pair of images, they can be ranked in which higher dmom values denotes less 

similarity and are ranked lower. CM has several variants, such as three moments (mean, variance 

and skewness) for each color component of RGB, that do not result in greater performance. The 

efficiency and effectiveness of CM tends to parallel or better that of CH with similar 

disadvantages. 

 

Edge Histogram (EH). EH has 80-dimensions in order to represent the distribution of the 5 

types of edges within each sub-image. For each image, it is divided into 16 equally sized sub-

images, or 4x4 non-overlapping blocks as shown in Figure 1a. Within each sub-image, the edge 

type is classified as: vertical, horizontal, 45-degree diagonal, 135-degree diagonal and free-form 

edges as shown in Figure 1b. Given the 16 sub-images and 5 edge types per sub-image, we have a 
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total of 80 histogram bins. Hence, a sub-image’s histogram denotes the frequency of each edge 

type revealing some of its semantics based on the sub-image’s location. EH is sensitive to scaling 

and rotation. 

 

Homogeneous Texture (HT). HT has 32-dimensions meant to measure the mean and standard 

deviation of the image, energy, and energy deviation values of Fourier transform of the image 

from partitioned frequency channels based on the human visual system. The human visual system 

approach to texture featuring relies on a sub-band representation, which divides the spatial 

frequency domain into channels. HT is equally partitioned in 30 degree angles along the angular 

direction and in an octave division along the radial direction as shown in Figure 2. This channel 

layout is center-symmetric resulting in sparse frequency samples in low frequency regions (higher 

numbered channels) and lack of texture information [20]. To increase the usefulness of texture 

information in this case, Radon transform scheme is applied to the images by transforming the 2D 

image into a 1D projection. Ideally, HT captures the frequency of repetitive patterns within an 

image. If relevant images do not have such patterns, HT will not provide a significant information 

gain. 

 

Texture Edge (TE). With 9-dimensions, TE focuses on identifying the bound- aries of objects 

within an image. These boundaries are located by isolating the different color patterns for a 

particular object as sky and tree have different color palettes. Since a color distinction is used, 

similarly shaped objects can be misclassified resulting in inaccurate ranking. 

 

Texture Tamura (TT). Texture tamura, with 6-dimensions, captures the coarse- ness, contrast, 

directionality, linelikeness, regularity and roughness of an image which is based upon high level 

perception concepts. Coarseness computes the distance between notable grey level spatial 

variations to the size to the primitive elements. Contrast measures how these grey levels fluctuate 

within the image and assesses the level of black or white bias. Directionality compares the 

frequency distribution of local edges against their directional angles counterparts. Linelikeness, 

regularity and roughness are highly correlated to the coarseness, contrast and directionality 

dimensions. Roughness is a summation of the coarseness and contrast values, linelikeness is the 

average coincidence of edge directions and regularity computes the normalized summation of the 

standard deviations of coarseness, contrast, directionality and linelikeness. Unfortunately, TT 

tends to not be very effective with respect to finer texture distinction. 

Feature First Algorithm (FF). To combat the need for a priori knowledge, we consider the  
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robustness of a single image feature. Prior work purports using multiple features to gain better 

information and higher performance of the images. However, multiple features also increase the 

computational cost of image processing. We challenge this notion through our Feature First 

method. In the code snippet below, we process a single feature’s dimensions. We rank order the 

images according to a distance measure e.g. Euclidean distance. Hence, the dimensions transform 

into input rankers for the Average aggregation method. The result of the Average method is 

returned to the user. 

 

1: for dimension F
i
j of feature F

i
 do 

2:   for candidate c do  

3:    simd =dist(qd
f
, cd

f
) 

4:   rd = sort(simd) 

5:   inputs ← inputs ∪ rd  

6: rA = Average(inputsK) 

7: return rK
A  

 

When considering our Feature First algorithm, the computational cost is dramatically reduced to 

O(c ∗ i ∗ j∗ c log(c)) where ı represent one of the image feature and j denotes i’s dimensions. In 

the most costly case, using only feature HT would decrease the number of dimensions from 54 to 



International Journal of Web & Semantic Technology (IJWesT) Vol.3, No.2, April 2012 

26 

32, which is a 40% reduction in dimensionality. As consumer photography data grows, a 

reduction of processing time while maintaining accuracy becomes of greater importance since 

individuals will not have access to extensive high performance hardware and software to provide 

a low response time. 

 

4. Experimental Evaluation 
 
To discover the most descriptive feature, we test on a 25,000 image collection [12] consisting of 

24 directories. In Table 1, we list each directory and the number of images containing that 

particular tag. These tags are very general; however, these keywords are the most popular tags 

identified by Flickr in 2008. These images are categorized in multiple directories. We use each 

image as the query image, thus executing 25,000 queries. We extract the color histogram, color 

moment, edge histogram, homogeneous texture, texture edge and texture tamura features for each 

image. 

In order to check the accuracy of the query results, we compute the precision and reciprocal rank 

for a given K represents number of returned images (K =10, 20, 50). The K-value of 10 is 

selected since users tend to only consider the first 10 results while the results from higher K 

values show the trajectory between the relevant and retrieved results. We represent the likelihood 

of finding relevant images in our retrieval as l(sK). In the case of the top-10, l(s10) = 10/25000 = 

0.04%, for the top-20, l(s20) = 20/25000 = 0.08% and for the top-50, l(s50) = l(s50) = 50/25000
 
= 

0.20%. Hence the following results are based upon the retrieval of < 1% of the image collection 

size. 

 

The precision P is calculated by taking as input two ranked lists mi,mj and finding the number of 

common elements in relation to the number of returned elements K. Formally, precision is 

defined as follows:  

Precision is a commonly used measure to distinguish between relevance and non-relevance. 

Recall, another popular performance measure, is focused on the probability of receiving relevant 
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results for a given query. We forego using recall since the directory sizes vary drastically e.g., 

259-10373. The recall performance measure is, therefore, significantly biased in this image 

collection. However, neither precision nor recall indicate the degree of relevance, e.g. the rank 

position of relevant data. To assess relevancy based on rank position, we use the reciprocal rank 

measure. Formally, reciprocal rank is defined as follows: 

where l, q (l = q or l ≠ q) refer to a position in a ranking. The RR max value at top-10, top-20 and 

top-50 is 2.93, 3.60 and 4.50, respectively. 

 

Our robustness evaluation measures the quality of performance by restricting which image 

features contributes towards the image similarity assessment. As we limit our image features, we 

also examine the impact of the K-value on identifying more relevant images. 

 

In the first experiment, we consider all image features, but we evaluate the performance using 

two different algorithms. The traditional Euclidean distance is compared to our Feature 

Independent (FI) algorithm as the performance is shown in Table 2. We bold the highest precision 

and reciprocal rank values for each K. The Feature Independent algorithm outperforms the 

Euclidean distance for all K values. Under precision, the difference between ED and FI decrease 

as K increases. We hypothesize that FI’s image feature dimension ranking leads to more 

randomized order of images as K increases. The nuances of the raw image feature dimension 

scores are removed due to the monotonically increasing sequence of rank ordering. In contrast, 

FI’s reciprocal rank values show that as K increases, the relevant images are appearing higher in 

the ordering than ED’s reciprocal rank values. 

In the second series of experiments, we aim to identify robust image features that produce 

precision and reciprocal rank results comparable to those of FI’s results. We consider image 

feature pairs to see if the transitivity property holds. We hypothesize that ED and FI have 

incorrect (noisy) image features, which is compounded by using all the image features. These 

feature pairs will limit and identify the noisy features from the robust features. 
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Table 3 displays the precision and reciprocal rank performance for the top- 10, top-20 and top-50 

results for each image feature pair. We indicate in bold the feature pair results which have better 

performance than Table 2, in which ED and FI methods use 134 dimensions. For each top-K, we 

identify the best performing image feature pair. CMTT (8 dimensions) gave the best precision of 

60.05% (3.15% improvement) and 57.33% (0.77% improvement) when P20 and P50, respectively. 

When P20, CHCM (7 dimensions)has 58.82% precision with an 1.77% improvement over FI’s 

top-20 precision results. The reciprocal rank results show a 9.25% improvement with CHCM 

image feature pair, 8.88% improvement for both CHCM and CMTT image feature pairs and 

7.14% improvement for CMTT image feature pair of for the top-10, top-20 and top-50, 

respectively. Even though the number of relevant results increased slightly (< 4%), the newly-

found relevant images can include rank positions as high as rank 11, 12 or 13 resulting in 7% − 

9% performance improvement. Rank 11 would produce reciprocal rank value of 1/11= 0.91, rank 

12 would produce reciprocal rank value of 1/12 = 0.83, rank 13 would produce reciprocal rank 

value of 1/13 = 0.77. 
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Given the performance of CMTT and CHCM image feature pairs, we test if a single image 

feature outperforms the image feature pairs and thus the FI approach. As expected, CM, CH and 

TT image features performed well for the top-10 and top-20 on both performance measures. 

However, when P50, EH outperforms CMTT by 2.95%, but did not transfer to significant 

improvements in terms of reciprocal rank (with a value of 2.57). We hypothesize that 80-

dimension EH produces a vastly different rank ordering of the images from the other image 

features. Thus, the EH’s pairing with other image features can not rival those of CMTT and 

CHCM. 

 

Through the experimental evaluation, we support the findings in [17] that the Feature 

Independent algorithm has better performance than the Euclidean distance with a larger image 

collection and more queries. Of the 6 image features, we discover CH (color histogram), CM 

(color moment) and TT (texture tamura) as the most robust features by providing consistently 

better performance over the other image feature pairs, FI and ED approaches. With all 134 

dimensions needed to properly execute ED and FI approaches, time complexity (and 

computational cost) becomes a bottleneck; however, we discover that at most 8 dimensions can 

produce similar or better performance using image feature pairs or the individual image features 

themselves. The image feature pairs and individual image features with lower precision and 

reciprocal rank may be acceptable given the quicker query response time. The potential to 

determine and exploit the image feature robustness can allow for greater flexibility in image 

storage, retrieval and provenance. 

 

5. Conclusion 
 
The challenge that consumer photography faces is supporting a streamlined photowork process on 

one hardware component. Personal computers have multi- faceted uses and can not dedicate all of 

its resources to image processing. We identify features that are common in image processing and 

test the robustness of each feature in effectively returning relevant results. We executed 25K 

queries using each image in the MIRFLICKR image database as a query image. We compared the 

precision and reciprocal rank of using all the image features (through the Euclidean distance and 

Feature Independent methods) with those that considered image feature pairs or an individual 

image feature. Given the limited number of relevant images for a category with a retrieval of < 

1% of the image collection, we discover that CHCM, CMTT, CH, CM and TT consistently 

provide good accuracy and, in most cases, better precision values than the Euclidean distance and 
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Feature Independent method. Hence, we can reduce our image feature dimensionality 95% (134-

dimensions to maximum 8-dimensions) while maintaining the performance. 

In the future, we plan to merge the image processing and image annotation concepts by 

investigating their level of commonality. Using the MIRFLICKR dataset, which has image 

annotations for most images, we want to compare similar images based on their annotations and 

based on their image processing for a given query image. The image processing image results 

may find similar which is not recorded within the image annotations. In contrast, image 

annotations may contain semantics that are difficult to detect using image processing. Hence, we 

can construct a hybrid mechanism to select image features for processing and isolate the semantic 

image annotations to retrieve more relevant images higher in a ranked list. 
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