
International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

DOI : 10.5121/ijwest.2013.4302 11

FORMALIZING BPEL-TC THROUGH Π-CALCULUS
Preeti Marwaha1, Hema Banati2 and Punam Bedi1

1Department of Computer Science, University of Delhi, New Delhi, India
preeti_andc@yahoo.com, pbedi@cs.du.ac.in

2 Department of Computer Science, Dyal Singh College, University of Delhi, New Delhi, India
bantihema@hotmail.com

ABSTRACT

WS-BPEL is way to define business processes that interact with external entities through web
service operations using WSDL. We have proposed BPEL-TC, an extension to existing WS-BPEL which
uses temporally customized Web Services (WSDL-TC) as a model for process decomposition and assembly.
WSDL-TC handles both backward compatible and incompatible changes and also maintains various
versions of the artifacts that results due to changes over time and customizations desired by the users. In
this paper, we are using pi-calculus to formalize Business Process Execution Language- Temporal
Customization (BPEL-TC) process. π -calculus is a model of computation for concurrent systems along
with changing connectivity of interactive systems. Pi-calculus is an extension of the process algebra CCS,
with added mobility to CCS while preserving its algebraic properties.

KEYWORDS
Web Services, WSDL, WSDL-TC, BPEL, BPEL-TC, π–Calculus, Temporally Customised Web Services

1. INTRODUCTION

A Web Service is a software application identified by a URI , whose interfaces and binding are
capable of being defined, described and discovered by XML artifacts and supports direct
interactions with other software applications using XML based messages via Internet-based
protocols [1][2]. Web services are used to expose the functionalities provided by the service
providers for the heterogeneous service consumers in a distributed and decentralized
environment. Changes in the web services desired over time results in a new version of the
service which is deployed at a new URL. Many a times, multiple customizations of the service is
required to cater the need of multiple set of users. This forces service provider to deploy multiple
Web Services customized for each set of users, which results in increasing cost of infrastructure
and maintenance. Since, multiple versions of customized Web Services are deployed multiple
times at different URLs, it is difficult and costlier to maintain, update and backup these services
and their data. Extensions of WSDL [3,4] i.e. WSDL-T [5] and WSDL-TC [6] aim at reducing
this cost by maintaining the different collaborative customized versions of operations of the Web
Service in a single deployment. The approach also manages access control of these operations to
their respective groups. WSDL-TC being an extension of WSDL-T is capable of managing
versions of each customized operation that resulted due to the changes in their business
requirements over a period of time. WSDL-TC also eases the task of Web Service administrators
as they have to manage the single instance instead of multiple instances of Web Services. WSDL-
TC defines different versions of the artifacts of the Web Services customized for different group
of users referred as Entities. By using WSDL-TC, it is possible to customize any valid version of
an artifact, available at a particular time for any client. This enables the service producer to create
customized functionality within a service for each Entity. Through WSDL-TC, it is possible to
customize temporal Web Service for multiple Entities running from a single Web Service
instance. Here, an Entity denotes the set of users with same requirements. An Entity may also be

mailto:preeti_andc@yahoo.com
mailto:pbedi@cs.du
mailto:bantihema@hotmail.com

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

12

a set of users categorized on the basis of access rights/privileges assigned to them. The approach
also isolates and maintains security among various Entities so that an Entity cannot have access to
the operations not authorized for them. A new set of tags {<customization>, <EntitySet>,
<Entity>, <AlsoApplicableTo>} have been introduced in the WSDL-TC. The function of the
<customization> tag is to contain one or more <Entity> tag(s), which specify the Entities/clients
for whom temporal Web Services are customized. The name attribute in the <Entity> tag can be
any qualified name and the value attribute in the <Entity> tag can be assigned with the user
defined Entity name. The user defined Entity name assigned to the value attribute is used to create
logical bundle of artifacts for a particular Entity. The artifacts that need to be customized can
have one or more <EntitySet> tags defined in their scope. EntitySet refers to the collection of
Entities that share same customization. The <EntitySet> tag should have one <Entity> tag defined
directly in its scope. This <Entity> defines a primary Entity. The <Entity> tag contains the
required set of elements of WSDL that are usually defined in that artifact e.g. Input, Output,
Outfault etc. in Operation artifact. If a customized artifact is required by multiple Entities then
one can assign the same artifact to them without redefining it. This can be achieved by
<AlsoApplicableTo> tag defined under <EntitySet> tag. The <AlsoApplicableTo> tag comprises
of one or more <Entity> tag(s), which define the Entities for which the customized artifact is
available, these <Entity> tag(s) defines secondary entities.

To formalize BPEL-TC we are using π calculus i.e. process calculus which is a part of Process
Algebra and is designed to consider the concurrent system whose configuration may change.

The rest of this paper is organized as follows: section 2 discusses the related work with respect to
BPEL formalization techniques that help in better understanding of BPEL. Section 3 discusses the
approach of BPEL-Temporal Customization (BPEL-TC) that tackles issues related with change
management and customization. The formal representation of BPEL-TC is explained using π
calculus in section 4. Section 5 explains the approach with the help of example of Travel Plan
Selection Process. Section 6 concludes the paper with merits of the approach.

2. RELATED WORK

Process algebra is mathematical framework that models the concurrent system of interacting
purpose [7]. R Milner [8] had introduced a new way of communication for which he developed a
theory of π calculus based on process Algebra. Many authors tried to represent Web Services that
interact with another Web Service through process algebra i.e. process algebra and their notations
help to make a clear understanding of interacting Web Services. Salaun et al. [9] gave mapping
between the process algebra and BPEL. Essential facets of Web Services are described using the
process algebraic approach by them. Boardeaux [10] suggested that using process algebra it is
possible to tackle several issues raised in the context of Web Services and the behaviour of
composite Web Services. It helps in the study of specification of process. Process algebras
provide a very complete and satisfactory assistance to the whole process of Web Service
development. There are many process calculi (CCS, TSTP, LOTOS, Promela etc.) and
accompanying tools (CWB-NC, CADP, MWB, SΠN etc) that offers important functionality.
Chirichiello et al. [11] used process algebra to introduce different communication models such as
synchronous and asynchronous communication. Brogi et al. [12] suggested formalism of
choreography proposal and discussed the benefits of formalization. He suggested that π calculus
is one of the Algebraic Process that is very adequate to Model check the Web Services mapped π-
calculus to BPEL process model. Chunyung et al. [13] proposed a process algebraic framework
that addresses the problem of compute information of all backend process that are involved in
Web Services. They designed a framework that provide a public view for atomicity and reveal
only partial process rather than the whole backend process.

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

13

Process algebra and their tools are used in the formal methods that help in the designing Web
Services and its verification. Ferrara et al. [14] designed a Framework for the verification purpose
of WSs and adding a two way mapping between abstract specification written using these calculi
and executable Web Services. He proposed two options either design and verify BPEL4WS by
using process algebra tools or design and verify process algebra and automatically obtaining the
corresponding BPEL4WS code. Different approaches can also be combined on the use of
different user level expressiveness, existence of reasoning tools, user expertise both for
verification and for the hierarchical refinement design method. Lucchi et al. [15] formalized a
novel orchestration language that improve the quality of BPEL specification and implementation.

3. BPEL-TC

In service-oriented environments, consumers use services for direct interaction or develop
applications that use other services. These applications use multiple Web Services and are called
composite Web Services. In literature, different ways of combining Web Services are referred to
as composite Web Services, Web Service orchestration or choreography. An orchestration is
defined using workflow languages such as BPEL [16], BPML and XLANG. Since, existing
specifications of the Business Process Execution Language (BPEL) is not compatible with the
specifications proposed in WSDL-T thus, a modification of existing WS-BPEL is proposed i.e.
BPEL-T [10]. BPEL-T is designed for defining the service flow for the services based on WSDL-
Temporal (WSDL-T). BPEL-T introduces a new attribute atTime. The atTime attribute has been
added to invoke, receive, reply, onEvent, and onMessage activities present in WS-BPEL. The
BPEL-T helps in easy and better management of business process. Further, BPEL-T is extended
to BPEL-TC[17] for aggregating the services based on WSDL-TC. Specific customized version
of the artifacts within the Web Service, defined in WSDL-TC, is invoked through partner links in
BPEL-TC process. As BPEL-TC process is used to orchestrate temporally customized artifacts of
the Web Services, BPEL-TC process should be able to detect and bind to a specific customized
version of the artifact of the Web Service. Another attribute forEntity is added to invoke, receive,
reply, onEvent, and onMessage activities present in BPEL-T in addition to atTime attribute. In
case, these are not specified, BPEL-TC process is able to bind some default version of the artifact
available in the Web Service i.e. base function defined in WSDL-TC.

3.1 Activities in BPEL-TC

The receive activity allows the business process to wait for a matching message to arrive from the
operation mentioned in the operation attribute of the receive activity. The receive activity
completes when the message arrives. The portType attribute on the receive activity is optional.
The optional message Exchange attribute is used to associate a reply activity with a receive
activity. Note atTime and forEntity attribute in receive activity in Listing 1. The value of atTime
attribute is compared with the value of the timeStamp attribute of the various versions of the
corresponding operation in WSDL-TC. The value assigned to forEntity attribute is compared with
the names of the Entities in an EntitySet for whom the operation is customized. The message is
received from the version of the operation customized for the Entity assigned to forEntity
attribute and whose timeStamp value is highest among all the timestamps which are less than or
equal to the value assigned to atTime attribute of receive activity. If atTime and forEntity
attributes are missing in the receive activity then the message is received from the base function
of the operation with validity status set to LATEST. Both version of the Operation as well the
version of the Entity should have valid validity status at the time assigned to atTime attribute.

<receive partnerLink="NCName" portType="QName"?
operation="NCName" variable="BPELVariableName"?
createInstance="yes|no"? messageExchange="NCName"?

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

14

atTime="xs:datetime" forEntity=”EntityName” standard-attributes>
standard-elements
<correlations>?
<correlation set="NCName" initiate="yes|join|no"? />+
</correlations>
<fromParts>?
<fromPart part="NCName" toVariable= "BPELVariableName" />+
</fromParts>
</receive>

Listing 1. receive activity in BPEL-TC.

The reply activity allows the business process to send a message in reply to a message that was
received by an inbound message activity (IMA), that is, receive, onMessage, or onEvent. The
combination of an IMA and a reply forms a request-response operation on a WSDL portType for
the process. The portType attribute on the reply activity is optional. If the portType attribute is
included for readability, the value of the portType attribute must match the portType value
implied by the combination of the specified partnerLink and the role implicitly specified by the
activity. The optional messageExchange attribute is used to associate a reply activity with an
IMA. The atTime and forEntity attributes helps in deciding to which version of the operations
customized for a particular Entity in WSDL-TC, a message is sent in reply to a message that was
received by an inbound message activity (IMA). If atTime and forEntity attributes are missing in
the reply activity then the message is replied to the base function of the operation and validity
status set to LATEST. Listing 2 shows the syntax of reply activity of BPEL-TC.

<reply partnerLink=”NCName” portType=”QName”?
operation=”NCName” variable=”BPELVariableName”?
faultName=”Qname”? messageExchange=”NCName”?
atTime=”xs:datetime” forEntity=”EntityName” standard-attributes>
standard-elements
<correlations>?
<correlation set=”NCName” initiate=”yes|join|no”? />+
</correlations>
<toParts>?
<toPart part=”NCName” fromVariable= “BPELVariableName” />+
</toParts>
</reply>

Listing 2. reply activity in BPEL-TC.

The invoke activity allows the business process to invoke a one-way or request-response
operation on a portType offered by a partner. In the request-response case, the invoke activity
completes when the response is received. The portType attribute on the invoke activity is optional.
If the portType attribute is included for readability, the value of the portType attribute MUST
match the portType value implied by the combination of the specified partnerLink and the role
implicitly specified by the activity. Listing 3 shows the syntax of invoke activity of BPEL-TC.

<invoke partnerLink="NCName" portType="QName"?
operation="NCName" inputVariable= "BPELVariableName"? outputVariable="BPELVariableName"?
atTime="xs:datetime" forEntity="EntityName" standard-attributes >
standard-elements
<correlations>?
<correlation set="NCName" initiate="yes|join|no"?
pattern="request|response|request-response"? />+
</correlations>
<catch faultName="QName"? faultVariable="BPELVariableName"?faultMessageType="QName"?
faultElement="QName"?>*

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

15

</catch>
<catchAll>? activity</catchAll>
<compensationHandler>?activity </compensationHandler>
<toParts>?
<toPart part="NCName" fromVariable="BPELVariableName" />+
</toParts>
<fromParts>?
<fromPart part="NCName" toVariable="BPELVariableName" />+
</fromParts>
</invoke>

Listing 3. invoke activity in BPEL-TC.

The version to be invoked depends upon optional atTime and forEntity attribute of invoke
element. The value assigned to atTime in invoke is compared with timeStamp values given to
different versions of port type/operation. The value assigned to forEntity attribute is compared
with the names of the Entities in an EntitySet for whom the operation is customized. The version
of the port type/operation customized for the Entity assigned to forEntity attribute and whose
timeStamp value is highest among all the timestamps which are less than or equal to the value
assigned to atTime attribute of invoke element is invoked. If atTime and forEntity attributes are
missing in the invoke activity then the base function of the operation with validity status assigned
as LATEST is invoked.

Similarly, onEvent and onMessage has atTime and forEntity attributes (as shown in Listing 4 and
Listing 5 respectively) and these values when compared with the timestamps and Entity Name
associated with various versions of operations helps in deciding which version of customized
operation is to be selected for the desired actions.

<onEvent partnerLink="NCName" portType="QName"? operation="NCName" (messageType="QName"
| element="QName")? variable="BPELVariableName"? messageExchange="NCName"? atTime="
xs:datetime" forEntity="EntityName">*
<correlations>?
<correlation set="NCName" initiate="yes|join|no"? />+
</correlations>
<fromParts>?
<fromPart part="NCName" toVariable="BPELVariableName" />+
</fromParts>
<scope ...>...</scope>
</onEvent>

Listing 4. onEvent activity in BPEL-TC.

<onMessage partnerLink="NCName" portType="QName"? operation="NCName"
variable="BPELVariableName"?
messageExchange ="NCName"? atTime="xs:datetime" forEntity="EntityName"> >+
<correlations>?
<correlation set="NCName" initiate="yes|join|no"? />+
</correlations>
<fromParts>?
<fromPart part="NCName" toVariable="BPELVariableName" />+
</fromParts>
activity
</onMessage>

Listing 5. onMessage activity in BPEL-TC.

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

16

4. Π -CALCULUS FOR BPEL-TC

π –calculus [8] is a model of computation for concurrent systems. It is based on process
algebra and is most suitably defines processes which are able to exchange names over
channels. The syntax of π-calculus helps representing processes, their parallel
composition, synchronous communication among processes, replication of processes, and
nondeterminism. π-calculus consists of Action and Action Prefix. Action Prefix
represents either sending or receiving a message (a name), or making a silent transition ().
Table 1 [7] describes Action Syntax and the set of π-calculus.

Table 1. π-calculus
Action Syntax Process syntax

P::= x (y) receive y along x
x(y) send y along x

silent action

P:=0(null)
|Σ iϵI πiPi|(Prefixed Sum)
|P1|P2(Parallel composition)
|(νa)P (Restriction)
|!P (Replication)

Here we are extending the formal specification of BPEL process provided by Abouzaid [7] to
describe activities and process of BPEL-TC. The annotations associated with actions specify
information about the partnerlink, porttype, operation,atTime and forEntity.

1. PTC = x(y){pt:PT,pl:PL, atTime=date-time,forEntity=ESName} denotes the receive activity of BPEL-TC
process. Through partnerlink PL, porttype PT the message is received from the version of the
operation x customized for the Entity ES assigned to forEntity attribute and whose timeStamp
value is highest among all the timestamps which are less than or equal to the date-time value
assigned to atTime attribute of receive activity.

<receive partnerlink=PL portType=PT operation =x variable =y atTime=date-time
forEntity=ESName>

2. PTC = x(z){pt:PT,pl:PL,atTime=date-time,forEntity=ESName} denotes the reply activity of BPEL-TC process.
<reply partnerlink=PL portType=PT operation =x variable =z atTime=date-time
forEntity=ESName >

3. PTC={x(y).x(z)}{act:invoke,pt:PT,pl:PL, atTime=date-time,forEntity=ESName} denotes the invoke activity of
BPEL-TC process.
<invoke partnerlink=PL portType=PT operation =x inputvariable =y outputvariable=z
atTime=date-time forEntity=ESName>

Table 2 represents some expressions of BPEL-TC process in π calculus.
Table 2. π-calculus for BPEL-TC activities

π-calculus BPEL/BPEL-TC Remarks
{0} <invoke partner = “” operation= “” > Inert Process

{νxQTC}{var1,var2,var3}

<scope standard-attributes>
<variables><variable
name=x/></variables>
<correlationSets>CS</correlationSets>
<faultHandlers>FH</ faultHandlers>
<compensationHandler>CH

Scope breaks business
process into logical
units. It allows to
define variable that are
visible and usable
within a scope level.

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

17

< /compensationHandler >
<eventHandlers>EH</eventHandlers>
Activity
</scope>

{!QTC}

<while condition=”exp=’yes’”>
<sequence>
<activity>
<activity>
</sequence>
</while>

It defines iterations of
the BPEL-TC Process.

{Q1
TC|Q2

TC}{act:flow}

<flow>
<activity>
<activity>
</flow>

Specifies Processes
that can be performed
concurrently.

{Q1
TC |Q2

TC }{act:seq}

or

Q1.y()|y(u).Q2

<sequence>
<activity>
<activity>
</sequence>

Sequential composition
by a parallel operation

{ {y(v1) Q1
TC + y(v2)

Q2
TC }{act:pick}

<pick>
<onMessage...variable=”v1”>
<...activity1...>
</onMessage>
<onMessage...variable=”v2”>
<...activity2...>
</onMessage>
</pick>

Pick BPEL Activity is
executed when it
receives one message
defined in its
onMessage tag [7].

5. EXAMPLE

In this section, we have chosen Travel Plan Selection Process as an example to advocate the use
of π calculus Process Algebra to describe and formalize Travel Plan BPEL-TC process. Travel
Plan BPEL process is summarized in Figure 1. On the reception of a request, initialized by the
customers of the service, and depending upon the need of the client, a travel plan is returned to a
customer. Two choices are available with the client, in Travel Plan A client can select the flight
service along with the hotel service, with recommendation of places to visit in that area. In the
Travel plan B users are provided with train and hotel booking only. Depending upon the
availability of seats and accommodation, a suitable travel plan is returned to the client.

Table 3 shows a piece of the BPEL-TC code corresponding to the Travel Plan Selection along
with the corresponding π calculus formalization. The table shows formalization for the request
and reply, declaration of message types, sequence and flow constructs, receive and invoke
activities for a BPEL-TC process.

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

18

Figure 1. BPEL-TC: Composite Service (WSDL-TC)

Table 3. Mapping of BPEL-TC to π-Calculus

BPEL-TC π Calculus

<Process name=”TravelPlan”>
TravelPlan(request,TravelPlanRespon
se)

Receive request

Select Travel Plan

A

Invoke

Assign

Reply request

B

invoke

Assign

Reply request

Reply to Client

ClientWS
(WSDL-TC)

External WS
(WSDL-TC)

External WS
(WSDL-TC)

Travel Plan Selection Process (BPEL-TC)

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

19

<Variables>
<variable
messageType=”TravelPlanRequestMess
age” name=”request”/>
<variable
messageType=”CurrentravelPlan”
name=”InfoMessage”/>
<variable
messageType=”TravelPlanResponseMes
sage” name=” TravelPlanAResponse”/>
<variable messageType=”
TravelPlanResponseMessage” name=”
TravelPlanBResponse”/>
........
</variables>

νrequest PTC

νInfoMessage PTC

νTravelPlanAResponse PTC

νTravelPlanBResponse PTC

.

.

.

.

.

.

<Sequence>
PTC= { P0

TC |P1
TC | P2

TC | P3
TC | P4

TC

}{act:seq}

<receive name=”TravelPlan”
partnerLink=”client”
portType=”TravelPlanRequest”
operation=”selectPlan”
variable=”Request”
createInstance=”yes”
atTime=”03/02/2010 10:23:23”
forEntity=”ES1”>

P0
TC= SelectPlan (request){pt=

TravelPlanRequest pl= client atTime=03/02/2010

10:23:23,forEntity=ES1 }

<invoke partnerLink=”currentPlan”
portType=”getTravelPlan”
operation=”getTravelInfoRequest”
inputVariable=”TravelInfoReq”
outputVariable=”TravelInfoResponse”
atTime=”03/02/2010 10:23:23”
forEntity=”ES1>

P1
TC={getTravelInfoRequest

(TravelInfoReq).
getTravelInfoRequest

(TravelInfoResponse) }{pt= getTravelPlan

pl= currentPlan atTime=03/02/2010

10:23:23,forEntity=ES1 }

<flow> P2
TC = {Q1

TC | Q2
TC }{act:flow

<invoke partnerLink=”TravelPlanA”
portType=”TravelPlan”
operation=”getInfoA”
inputVariable=”TravelPlanARequest”
outputVariable=”TravelPlanAResponse
”>

Q2
TC={getInfoA

(TravelPlanARequest). getInfo
(TravelPlanAResponse) }{pt= TravelPlan

pl=TravelPlanA atTime=03/02/2010

10:23:23,forEntity=ES1 }

<invoke partnerLink=”TravelPlanB”
portType=”TravelPlan”
operation=”getInfoB”
inputVariable=”TravelPlanARequest”
outputVariable=”TravelPlanAResponse
”>

Q3
TC={getInfoB

(TravelPlanBRequest).
getInfo(TravelPlanBResponse) }{pt=

TravelPlan pl=TravelPlanA atTime=03/02/2010

10:23:23,forEntity=ES1 }

</flow>

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

20

<switch> P3
TC = Q4

TC + Q5
TC

<case>
<assign>

<copy>
<fromVariable=”TravelPlanARequest”/
>
<toVariable=” TravelPlanResponse”/>
</copy>
</assign>
</case>

Q4
TC

<otherwise>
<assign>
<copy>
<fromVariable=”TravelPlanBRequest”/
>
<toVariable=” TravelPlanResponse”/>
</copy>
</assign>
</otherwise>

Q5
TC

</switch>
<reply partnerLink=”client”
portType=”TravelPlanSelection”
operation=”selectPlan”
variable=”TravelPlanResponse”
atTime=”03/02/2010,10:23:23”
forEntity=”ES1 />

P4
TC={selectPlan

(TravelPlanResponse)}{pt=

TravelPlanSelection pl= client atTime=03/02/2010

10:23:23,forEntity=ES1 }

</sequence>

6. CONCLUSION

BPEL-TC specifies business process behavior based on temporally customized Web Services
(WSDL-TC), in which different customized versions of the artifacts are deployed at same URI,
instead of maintaining these versions of services at different URIs. The π-calculus is
mathematical tool for expressing systems and reasoning about their behavior. It has been used to
formalize the processes defined using BPEL. In the presented work, we have extended this
mapping to BPEL-TC based Processes. Formal description of Web Services and their processes in
algebraic notations such as Process Algebra (PA) can help to describe an abstract specification of
the system to be developed giving a preliminary model which can be validated by the reasoning
tools, and then be used as a reference for the implementation. Moreover, it is useful for reverse
engineering purposes, where translation in the other direction is needed to extract an algebraic
description from existing Web Service processes. This allows the use of reasoning techniques to
analyze running services.

REFERENCES

[1] Jeffrey C. Schlimmer, (2002) "Web Services Description Requirements", W3C Working Draft,
Available from http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028.

International Journal of Web & Semantic Technology (IJWesT) Vol.4, No.3, July 2013

21

[2] Daniel Austin, Abbie Barbir and Sharad Garg, (2002) "Web Services Architecture Requirements",
W3C Working Draft, Available from http://www.w3.org/TR/2002/WD-wsa-reqs-20021011.

[3] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau and Sanjiva Weerawarana, (2003) " Web
Services Description Language (WSDL) Version 1.2", W3C Recommendation, Available from
http://www.w3.org/TR/2003/WD-wsdl12-20030303.

[4] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman and Sanjiva Weerawarana,(2007) "Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language", W3C
Recommendation Available from http://www.w3.org/TR/wsdl20.

[5] Hema Banati, Punam Bedi & Preeti Marwaha, (2012) “WSDL-Temporal: An approach for
change management in Web Services”, Proceedings of the IEEE International Conference on
Uncertainty Reasoning and Knowledge Engineering, pp. 44-49.

[6] Hema Banati, Punam Bedi & Preeti Marwaha, (2012) “WSDL-TC: Collaborative Customization
of Web Services, Proceedings of the IEEE International Conference on Intelligent System Design
and Applications (ISDA), pp. 692-697.

[7] Faisal Abouzaid, (2006) “A Mapping from Π-Calculus into BPEL”, Proceedings of the conference
on Leading the Web in Concurrent Engineering: Next Generation Concurrent Engineering, pp.
235-242.

[8] R. Milner, (1999) “Communicating and Mobile Systems: The pi-Calculus”. Cambridge University
Press, Cambridge, UK.

[9] Salaun Gwen, Bordeaux Lucas & Schaerf Marco, (2004) “Describing and Reasoning on Web
Services using Process Algebra”, Proceedings of the IEEE International Conference on Web
Services, pp. 43-50.

[10] Bordeaux Lucas and Gwen Salaün (2005) "Using process algebra for Web Services: Early results
and perspectives", Technologies for E-Services, Springer Berlin Heidelberg, pp. 54-68.

[11] Chirichiello Antonella & Salaun Gwen, (2005) “Encoding Abstract Descriptions into Executable
Web Services: Towards a Formal Development”, Proceedings of the IEEE International
Conference on Web Intelligence, pp. 457 – 463.

[12] Brogi Antonio, Canal Carlos, Mentel Ernesto & Vallecillo Antonio, (2004) “Formalizing Web
Service Choreographies”, Electronic Notes in Theoretical Computer Science (ENTCS) Volume
105, pp. 73-94.

[13] Chunyang Ye, S.C. Cheung, W.K. Chan & Chang Xu , (2009) “Atomicity Analysis of Service
Composition across Organizations”, IEEE Transaction on Software Engineering, Volume 35, No.
1, pp. 2-28.

[14] Ferrara Andrea, (2004) “Web Services: A Process Algebra Approach”, Proceedings of the 2nd
International Conference on Service oriented computing (ICSOC '04), pp. 242-251.

[15] Roberto Lucchi and Manuel Mazzara, (2007) “A π-calculus based semantics for WS-BPEL” The
Journal of Logic and Algebraic Programming, Volume 70, No. 1, pp. 96–118.

[16] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Barreto et al.
(2007) "Web Services Business Process Execution Language Version 2.0", OASIS Standard,
Available from http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[17] Hema Banati, Punam Bedi & Preeti Marwaha, (2012) “Extending BPEL for WSDL-Temporal
based Web Services”, Proceedings of the IEEE 12th International Conference on Hybrid
Intelligent Systems (HIS), pp. 484-489.

http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028
http://www.w3.org/TR/2002/WD-wsa-reqs-20021011
http://www.w3.org/TR/2003/WD-wsdl12-20030303
http://www.w3.org/TR/wsdl20
http://docs.oasis-open.org/wsbpel/2.0/

