
International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

10.5121/ijcsit.2010.2211 125

Wrapper Generator using Java Native Interface

V.S.Vairale
1
 and K.N.Honwadkar

2

1
Department of Computer Engineering, AISSMS College of Engineering,

Pune University, Pune, India
vaishali.vairale@gmail.com

2
Department of Computer Engineering, D.Y.Patil College of Engineering,

Akurdi, Pune University, Pune, India
knhonwadkar@yahoo.co.in

Abstract

The purpose of this paper is to provide a complete automated solution to the wrapping and compilation of

legacy code in order to facilitate the use of native libraries in effective ways through Java Native

Interface. Legacy codes are those libraries, command line applications or other types of systems that

were developed in technologies older than currently used in modern computing environments. Modern

software engineering concepts, like software as a service, allow the extension of the legacy code lifetime

and the reduction of software maintenance costs. The transformation of a legacy code into a service is not

straightforward task, especially when the initial code was designed with a rich user interface. This paper

describes a process for the semi-automatic conversion of numerical and scientific routines written in the

C programming language into computational services that can be used within a distributed service-

oriented architecture such as that being adopted for Grid computing.

Keywords

Legacy Code, AWGNL, C Wrapping, JNI, Data Mediation, Wrapper Generator

1. Introduction

The purpose of this paper is to provide a complete automated solution to the wrapping and

compilation of legacy code. Java's object-oriented features, platform independence, and

numerous APIs for tasks such as network programming, XML processing, and GUI building,

make it a powerful and increasingly popular language for developing Grid-based e-Science

applications. However, the task of manually converting the large body of existing high quality,

validated code to Grid-enabled, Java-based services is both daunting and expensive. The main

aim of the work described is to make this conversion task as automated as possible in order to

facilitate the use of such services in composing Grid-based scientific applications.

Recently, Scientific and Engineering communities are employing Grid enabled software

applications. To be widely adopted, Java applications in particular will require more support the

integration of legacy applications. C and C++ programming languages are used extensively for

scientific applications and consequently, the requirement for a method to incorporate software

and applications in C or C++ is of prime importance. Two separate tools carry out the wrapping

and data mapping functions. The Automatic Wrapper Generator for Native Libraries (AWGNL)

tool automatically wraps C routines as Java code using the Java Native Interface (JNI)[6]. This

approach can be applied to individual C routines, or to whole libraries, and is based on the

routine interfaces given in the C header files. AWGNL allows users with no knowledge of JNI

to quickly and easily build a Java wrapper for C routines.

The approach taken is similar to that in the Java-C Interface (JCI). However, AWGNL extends

the JCI functionality to deal with arrays of structures, and provides a graphical user interface

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

126

through which users can wrap legacy C libraries. Developing new codes, incrementing

applications with middleware specific interfaces, or designing applications to explicitly take

advantage of distributed resources is a significant burden for the developers who are often

reluctant to allocate sufficient effort on non application specific problems. The middleware is

therefore expected to ease legacy codes migration to service-oriented infrastructures by

proposing a non-intrusive interface to existing legacy codes, and optimizing the execution of the

application on the available resources. In this context, enabling legacy code execution on

service-oriented infrastructures is a high priority challenge.

The JNI is used to write native methods to handle situations when an application cannot be

written entirely in the Java programming language such as when the standard Java class library

does not support the platform-specific features or program library. It is also used to modify an

existing application, written in another programming language, to be accessible to Java

applications. Many of the standard library classes depend on the JNI to provide functionality to

the developer and the user, e.g. I/O file reading and sound capabilities. Including performance-

and platform-sensitive API implementations in the standard library allows all Java applications

to access this functionality in a safe and platform-independent manner. Before resorting to using

the JNI, developers should make sure the functionality is not already provided in the standard

libraries.

This document describes a process for the semi-automatic as well as automatic conversion of

numerical and scientific routines written in the C or C++ programming language into Java

programming language. This process involves development of JACAW (Java C Automatic

Wrapper), a wrapper tool based on the Java Native Interface (JNI) that can automatically

generate the Java interface and related files for any C routine, or library of C routines.

2. Related Approaches

Two main approaches have been adopted in applying Java to Grid computing.

- if the number of the legacy code functions are very high (of thousands order) the available

tools for handling services are not facing the requirements.

- the public expose of all the legacy code functions can be a danger for the system hosting the

wrapped software if the exposed function list includes functions that modify the host

environment.

A first class of techniques comprises the black-box reengineering techniques which integrate

systems via adaptors that wrap legacy code as a service (as mentioned above). A second class

comprises white-box methods which require code analysis and modification in order to obtain

the code components of the system to be presented as services. Both approaches are valid in

different circumstances, depending on factors such as the granularity of the code, the assumed

users and application area. The first class is mainly applied in the case when the code is not

available. Recent papers on this subject are [15] and [8]. A solution for the particular case of

interactive legacy systems is described in [13].

Java wrapping can be used to generate the service interfaces automatically as outlined in [1,12].

Prominent examples in this direction are JNL, JAMA, SWIG, JACAW or MEDLI [12]. The

most remarkable non-invasive solution is represented by GEMLCA, the Grid Execution

Management for Legacy Code [15]. A drawback is that it supposes that the legacy code is

activated in a command-line style and does not exploit the possible successive interactions. The

same comment is valid also for O’SOAP [13] that also allows legacy command-line oriented

applications to be deployed as Web services without any modification, as well as for OPAL

[14].

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

127

The following two main approaches have been adopted in applying Java to numerical

computing. In the first approach, scientific packages previously written in C, C++, or

FORTRAN are completely rewritten in Java. Examples include commercial packages such as

JNL from Visual Numerics3, and packages from research projects such as JAMA designed by

Joe Hicklin, Cleve Moler, Peter Webb (2000).

Work on the Numerically Intensive Java (NINJA) supports the view that there are no

fundamental technical reasons why Java should not be used for high performance numerical

computing. NINJA uses language and compiler techniques to address Java performance

problems, and this type of approach is essential if Java is to be adopted throughout the high

performance computing community.

In the second approach, legacy packages are retained and JNI is used to integrate native

methods (e.g., C code) with Java. This may not always be an optimal or elegant solution, but it

is necessary when large scientific libraries are not immediately available in Java. Wrapping

legacy C code can also result in better performance than pure Java code, though this benefit will

presumably diminish as a variety of compiler and runtime techniques continue to close the

performance gap between C and Java code.

Examples of the wrapping approach include a Java interface to MPI [3] and openSSL [5]. The

Janet [2] (JAva Native ExTensions) project makes use of Java language extensions and a

preprocessing tool to develop Java interfaces to native code by automatically generating JNI

code. Santa Fe (2000) describes a new transformation called alias versioning that takes

advantage of the simplicity of pointers in Java. This transformation, combined with other

techniques that we have developed, enables the compiler to perform high order loop

transformations (for better data locality) and parallelization completely automatically. This

compiler is the first to have such capabilities of optimizing numerical Java codes.

This approach requires the source code, but this has the advantage of allowing a high degree of

control over the low-level behaviour of the native code. The Jaguar project developed by

Johannes Gehrke and Philippe Bonnet (2001) avoids the use of JNI in accessing native code by

extending the Java runtime environment to enable direct Java access to operating system and

hardware resources. This avoids the need to copy data between the Java and native code, and

leads to efficient code, but the approach is architecture specific.

Simplified Wrapper Interface Generator (SWIG)

developed by Dave (1995) connects programs

written in C (and C++) with a variety of high-level programming languages (including Java). It

processes an interface file that defines all of the variables and functions that need to be accessed

from Java (or any other language), and generates the JNI interface to the C code for Java.

However, SWIG is not completely automatic (the interface file needs to be written) and

furthermore, sufficient knowledge of variables and functions may not possible without the

source code (which is often not available). In April 7, 2008. SWIG-1.3.35 released.

2.1 Proposed Approach

Any Legacy system has the following characteristics:

• Legacy systems have some reusable and reliable functionality embedded with valuable

business logic;

• The functionalities within legacy components are meaningful and more powerful to be

exposed in Grid environment from the requirements point of view;

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

128

• Reusable components extracted from a legacy system are fairly maintainable compared to

maintain the whole legacy system;

• Some components of the target system run on different platforms or vendor products.

The aim of this approach is to reuse recovered legacy components in a framework. Firstly, an

evaluation of legacy systems is performed to confirm the applicability of this approach.

Secondly, the legacy system is decomposed into component candidates via hierarchical

clustering techniques, which are the essential techniques used in component mining in our

approach. Then static program slicing techniques are applied to further understand these

component candidates. Reverse engineering techniques play an important role in this analysis

process. Based on the comprehension, these component candidates are extracted as concerned

legacy code segments. In order to be reused as components, the extracted legacy code is refined

and encapsulated mainly through JNI (Java Native Interfaces). After these legacy components

are created, they will be integrated in a framework as a set of software resource services, which

may be composed together to form a grid application.

3. Legacy Code Generator

The command line description has to be complete enough to allow dynamic composition of the

command line from the list of parameters at the service invocation time and to access the

executable and input data files. High performance legacy codes are pre-existing codes, mostly in

C or FORTRAN, that possess the following features: (1) they are domain specific; (2) they are

hard to re-use in other applications; (3) they are still useful; and, (4) they are often large.

3.1 The Implementation of the Wrapper Generator

Automatic Wrapper Generator Native Libraries (AWGNL) can be used to wrap existing legacy

code in C as a Java code that calls the original code through the Java Native Interface. AWGNL

can be applied automatically to wrap entire software libraries thereby saving time and

substantially reducing the likelihood of introducing coding errors. AWGNL is based on the Java

Native Interface (JNI) [6], which is an API that allows Java code to interact with code written in

another language.

AWGNL shields the user from the details of JNI, and does not require the user to have any

knowledge of how to use it. AWGNL takes the C header files as input and automatically creates

the corresponding Java and C files needed to make native calls. AWGNL also automatically

compiles the Java files, creates the header files, and builds a shared library of the JNI-enabled C

routines.

Legacy Code Wrapper Generator facilitates the automatic incorporation of a wide range of

existing legacy codes. When using it, developers only need to specify the parameters

(properties) of the legacy code they want to wrap, then submit the parameters to WG which then

generates all the interfaces needed to convert the legacy code into a component.

3.2 Wrapper Generator Data Flow

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

129

Wrapper generator facilitates the automatic incorporation of a wide range of existing legacy

codes. When using it, developers only need to specify the parameters (properties) of the legacy

code they want to wrap, then submit the parameters to WG which then generates all the

interfaces needed to convert the legacy code into a component. The interfaces include a IDL

interface, an XML definition, an implementation code (Body), a Listener and a Publisher. The

Listener and Publisher are used to interact with other components. Figure 1 shows the data flow

in the Wrapper generator.

Developers are different from end users in that developers create components, whereas end

users make use of the components to construct applications. Developers need to know some

information about the legacy code, such as its input(s)/output(s). However, they do not need to

know the exact implementation of the legacy code. The main constraints of a legacy code that

can be wrapped as a component with the WG are:

• The legacy code can be a sequential code or a parallel code using MPI.

• The legacy code can be written in C, Fortran or Java.

• The legacy code can be located anywhere within a distributed computing network.

• The legacy code must be a binary code and can perform certain functions with some

input(s)/output(s).

Figure 1. The Wrapper generator data flow

3.3 Data Mediation Interface

The data mediation interface automates the process of mediating the data types between the Java

classes and the C function calls. This is accomplished by providing a graphical user interface

(GUI) that takes the user through a set of steps to select the parameters for the wrapped function

from an input class and then to initialize and set the data for the output class. The use of Data

Mediation Interface is divided into three phases:

• DMI displays the instance variables of the classes in the arguments passed to the target

routine. The user then graphically maps some or all of these variables to the instance

variables of a selected Java class through its get and set methods, thereby creating a port

for the target routine. This process of port creation is repeated until all instance

variables passed through the target routine arguments have been mapped to a port.

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April

• Next the user mediates the data returned from the target function to one or more Java

output classes, thereby creating one or more output port(s). Thi

to the mapping of the instance variables of the target routine arguments.

• Finally, the user mediates any other data between the input Java class and the output

Java class (es) in phase 2. This is data that is not needed by the

is not passed to it in its arguments, but which is needed in the output port(s) created in

previous phase.

4. Role of Java Native Interface

When the Java platform is deployed on top of host environments, it may become desirable or

necessary to allow Java applications to work closely with native code written in other

languages. Programmers have begun to adopt the Java platform to build applicat

traditionally written in C and C++. The JNI is a powerful feature that allows you to take

advantage of the Java platform, but still utilize code written in other languages. As a part of the

Java virtual machine implementation, the JNI is a

applications to invoke native code and vice versa. Fig

The JNI is designed to handle situations where you need to combine Java applications with

native code. As a two-way interface, the JNI can support two types of native code: native

libraries and native applications.

• Use the JNI to write native methods

implemented in native libraries. Java applications call native methods in the same way

that they call methods implemented in the Java programming language. Behind the

scenes, however, native methods are implemented

native libraries.

• The JNI supports an invocation interface

machine implementation into native applications. Native applications can link with a

native library that implements the Java virtual machine, and then use the invocation

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April

Next the user mediates the data returned from the target function to one or more Java

output classes, thereby creating one or more output port(s). This process is very similar

to the mapping of the instance variables of the target routine arguments.

Finally, the user mediates any other data between the input Java class and the output

(es) in phase 2. This is data that is not needed by the target routine, and hence

is not passed to it in its arguments, but which is needed in the output port(s) created in

nterface

When the Java platform is deployed on top of host environments, it may become desirable or

necessary to allow Java applications to work closely with native code written in other

languages. Programmers have begun to adopt the Java platform to build applications that were

traditionally written in C and C++. The JNI is a powerful feature that allows you to take

advantage of the Java platform, but still utilize code written in other languages. As a part of the

Java virtual machine implementation, the JNI is a two-way interface that allows Java

applications to invoke native code and vice versa. Figure 2 illustrates the role of the JNI.

Figure 2. Role of JNI

The JNI is designed to handle situations where you need to combine Java applications with

way interface, the JNI can support two types of native code: native

native methods that allow Java applications to call functions

implemented in native libraries. Java applications call native methods in the same way

that they call methods implemented in the Java programming language. Behind the

scenes, however, native methods are implemented in another language and reside in

invocation interface that allows you to embed a Java virtual

machine implementation into native applications. Native applications can link with a

native library that implements the Java virtual machine, and then use the invocation

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

130

Next the user mediates the data returned from the target function to one or more Java

s process is very similar

Finally, the user mediates any other data between the input Java class and the output

target routine, and hence

is not passed to it in its arguments, but which is needed in the output port(s) created in

When the Java platform is deployed on top of host environments, it may become desirable or

necessary to allow Java applications to work closely with native code written in other

ions that were

traditionally written in C and C++. The JNI is a powerful feature that allows you to take

advantage of the Java platform, but still utilize code written in other languages. As a part of the

interface that allows Java

illustrates the role of the JNI.

The JNI is designed to handle situations where you need to combine Java applications with

way interface, the JNI can support two types of native code: native

allow Java applications to call functions

implemented in native libraries. Java applications call native methods in the same way

that they call methods implemented in the Java programming language. Behind the

in another language and reside in

that allows you to embed a Java virtual

machine implementation into native applications. Native applications can link with a

native library that implements the Java virtual machine, and then use the invocation

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

131

interface to execute software components written in the Java programming language.

For example, a web browser written in C can execute downloaded applets in an

embedded Java virtual machine implementation.

There is a simple example of using the Java Native Interface. We will write a Java application

that calls a C function to print “Hello World!” The process consists of the following steps:

• Create a class (HelloWorld.java) that declares the native method.

• Use javac to compile the HelloWorld source file, resulting in the class file

HelloWorld.class. The javac compiler is supplied with JDK or Java 2 SDK releases.

• Use javah -jni to generate a C header file (HelloWorld.h) containing the function

prototype for the native method implementation. The javah tool is provided with JDK or

Java 2 SDK releases.

• Write the C implementation (HelloWorld.c) of the native method.

• Compile the C implementation into a native library, creating HelloWorld.dll or

libHelloWorld.so. Use the C compiler and linker available on the host environment.

• Run the HelloWorld program using the java runtime interpreter. Both the class files

(HelloWorld.class) and the native library (HelloWorld.dll or libHelloWorld.so) are

loaded at runtime.

Wrapper Generator shields the user from the details of JNI, and does not require the user to have

any knowledge of how to use it. JACAW takes the C header files as input and automatically

creates the corresponding Java and C files needed to make native calls. JACAW also

automatically compiles the Java files, creates the header files, and builds a shared library of the

JNI-enabled C routines. Following example shows of what Wrapper Generator does.

4.1 Declare the Native Method

You begin by writing the following program in the Java programming language. The program

defines a class named HelloWorld that contains a native method print.

class HelloWorld {

private native void print();

public static void main(String[] args) {

new HelloWorld().print();

}

static {

System.loadLibrary ("HelloWorld");

}
}

The HelloWorld class definition begins with the declaration of the print native method. This is

followed by a main method that instantiates the HelloWorld class and invokes the print native

method for this instance. The last part of the class definition is a static initializer that loads the

native library containing the implementation of the print native method.

There are two differences between the declaration of a native method such as print and the

declaration of regular methods in the Java programming language. A native method declaration

must contain the native modifier. The native modifier indicates that this method is implemented

in another language. Also, the native method declaration is terminated with a semicolon, the

statement terminator symbol, because there is no implementation for native methods in the class

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

132

itself. We will implement the print method in a separate C file. Before the native method print

can be called, the native library that implements print must be loaded. In this case, we load the

native library in the static initializer of the HelloWorld class.

The Java virtual machine automatically runs the static initializer before invoking any methods in

the HelloWorld class, thus ensuring that the native library is loaded before the print native

method is called. We define a main method to be able to run the HelloWorld class. HelloWorld

main calls the native method print in the same manner as it would call a regular method.

System.loadLibrary takes a library name, locates a native library that corresponds to that name,

and loads the native library into the application. We will discuss the exact loading process later

in the book. For now simply remember that in order for System.loadLibrary ("HelloWorld") to

succeed, we need to create a native library called HelloWorld.dll on Win32, or

libHelloWorld.so on Solaris.

4.2 Compile the HelloWorld Class

After you have defined the HelloWorld class, save the source code in a file called

HelloWorld.java. Then compile the source file using the javac compiler that comes with the

JDK or Java 2 SDK release:

javac HelloWorld.java

This command will generate a HelloWorld.class file in the current directory.

4.3 Create the Native Method Header File

Next we will use the javah tool to generate a JNI-style header file that is useful when

implementing the native method in C. You can run javah on the HelloWorld class as follows:

javah -jni HelloWorld

The name of the header file is the class name with a “.h” appended to the end of it. The

command shown above generates a file named HelloWorld.h. We will not list the generated

header file in its entirety here. The most important part of the header file is the function

prototype for Java_HelloWorld_print, which is the C function that implements the

HelloWorld.print method:

JNIEXPORT void JNICALL

Java_HelloWorld_print (JNIEnv *, jobject);

Ignore the JNIEXPORT and JNICALL macros for now. You may have noticed that the C

implementation of the native method accepts two arguments even though the corresponding

declaration of the native method accepts no arguments. The first argument for every native

method implementation is a JNIEnv interface pointer. The second argument is a reference to the

HelloWorld object itself (sort of like the “this” pointer in C++). We will discuss how to use the

JNIEnv interface pointer and the jobject arguments later in this book, but this simple example

ignores both arguments.

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

133

4.4 Write the Native Method Implementation

The JNI-style header file generated by javah helps you to write C or C++ implementations for

the native method. The function that you write must follow the prototype specified in the

generated header file. You can implement the HelloWorld.print method in a C file HelloWorld.c

as follows:

#include <jni.h>

#include <stdio.h>

#include "HelloWorld.h"

JNIEXPORT void JNICALL

Java_HelloWorld_print(JNIEnv *env, jobject obj)

{

printf("Hello World!\n");

return;

}
The implementation of this native method is straightforward. It uses the printf function to

display the string “Hello World!” and then returns. As mentioned before, both arguments, the

JNIEnv pointer and the reference to the object, are ignored.

The C program includes three header files:

• jni.h — This header file provides information the native code needs to call JNI functions

When writing native methods, you must always include this file in your C or C++ source

files.

• stdio.h — The code snippet above also includes stdio.h because it uses the printf function.

• HelloWorld.h — The header file that you generated using javah. It includes the C/C++

prototype for the Java_HelloWorld_print function.

4. 5 Compile the C Source and Create a Native Library

Remember that when you created the HelloWorld class in the HelloWorld.java file, you

included a line of code that loaded a native library into the program:

System.loadLibrary("HelloWorld");

Now that all the necessary C code is written, you need to compile HelloWorld.c and build this

native library. Different operating systems support different ways to build native libraries.

Following command builds a dynamic link library (DLL) HelloWorld.dll using the Microsoft

Visual C++ compiler:

cl -Ic:\java\include -Ic:\java\include\win32

-MD -LD HelloWorld.c -FeHelloWorld.dll

4.6 Run the Program

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

134

At this point, you have the two components ready to run the program. The class file

(HelloWorld.class) calls a native method, and the native library (Hello-World.dll) implements

the native method. Because the HelloWorld class contains its own main method,

java HelloWorld

You should see the following output:

Hello World!

It is important to set your native library path correctly for your program to run. The native

library path is a list of directories that the Java virtual machine searches when loading native

libraries.

5. RESULTS & DISCUSSION

The aim of this work is to develop software that can be used to wrap existing legacy code in C

as a Java code that calls the original code through the Java Native Interface. AWGNL can be

applied automatically to wrap entire software libraries thereby saving time and substantially

reducing the likelihood of introducing coding errors. AWGNL is based on the Java Native

Interface (JNI) [6], which is an API that allows Java code to interact with code written in

another language.

The wrapper would be able to provide the following functions:-

• It has an internal code editor, which provides features like load, save, copy, paste, clear,

etc. created using JTextArea control under java swing.

• Compilation and Building of dll files uses VC++ compiler.

• Registration of DLL using windows service (REGSVR32)

• Provides automatic version which accepts simply the c code for which java code is to be

generated. Output is .h file, .dll file, register .dll file, java classes for all the functions,

compiled java classes for all the .java files, and a java test code to test that all the

functions are available in java indeed.

• Provides external code editor interface. It provides the external editor linkage under the

software. User can use any external editor to edit/manage the code. Editors like VC++,

JCreator, JEdit, NetBeans, etc. can be linked.

• Process Builder interface. This is an interface required to call all the external compilers,

builders, linkers from within java. Also it is needed to capture the outputs of all the

compilers.

• Execution time comparison. Time obtained from all the previous three modules are

displayed at once with different amounts of inputs. (5000, 10000, 50000 random

values).

5.1 Automatic Mode

In this mode the existing java code gets compiled, the header file gets created and DLL will be

built. All the procedure in manual module will be done automatically to wrap the code and

finally java file get executed. With the help of JNI native files which are written in C will get

executed in Java environment by writing all method which we have described earlier in section

4.The following steps user has to do instead of writing whole code in Java while using

automatic mode. Figure 3 shows how C routines get wrap into java code.

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

135

• In automatic mode user write the C function prototype, save that file as header file such

as “mynativeheader.h”. for example, C prototype for summation of two integers: int

sum (int, int);

• Write C function definition in edit C module. Save the file and compile it.

• Next wrap the C function code. We get the java code automatically with wrapped

routine of C function. Give only call to the C function in java code, compile it and run

it.

The Automatic wrapper for java provides interoperation between Java code running on a Java

Virtual Machine and code written in other programming languages (e.g., C, C++ or assembly).

The project is useful when existing libraries need to be integrated into Java code, or when

portions of the code are implemented in other languages for improved performance. The Java

Native Interface is extremely flexible, allowing Java methods to invoke native methods.

However, this flexibility comes at the expense of extra effort for the native language

programmer, who has to explicitly specify how to connect to various Java objects. The project

suggests a template-based framework that relieves the native language programmer from most

of this burden. In particular, the proposed technique provides automatic selection of the right

functions to access Java objects based on their types.

Figure 3. Automatic mode during Execution of Java files with wrap code

5.2 Benchmark Test between C, JNI, Java

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

136

Programming through the JNI lets you use native methods to do many different operations. A

native method can:

• Utilize Java objects in the same way that a Java method uses these objects.

• Create Java objects, including arrays and strings, and then inspect and use these objects

to perform its tasks.

• Inspect and use objects created by Java application code.

• Update Java objects that it created or was passed to it, and these updated objects can

then be made available to the Java application.

Finally, native methods can also easily call already existing Java methods, capitalizing on the

functionality already incorporated in the Java programming framework. In these ways, both the

native language side and the Java side of an application can create, update, and access Java

objects and then share these objects between them. Figure 4 shows the time comparison for

bubble sort by using C, JNI and Java. The following steps show how JNI is more efficient than

Java.

• User develops C code for different search algorithms.

• User develops the functions necessary for generating large random input for sorting

algorithms.

• Develop code to call these functions in java using JNI

• Calculate execution time taken by every algorithm.

• Display the time taken by every algorithm for the same input.

• Display the time taken by the same code in pure java.

• Display a graph which represents comparison of execution time in JAVA, C and

Wrapper Generator system using JNI.

Figure 4. Execution time comparison between C, JNI, and Java code for Bubble sort

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

137

6. Conclusion

Wrapper Generator allows programmers to take advantage of the power of the Java platform,

without having to abandon their investments in legacy code. It provides a fast and convenient

way of enabling legacy C routines to be called from Java applications. It also provides

functionality to deal with arrays of structures, and provides a graphical user interface through

which users can wrap legacy C libraries. Even conversion of complex data types from Java to

JNI and back to Java is done automatically using Wrapper Generator. It provides the best

solution to the legacy code problem. And usually it results in better performance than the

corresponding Java code. The Wrapper Generator will also be extended in the future to permit

wrapped code to be accessed as a Grid service. This will involve generating a description of the

service in an XML-based format such as Web Services Description Language (WSDL), and

publishing the service in a UDDI and/or Jini registry.

Acknowledgement

I wish to express my deepest gratitude to K.N.Honwadkar for his excellent guidance, invaluable

advices and unflinching support without which this manuscript would not have been

materialized. I would also take this opportunity to extend my regards to my family for their

support and inspiration.

References

[1] D M Beazley, “SWIG: An Easy to Use Tool for Integrating Scripting Languages with C and C++,”

presented at the 4th Tcl/Tk Workshop, Monterey, California, July 6-10, 1996.

[2] J E Moreira, SP Midki®, M Gupta, P Atrigas, P Wu, and G Almasi, The NINJA Project: Making Java

Work for High Performance Numerical Computing," Comm. ACM, Vol. 44, No. 10, pages 102,109,

October 2001.

[3] K. Pingali, P. Stodgily, A distributed System based on Web Services for Computational Science

Simulations, Procs. Of the 20th International Conference on Supercomputing, 2006, pp. 297–306.

[4] M Baker, B Carpenter, G Fox, SH Ko, and X-Y Li, “mpiJava: A Java Interface MPI.” Presented at the

First UK Workshop on Java for High Performance Network Computing, September 2002,

http://www.npac.syr.edu/projects/pcrc/papers/mpiJava/mpiJava.pdf

[5] M Welsh and D Culler, “Jaguar: Enabling Efficient Communication and I/O in Java,” Concurrency:

Practice and Experience, Vol. 12, No. 7, pages 519–538, May 2000.

[6] M Bubak, D Kurzyniec, P Luszczek, and V Sunderam, “Creating Java to Native Code Interfaces

with Janet,” Scienific Programming, Vol. 9, pages 39–50, 2001.

[7] M. Li, , M.S. Shield , O.F. Rana and D.W. Walker. A wrapper generator for wrapping high

performance legacy codes as Java/CORBA components in Proceedings of the IEEE/ACM Super

Computing'00, Dellas, USA (November 2000).

[8] M. Li, O.F. Rana and D.W. Walker, Wrapping MPI-based legacy codes as Java/CORBA components.

Future Generation Computer Systems (FGCS) 182 (2001), pp. 213–223.

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

138

[9] R Gordon, “Essential JNI: Java Native Interface”, pub.Prentice Hall PTR, 1998. ISBN 0-13-679895-0.

[10] S. Krishnan, B. Stearn, K. Bhatia, K. Baldridge, W. Li and P. Arzberger,, Opal: Simple Web

Services Wrappers for Scientific Applications, Procs. ICWS’06, IEEE Computer Press, 2006, pp. 823-

832.

[11] T. Glatard, D. Emsellem, J. Montagnat, Generic Web Service Wrapper for Efficient Embedding of

Legacy Codes in Service-based Workflows, Procs. GELA 2006, pp. 44—53.

[12] T. Souder and S. Mancoridis. A tool for securely integrating legacy systems into a distributed

environment in Proceedings of the Sixth Working Conference on Reverse Engineering (1999) pp. 47–55.

[13] Web Services For Grid-Enabled Problem-Solving Environments, a presentation on the Access Grid

on15 March 2002,

http://www.cs.cf.ac.uk/user/David.W.Walker/WebServicesPSEs.ppt on slide 50

[14] Y. Huang et al., ”Wrapping Legacy Codes for Grid-Based Applications”, in Proceedings of the 17th

International Parallel and Distributed Processing Symposium (Workshop on Java for HPC), 22-26 April

2003, Nice, France. ISBN 0-7695-1926-1

[15] Yan Huang and Qifeng Huang, “GSiB Visual Environment for Web Service Composition and

Enactment” Accepted as a poster by the UK e-Science Programme All Hands Meeting 2005, held 19-

22 September 2005 in Nottingham, UK.

Authors

K.N.Honwadkar is

working with Department

of Computer Engineering,

D.Y.Patil College of

Engineering, Akurdi,

Pune, Maharashtra, India.

He is Registered Research

Scholar from Swami

Ramanand Teerth

Marathwada

University,Nanded,India.

His and research interests

include Network Security

and Human Computer

Interface. He attended

many conferences and

workshops and published

over 25 papers at National

/ International conferences.

International Journal of Computer Science and Information Technology, Volume 2, Number 2, April 2010

139

V.S.Vairale is working

with All India Shri Shivaji

Memorial Society’s

College of Engineering,

Pune, Maharashtra, India.

She is pursuing her ME

(Computer) degree from

D.Y.Patil College of

Engineering, Akurdi,Pune.

Her Research interests

include System

Programming, Network

Security. She attended

many conferences and workshops

and published papers.

