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ABSTRACT 

Heterogeneous Mobile Computing System (HMCS) consists of battery operated portable heterogeneous 

mobile nodes interconnected by wireless medium are increasingly being used in many areas of science, 

engineering and business. The advancements in the computing and communication technologies excel the 

mobile computing devices with the potential to execute larger application. However, execution of larger 

program is constrained by the availability of energy/power, node mobility and availability. A significant 

amount of work has been carried out to execute meta (independent) tasks in mobile computing system by 

consuming minimum energy/power and only a very few work has been carried out for the execution of 

larger program represented by Directed Acyclic Graph(DAG) in mobile computing system.  Therefore, in 

this paper, the problem of scheduling the tasks of a DAG onto the mobile computing system has been 

explored with objectives to minimize either the schedule length or energy/power consumption or both. A 

new task scheduling algorithm namely, High Performance and energy efficient task Scheduling algorithm 

for heterogeneous Mobile computing system (HPSM) has been proposed. The performance of the 

algorithm is evaluated by simulation experiments using a large set of randomly generated task graphs. 

The experimental results show that the HPSM algorithm significantly minimizes the schedule length or 

the energy consumption or both. 
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1. INTRODUCTION 

In the recent days, Heterogeneous Mobile Computing System (HMCS) are increasingly being 

used in areas like battlefield, disaster management, weather modeling and complex image 

rendering [1]. Mobile nodes have the potential to execute larger application due to the 

advancements in computing and communication technologies. However, execution of larger 

programs in mobile nodes is constrained by the available energy/power, node mobility and 

availability. Energy consumption is one of the key issues in addition to task scheduling in 

HMCS due to its unique features such as limited, irreplaceable energy sources and lifetime 

requirements [2].  

To alleviate the problem of energy limitation, several hardware and software based techniques 

have been proposed and used by today’s mobile computing nodes [3], [4]. A significant amount 

of research has been done in the areas of power resource management in uniprocessors as well 

as in heterogeneous multiprocessor systems for the execution of meta tasks [5], [6]. In these 

researches, power/energy management is achieved through voltage scaling, computation off-

loading and turning off the idle component. 
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The task partitioning and scheduling strategies also play an important role for achieving high 

performance in HMCS in addition to energy consumption. Only an efficient scheduling 

algorithm can utilize the resources in the HMCS and complete the program execution at the 

earliest. A partitioning algorithm can be employed to partition a parallel application into a set of 

precedence-constrained tasks represented in the form of a DAG, whereas a scheduling algorithm 

can be used to schedule the DAG onto the computational nodes in HMCS. The scheduling of 

DAG has been widely explored for Heterogeneous Computing Systems (HCS) consisting of 

permanent heterogeneous processors having continuous power supply. Consequently various 

task scheduling algorithms have been proposed in the literature and these algorithms are broadly 

classified into static task scheduling and dynamic task scheduling. 

In static or compile-time scheduling, the characteristics of the tasks of an application such as 

execution times, size of data communicated between the tasks and tasks dependencies are 

assumed to be known apriori whereas, in dynamic or run-time scheduling this information is 

known at the run-time. Static task scheduling generates better schedules with lesser scheduling 

overhead than the dynamic scheduling algorithms. In general task scheduling problem is proven 

to be NP-complete and hence, several heuristic-based algorithms have been proposed in the 

literature [7], [8]. The heuristic based task scheduling algorithms are categorized as list-

scheduling algorithms, clustering algorithms and task duplication-based algorithms.  

The task scheduling algorithms developed for HCS can not be applied directly to HMCS, 

because the algorithms developed for HCS assume that the processors are permanently available 

and have continuous power supply. Whereas in the HMCS available energy/power and the node 

mobility are the major constraints, hence HMCS requires separate task scheduling algorithms. 

Execution of independent tasks with an objective to minimize the execution time and energy 

consumption have been explored for HMCS [9], whereas only a very few work has been carried 

out for the execution of dependent tasks. 

The algorithms, namely Energy-Aware Duplication Scheduling algorithm (EADUS) and Time-

Energy Balanced Duplication Scheduling algorithm (TEBUS), have been developed for 

scheduling precedence-constrained tasks on clusters of machines [10]. The EADUS is designed 

to save the energy by using task replicas to eliminate energy consuming messages, whereas 

TEBUS aims at making the best tradeoff between energy conservation and performance. These 

algorithms also can not be applied directly in HMCS since they are proposed for the clusters of 

wired processors.  Six heuristics for mapping an application composed of communicating 

subtasks with data dependencies on to the heterogeneous ad hoc grid environment are proposed 

in [11]. The goal of these heuristics is to minimize the average percentage of energy consumed 

by the application to execute across the machines in the ad hoc grid.  In [12] authors formulate 

an energy-aware scheduling problem for certain architecture of embedded systems and propose 

a heuristic to solve it. Their algorithm schedules time constrained computational tasks and 

communication transactions on a Network-on-Chip architecture and aims to minimize energy 

consumption and meet task deadlines. 

However, energy-driven task allocation schemes, mentioned above, concentrate only on energy 

consumption while scheduling. Consequently, the length of the schedules could be very long, 

which is unfavorable or in some situations even not bearable. Moreover, the existing task 

scheduling algorithms do not address the node mobility issue. A successful execution of larger 

program in HMCS requires both the compile-time and run-time support. Hence, in this paper a 

two phase task scheduling algorithm namely, HPSM algorithm to schedule the tasks of a DAG 

onto the HMCS has been proposed. The HPSM algorithm minimizes either the schedule length 

or the total energy consumed, or both at the compile-time phase. At the run-time, HPSM 

algorithm reschedules the tasks assigned to a node during compile-time to the other nodes, if 

that node becomes unavailable due to mobility or energy exhaustion in order to successfully 

complete the execution. 
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The performance of the HPSM is compared with HEFT [7] and PETS [8] algorithms after 

necessary modification to suite for HMCS. The modified PETS and HEFT algorithms are 

referred in this paper as Performance Effective Task Scheduling algorithm for Mobile 

computing system (PETSM) and Heterogeneous Earliest Finish Time scheduling algorithm for 

Mobile computing system (HEFTM) respectively.  Experiments conducted by simulation using 

a large set of randomly generated DAG shows that the HPSM algorithm gives better 

performance in terms of minimizing energy and schedule length than the HEFTM and PETSM 

algorithms. 

The remainder of the paper is organized as follows. Section 2 defines the task scheduling 

problem for HMCS and the related terminology. Section 3 presents the proposed task 

scheduling algorithm HPSM. The complexity of HPSM algorithm is presented in section 4. The 

phases of the HPSM algorithm are exemplified with an illustration in section 5. Section 6 

presents the results of the study and finally conclusions and suggestions for future work are 

presented in Section 7. 

2. TASK SCHEDULING PROBLEM 

The task scheduling problem consists of three major components namely, a task graph model 

(representation of application), a target system and a scheduling algorithm. 

An application (parallel program) is divided into set of tasks with some precedence relationships 

among them and can be represented by a DAG also called a task graph.  A DAG is represented 

by the five-tuple G (V, E, P, T, C) where: 

V  is the set of vertices v, and each vertex  vi ∈ V represents an application task, which is a 

sequence of instructions that must be executed serially on the same processor in non 

preemptive manner.  

E  is the set of communication edges e(vi, vj), and each e(vi, vj)∈ E represents an edge 

from task vi to task vj. The edge from task vi to task vj also represents the precedence 

constraints such that task vj cannot start until vi finishes and sends its data to vj. 

P    is the set {pi: i = 1,…, p} of  p heterogeneous mobile processors.  

T  is the set of computation costs T (vi, pj ), which represent the estimated computation 

times of task vi on processor pj. 

C  is the set of communication costs c(vi, vj ), which represent the communication cost 

associated with the edges e(vi, vj ).  

Task vp is a predecessor of task vi if there is a directed edge originating from vp and ending at vi. 

Likewise, task vs is a successor of task vi if there is a directed edge originating from vi and 

ending at vs. Let pred(vi ) be the set of all predecessors of vi and   succ(vi ) be the set of all 

successors of vi. Without loss of generality, it can be assumed that there is one entry task and 

one exit task for a DAG. If there are multiple entry or exit tasks, the multiple tasks can always 

be connected through a dummy task which has zero computation cost and zero communication 

cost edges. A sample task graph is given in Figure 1 and the computation cost matrix of the 

tasks is given in Table 1. 

Target computing systems HMCS consists of set P of p heterogeneous mobile computing 

nodes/processors equipped with wireless communication and networking facilities. There is a 

centralized access point or the control module, through which every node can communicate 

directly with any other node within the range of access point and, a node can also communicate 

indirectly with those nodes outside the range of access point. With indirect communication, 

other access points are used to relay (forward) data from source to destination. The HMCS 

considered in this work assumes that the nodes are heterogeneous and they have computing 

power on par with the other computers. The nodes are close enough to each other so that single-
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hop communication is possible. Every node submits its profile information such as the type of 

processor, duration of availability, etc., to the control module (scheduler) when it joins the 

network. 

Similarly a node has to notify to the scheduler whenever it leaves the network. It is assumed that 

a node performs computation and communication at the same time and once it started executing 

a task, it should complete task execution and send the output to all the successor tasks scheduled 

onto other nodes. Any initial data is preloaded before the actual execution of application task 

begins, and a node consumes no energy if it is idle. 

                                                           Table 1. Computation Costs of the Task Graph in Figure 1. 

 

 

Figure 1.  A random task graph 

 

The bandwidth (data transfer rate) of the links between different processors in a heterogeneous 

system may be different depending on the kind of network. The data transfer rate is represented 

by a p × p matrix Rp × p. The communication cost between two processors px and  py, depends on 

the channel initialization at both sender processor px and receiver processor py in addition to the 

communication time on the channel and can be assumed to be independent of the source and 

destination processors. The communication startup costs of processors are given in a p-

dimensional vector S. 

Let Data(v
i,,

v
k
 ) be the amount of data to be transferred from task v

i 
to task v

k 
(the weight of the 

edge). The communication cost of the edge e(vi, vk), which is for transferring data from task vi 

(scheduled on processors px) to task vk (scheduled on processor py) is defined by 

  c(vi, v,k) = Sx+ Data(vi,,vk )/ R[px, py]                                                                              

               = 0, otherwise when x = y.               (1)                                                          

             where Sx is the communication start-up cost of processor px.  

In order to define the objective of the task scheduling problem for HMCS the following 

attributes such as Earliest Start Time(EST) and Earliest Finish Time (EFT) are defined first.  

The EST of task vi on processor pj is represented as EST(vi, pj ). Likewise the EFT of task vi on 

processor pj is represented as EFT(vi, pj ). Let EST(vi ) and EFT(vi ) represent the earliest start 

time upon any processor and the earliest finish time upon any processor, respectively. For the 

Task P1 P2 P3 

v1 14 16 9 

v2 13 19 18 

v3 11 13 19 

v4 13 8 17 

v5 12 13 10 

v6 13 16 9 

v7 7 15 11 

v8 5 11 14 

v9 18 12 20 

v10 21 7 10 
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entry task ventry , the  EST(ventry) = 0, for other tasks in the task graph the EST and EFT values are 

computed starting  from the entry task to exit task by traversing the task graph from top to 

bottom. To compute the EST of a task vi all immediate predecessor tasks of vi must have been 

scheduled. The calculation of EST and EFT of task is mathematically in Eq. (2). 

EST(vi, pj) = max{P_available[vi, pj], max(EFT(vp, pk)+C(vp, vi))} , where vp∈ pred (vi ),    

                       C(vp, vi) = 0 when k = j, 

EFT(vi, pj) = T(vi, pj) + EST (vi, pj).                      (2) 

P_Available[vi, pj ] is defined as the earliest time that processor pj will be available to begin 

executing task vi. The inner max clause in the EST equation finds the latest time that a 

predecessor’s data will arrive at processor pj. If the predecessor finishes earliest on a processor 

other than pj, communication cost must also be included in this time. EST(vi, pj ) is the 

maximum  time at which processor pj becomes available and the time at which the last message 

arrives from any of the predecessors of vi . The attributes used for minimizing the energy 

consumption in HMCS are defined as follows: 

B(j) be the initial battery energy of the node pj. 

RcompE(pi) be the rate at which the node pi consumes energy for executing a task, per execution 

time unit. Then the energy consumed for executing the task vi on the node pi,  EcompE(vi, pi) is 

computed using  Eq. (3) 

EcompE(vi,  pi) = T(vi, pi) × RcompE(pi).                                                                                    (3) 

RcommE(pi) be the rate at which the node pi consumes energy for transmitting one byte of data, 

per communication time unit.  

The Total Communication Time (TCT) involved for the processor pi for receiving input data 

from predecessor task of vi and sending output data to the successor task of vi is computed using 

Eq. (4)  

TCT(vi, pi) = C(vi, vp)+ C(vi, vs),  where vp ∈ pred(vi) and   vs ∈ succ(vi)                      (4) 

The total Energy Consumed for Communication (ECC) by a processor pi for sending and 

receiving data for task vi is computed using Eq. (5) 

ECC(vi, pi)  = TCT(vi, vj) × RcommE(pi).            (5) 

The Total Energy Consumed (TEC) by a processor for computation and communication for the 

task vi is computed using Eq. (6) 

TEC(vi, pi) = Ecomp(vi, pi) + ECC (vi, pi)  such that TEC(vi, pi) < B(i).                                     (6) 

Minimization of schedule length and energy consumption is equally important for achieving 

better performance in HMCS. Hence, two system attributes λ and γ, such that λ + γ = 1, 

representing the relative weights of timing requirements (performance) and energy consumption 

respectively are introduced to fix the objective function. This decides the trade-off between 

schedule length and energy consumption.  The λ and γ values are also used to map time units 

and energy units to generic cost unit.  The problem is mathematically formulated and given in 

Eq. (7) 

    cost =  λ × EFT(vi, pj) + γ × TEC(vi, pj), ∀ vi ∈ V and pj ∈ P.                                             (7) 

The objective of the task scheduling algorithm is to minimize the cost. i.e., the schedule length 

or the energy consumption or both based on the values of λ and γ.  The EFT(vi, pj) is computed 

using the Eq. (2) and TEC(vi, pj)  is computed  using the Eq. (6). When λ = 1 or γ = 0, then the 

cost function is minimization of EFT of the exit task, which is nothing but the schedule length 

of the application. 
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cost = EFT(vi, pj), where vi is the exit task. 

When γ = 1 or λ = 0, then the cost function is minimization of total energy consumed by all the 

processors involved in the program execution and is given in the Eq. (8) 

                   v             

     cost  = ∑ min {TEC(vi, pj)}, ∀ pj ∈ P.            (8) 

                  i=1 

The relative weight to minimize the schedule length or energy consumption can be altered by 

varying the values of λ from 0 to 1, or γ from 1 to 0. 

3. THE PROPOSED HPSM ALGORITHM 

The HPSM algorithm has two phases namely, compile-time phase and run-time phase. The 

compile-time phase of the algorithm has three stages, such as level sorting, task prioritization 

and processor selection.  

In the level sorting phase, the given DAG is traversed in a top-down fashion to sort tasks at each 

level in order to group the tasks that are independent of each other. As a result, tasks in the same 

level can be executed in parallel. Given a DAG G = (V, E), level 0 contain entry tasks. Level i 

consist of all tasks vk such that for all edges (vj, vk), task vj is in a level less than i and there exists 

at least one edge(vj, vk) such that vj is in level i-1. The last level comprises some of the exit tasks. 

For implementation, it is assumed that there is one entry task and one exit task for a DAG. If 

there are multiple entry or exit tasks, the multiple tasks can be connected to a dummy task with 

zero computation cost and zero communication cost edges. 

In the task prioritization phase, priority is computed and assigned to each task of the task graph. 

The attributes used to assign the priority to a task are the Down Link Cost (DLC), the Up Link 

Cost (ULC), the Link Cost (LC) and the Average Computation Cost (ACC) of the task. The DLC 

of a task is the maximum data (input) received by a task from all its immediate predecessor 

tasks. The DLC for all tasks at level 0 is 0 and for all other tasks at level l, the DLC of a task vj is 

computed using the Eq. (9) 

DLC(vj) = Max{Data(vi, vj)},  where vi ∈ pred(vj)                          (9) 

 The ULC of a task is the maximum data (output) to be transferred from a task to all its 

immediate successors. The ULC for exit task is 0 and for all other tasks at level l, it is computed 

using the Eq. (10) 

ULC(vj) = Max{Data(vj, vk)},  where vk ∈ succ(vj).                (10) 

The LC of a task is the sum of DLC, ULC and maximum LC of its immediate predecessor 

tasks. The LC of a task is calculated using the Eq. (11) 

    LC(vj) = 0, for entry task, otherwise 

               = max{LC(vk)}+ULC(vj)+DLC(vj),  for all vk ∈ pred(vj).               (11) 

The Average Computation Cost (ACC) of a task vi is the average of computation cost on all the 

m available processors and it is computed using the Eq. (12) 

                    m     

ACC(vi) =  ∑ T(vi, pj)                   (12) 

                   j=1 

Priority is assigned to all the tasks at each level i, based on its LC value. At each level, the task 

with the highest LC value receives the highest priority followed by the task with next highest 
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LC value and so on in the same level. While assigning priority, if two tasks are having the same 

LC value, then the tie is broken based on the ACC value. The task with maximum ACC value 

receives higher priority than the task with the lower ACC value. 

In the processor selection stage, a processor is selected for executing a task based on the value 

of λ and γ. When λ = 1 (or γ = 0), the algorithm gives maximum weight to minimize the 

schedule length and when λ = 0 (or γ= 1) maximum weight is given to energy minimization. By 

ranging the values of λ from 0 to 1 (or γ = 1 down to 0), the weight assigned to minimize the 

energy consumption or schedule length can be changed. For energy minimization, the algorithm 

considers only the energy consumed by the processors for computations and communications. 

The energy consumption of the other components in the node is being assumed to negligible.  

During the run-time, if any node leaves the HMCS or the power/energy of any node exhausted, 

then the HPSM algorithm reschedules the pending tasks to be executed in that node to the other 

nodes in the HMCS which have similar or higher profile (processor speed, rate of data transfer 

etc.,) than the leaving node or the energy exhausted node.  The pseudo code of the HPSM 

algorithm is given in Figure 2.  

//  HPSM Algorithm // 

Input:   

Number of tasks: v and the computation cost matrix of the DAG: T (v×v) 

Amount of data to be transferred between the tasks: D (v×v) 

Number of processors in the systems: p 

Rate of data transfer between the processors: R (p×p) 

Initial energy available in each processor vector, B(p) 

Rate of energy consumed by the processors per unit time execution, Rcomp(p) 

Rate of energy consumed by the processors to send or receive 1 byte, Rcomm(p) 

Values for λ or γ represents weight value to minimize schedule length and energy 

consumption. 

Output:  

Minimum schedule length or energy consumption or both. 

Phase I (compile-time) 

1. begin 

2.   read the DAG, associated attributes values, and the number of processor P; 

3.   level sort the given DAG; 

4.   for all task vk in the DAG do 

5.    begin 

6.       compute ULC, DLC and ACC values for the task vk ; 

7.       compute LC(vk) = max{LC(vj)} + ULC(vk) + DLC(vk), where vj∈pred(vk); 

8.      insert the task into the priority queue based on the LC value such that the tasks in lower  

            level are placed in the priority queue first than the tasks in the  higher level and tie if  

            any, is broken  using the ACC value; 

9.    end; 

10.   while there are unscheduled tasks in queue  
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11.     begin 

12.      select the highest priority task vj from the queue for scheduling; 

13.     for each processor pk in the processor set P  

14.     begin 

15.      compute EFT (vj, pk) using isetion-based scheduling policy; 

16.      compute TEC(vj, pk);   

17.      if  (TEC(vj, pk)  < B(pk)) then 

18.       begin 

19.         compute cost = λ (EFT(vj, pk)) + γ (TEC(vj, pk)); 

20.         assign the task vj to the processor pk, which minimizes the cost; 

21.         B(pk) = B(pk) - TEC(vj, pk); 

22.         TECP = TECP + TEC(vj, pk); 

23.       end 

24.     else 

25.       select the next processor pk+1 in the  processor set P; 

26.    end; 

27.  end; 

28. end. 

 

Phase II (Run-time) 

1. begin 

2.  let b_list be the list of  tasks to be  processed in the processor pl, which leaves 

       the network;  

3.  find a suitable processor in the network  which have the similar or higher profile 

       (characteristics) than the leaving processor pl; 

4.  If  suitable  processor pa is found then  

5.      schedule all the tasks in the b_list onto the processor pa 

6.  else 

7.      remove the highest priority task from the  b_list and schedule it to the existing 

            processor which gives minimum EFT  for the task; 

8.   repeat the steps 2 - 6 until b_list becomes  empty; 

9. end. 

 

Figure 2 Pseudo code of the HPSM Algorithm 
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4. COMPLEXITY OF THE HPSM ALGORITHM  

The time complexity of the HPSM is computed for two phases (compile-time and run-time) as 

follows. In the compile-time phase, level sorting takes O(e+v) time complexity. The 

prioritization of the tasks (steps 4-9) takes O(v log v) time complexity. During the processor 

selection, to the EFT value for a task vj, the algorithm searches for a free slot in between any 

two already scheduled tasks on the same processor pk, and the search continues until a first free 

slot that is capable of holding the computation cost of task vj is found. If no free slot is available 

then the finish time of the last assigned task in pk is considered as the start time of the task vj. 

The algorithm also computes the TEC value for task vj on every processor p. The time 

complexity of this phase of the algorithm is O((e×p)+(e×p)) or O(e×p), where e is the number 

of edges. Thus the time complexity of the compile-time phase of the HPSM algorithm is 

O((v+e)+v log v+(e×p)+(e×p)) which is equal to O(e×p). For a dense graph the number of 

edges is proportional to O(v
2
) and hence the time complexity of the processor selection phase of 

the algorithm is O(pv
2
).  

In the run-time, when a processor pl leaves the network, at the worst case maximum of v tasks 

scheduled in  pl at the compile-time are to be rescheduled using insertion based scheduling 

policy to the remaining p-1 processors in the HMCS or to any other suitable processor joins the 

network after the task allocation is made at the compile-time. Thus the time complexity of the 

run-time phase of the algorithm is O(pv
2
). 

5.  ILLUSTRATION OF THE HPSM ALGORITHM  

The HPSM algorithm is illustrated using the graph given in Figure 1 and its computation costs 

shown in Table 1. For illustration it is assumed that HMCS consists of 3 processors p1, p2 and p3 

and the energy consumed by these processors per unit time execution is 0.6, 0.8 and 0.7 energy 

units respectively. Further it is assumed that the energy consumed by these processors per unit 

time communication is 0.2, 0.1 and 0.2 energy units respectively.  

5.1.1. Compile-time Phase 

The compile-time phase of the HPSM algorithm is illustrated for two scenarios namely, 

scenario 1 and scenario 2. Scenario 1 exemplifies minimization of schedule length and scenario 

2 exemplifies minimization of energy consumption. The tradeoff between minimizing the 

schedule length and the energy consumption is also studied by varying the weight values of λ 
from 0 to 1, or γ = from 1 down to 0.  

Scenario 1: The HPSM algorithm minimizes the schedule length when λ = 1 or γ = 0. The 

HPSM algorithm initially level sorts the tasks in the task graph. For example, for the task graph 

given in Figure 1, after level sorting, level 1 consists of only task v1, level 2 consists of tasks v2, 

v3, v4, v5 and v6. Level 3 consists of tasks v7, v8 and v9 respectively. Finally level 4 consists of 

task v10. After the level sorting process, the tasks at each level are scheduled to the suitable 

processors based on the priority of the task.  Priority is assigned to each task in the task graph 

based on the attributes such as DLC, ULC, LC and ACC. Table 2 presents the calculated DLC, 

ULC, LC, ACC values and the priority for the task graph shown in Figure 1. 

Once the priority for tasks are assigned, a priority queue is constructed in such a way that task at 

level 1 is placed in the queue first followed by the tasks in the next higher level and so on.  The 

task with highest priority is selected from the priority queue and is assigned to the processor 

which gives the minimum EFT value computed using the Eq. (2). Similarly all the tasks in the 

queue are scheduled to the suitable processors. Table 3 presents the calculated EST, EFT values 

and the processors selected for executing the tasks in the task graph shown in Figure 1. The 

shaded value in the cell indicates the earliest finish time of the task on a particular processor.  
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Table 2.  DLC, ULC, LC and the other values computed for the task graph shown in Figure 1.  
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1 v1 0 21 21 13 1 

2 v2 5 15 41 17 5 

2 v3 12 23 56 14 2 

2 v4 15 23 59 13 1 

2 v5 21 13 54 12 3 

2 v6 14 12 47 13 4 

3 v7 23 12 91 11 2 

3 v8 23 16 98 10 1 

3 v9 13 13 80 17 3 

4 v10 16 0 114 13 1 

 

The schedule length generated by the HPSM, PETSM and the HEFTM algorithms for the task 

graph shown in Figure 1 and its computation costs given in Table 1 are 80, 83 and 88 

respectively. The schedule length generated by the HPSM is lesser than the schedule length 

generated by the PETSM and the HEFTM algorithms.  

Table 3. The EST and EFT values Computed for the Task Graph Shown in Figure 1 Using 

HPSM Algorithm 
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v1 0 14 0 16 0 9 p3 

v4 24 37 24 32 9 26 p3 

v3 21 32 21 34 26 45 p1 

v5 32 44 30 43 26 36 p3 

v6 32 45 23 39 36 45 p2 

v2 32 45 39 58 36 54 p1 

v8 49 54 49 60 44 58 p1 

v7 54 61 60 75 60 71 p1 

v9 61 79 49 61 51 71 p2 
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Scenario 2: In this scenario the energy reduction mechanism of the HPSM algorithm for 

completing an application is exemplified. The HPSM algorithm minimizes the energy 

consumption when the maximum weight is given to energy minimization (i.e., λ = 0 or     γ = 1). 

When λ = 0, the HPSM algorithm selects the highest priority task from the ready queue and 

schedules it to a processor which consumes minimum energy for executing the task.  The total 

energy consumed by a processor for executing a task is equal to the sum of energy consumed by 

the processor for executing the task and the energy consumed for communication. The energy 

consumed by a processor for communication is equal to the energy consumed to receive the 

input from the predecessor tasks and the energy consumed to send the output to the successor 

tasks. The communication energy is assumed to be zero when both the predecessor and the 

successor tasks are scheduled in the same processor. The HPSM algorithm computes the energy 

consumption by a task using the Eq. (6). The computation of energy consumption for the tasks 

shown in Figure 1 and the corresponding computation costs given in Table 1 is as follows: 

For example, for the task v1 in the Figure 1, the estimated computation time on processors p1, p2 

and p3 are 14, 16 and 9 respectively. The energy utilization by these processors for executing the 

task v1 is respectively 8.4, 12.8 and 6.3. The energy consumption for sending 67 bytes of data 

(sum of data to be transferred from task v1 to v2, v3, v4, v5 and v6) by the processors p1, p2 and p3 

are 13.4, 6.7 and 13.4 respectively. The total energy utilized by the processors p1, p2 and p3 are 

21.8, 19.5 and 19.7 respectively. Since p2 utilizes lesser energy than the p1 and p3, task v1 is 

assigned to p2. The estimated energy consumption may be reduced further if the child’s tasks or 

the immediate successor’s tasks of the task v1 are placed on the same processor.  Similarly 

energy consumption of each processor for executing the tasks given in Figure 1 is computed. 

The computed energy value and the processor selected are shown in Table 4. The values in bold 

denote the minimum energy consumption for executing a task by a particular processor. 

 

Table 4. Energy Consumed by the Processors P1, P2 and P3 and the Processor Selected for 

Executing the Tasks Shown In Figure 1 

v10 74 95 73 80 74 84 p2 
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v1 21.8 14.7 19.7 p2 

v4 17.4 8.7 21.5 p2 

v3 16 13.9 22.7 p2 

v5 14 10.4 13.8 p2 

v6 13 15.4 11.5 p3 

v2 8.8 17.2 16.6 p1 

v8 13.2 13.9 20 p1 

v7 11.2 17 17.7 p1 

v9 20.4 10.8 23.6 p2 

v10 20.8 7 15.2 p2 

The total energy consumed by all the three processors for completing the application given in 

Figure 1 is 110.2, 111.6 and 11.6 energy units for HPSM, PETSM and HEFTM algorithms 

respectively.  From the illustrations it is evident that on an average the HPSM minimizes the 

schedule length or energy consumption significantly compared to the other two algorithms 

PETSM and HPSM. 

5.1.2 Run-time Phase 

The run-time phase of the HPSM algorithm is exemplified as follows: Suppose, during the 

execution of the program, at time interval 46, if a node p1 or p2 or p3 leaves the network with 

notification to the scheduler, then the scheduler reschedules the incomplete tasks scheduled 

earlier in p1 or p2 or p3 to the newly joined processor or among the existing processors in the 

network. This situation is illustrated for two scenarios i.e., when the processors p1 and p3 leave 

the network. Suppose when the processor p1 leaves the network at time unit 46, there are two 

remaining tasks (task v8 and v7) to be executed in p1. The HPSM algorithm reschedules task v8 

and v7 to the processor p3, since p3 gives minimum EFT for these tasks by meeting the 

precedence constraints. As expected, the rescheduling of tasks will increase the schedule length 

generated by the HPSM algorithm.  The PETSM reschedule task v8 onto p2 and the HEFTM 

algorithm reschedules the task v9 onto the processor p2. The final schedule length generated by 

HPSM, PETSM and HEFTM are 93, 83 and 88 respectively.  Similarly, when the processor p2 

leaves the network at time unit 48, the HPSM algorithm reschedules the tasks 9 and 10 onto 

processor p1.  The PETSM reschedules the tasks 9 and 10 in p2 onto p1 and the HEFTM 

algorithm reschedules the task 10 onto p3.  The schedule lengths generated by the HPSM, 

PETSM and HEFTM, after task rescheduling, are 100, 99 and 88 respectively. The rescheduling 

of tasks at run-time shows that the HEFTM algorithm is better than the HPSM and PETSM 

algorithms because it has enough holes (free slots) in processor p2 to accommodate other tasks. 

 

6.  EXPERIMENTAL RESULTS AND DISCUSSION 
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Experiments have been conducted by simulation to evaluate the performance of the HPSM 

algorithm in terms of schedule length and the energy consumption. A large number of random 

task graphs have been generated and used for the simulation experiments.  The parameter used 

for the generation of random task graph is discussed below.  

6.1. Generation of Random Task Graphs 

The simulations are performed by creating a set of random DAGs which are input to the 

proposed as well as the existing task scheduling algorithms. The method used to generate 

random DAGs is similar to that presented in [7]. The following input parameters are used to 

create the DAG. 

(1)  Number of nodes (tasks) in the graph, v. 

(2)  Shape parameter of the graph, α. The height of the DAG is randomly generated from a 

uniform distribution with mean value equal to √v/α. The width for each level in the DAG is 

randomly selected from a uniform distribution with mean equal to α ×√v. If α = 1.0, then the 

DAG will be balanced. A dense graph (shorter graph with high parallelism) and a longer 

graph (low parallelism) can be generated by selecting α »1.0 and α «1.0 respectively. 

(3)  Out degree of a node, out_degree: Each node’s out degree is randomly generated from a 

uniform distribution with mean value equal to out_degree. 

(4)  Communication to Computation Ratio (CCR): If the DAG has a low CCR, it can be 

considered as a computation-intensive application and if CCR is high, it is a 

communication-intensive application. 

(5)  Average Computation Cost (ACC) in the graph: Computation costs are generated randomly 

from a uniform distribution with mean value equal to ACC.  

(6)  Range percentage of computation costs on processors, β: A high β value causes a wide 

variance between a task’s computations across the processors. A very low β value causes a 

task’s computation time on all processors to be almost equal. The average computation cost 

Ti of task vi in the task graph is selected randomly from a uniform distribution with range [0, 

2*Tdag], where Tdag is the average computation cost of the given graph, which is set 

randomly in the algorithm. The computation cost of vi on any processor pj will then be 

randomly selected from the range [T×(1−β/2)] to [T×(1 + β/2)]. 

    The input parameters described above were varied with the following values: 

v = {20, 30, 40, 50, 60, 70, 80, 90, 100}, 

CCR = {0.1, 0.5, 1.0, 5.0, 10.0}, 

α = {0.5, 1.0, 2.0}, 

out_degree= {1, 2, 3, 4, 5}, 

β = {0.1, 0.25, 0.5, 0.75, 1.0}, 

m = {0.25, 0.5, 1.0}. 

    For simulation of experimental results the following systems attributes were assumed. 

Input parameters Values 

Number of nodes in the 

HMCS 

 

Ranges from 3  to 12 

Energy consumption rate of 

the nodes for computations 
Randomly generated 

between 0.1 to 2.0  
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Joule 

Energy consumption rate of 

the nodes for  

communication 

Randomly generated 

between 0.1 to 2.0 

Joule 

Initial available energy 2000 to 10000 Joule 

 

The performance of the HPSM algorithm is compared with two other algorithms namely, 

PETSM and HEFTM algorithms. Two types of experiments have been conducted for the 

evaluation of algorithms. In the first experiment, the performances of the algorithms are 

evaluated based on the schedule length (by setting λ = 1 or γ = 0) generated by each of the 

algorithm for the randomly generated task graphs. In the second experiment, the performances 

of the algorithms are evaluated based on the average energy consumption of the nodes (by 

setting λ = 0 or γ = 1) to complete the program for the randomly generated task graphs.   

In the first experiment, random task graphs are generated with the number of tasks in the task 

graph ranges from 10 to 50 in step size of 10, using the graph characteristics values given in 

section 6.1 and these task graphs are scheduled onto the HMCS consisting of four nodes. The 

average schedule length generated by each of the algorithm in this experiment is plotted and is 

shown in Figure 2. Each data point in the reported graph is the average of the data obtained in 

60 experiments. The experimental results show that HPSM generated lesser schedule length 

than the PETSM and HEFTM algorithms. The average schedule length based ranking of the 

algorithms is HPSM, PETSM and HEFTM. 

Further, for the experiments conducted above, the average energy consumed by all the 

processors in the HMCS to complete the program execution have been determined and plotted 

and is shown in Figure 3. The result shows that the HPSM algorithm consumes lesser energy 

than the HEFTM and the PETSM algorithms. The average energy consumption based ranking 

of the algorithm is HPSM, PETSM and HEFTM. 

    

Figure 2. Average SL generated by HPSM,          Figure 3. Average energy consumption  

PETS and HEFTM algorithms for the                   four processors by HPSM, PETSM and   

random task graphs when ( λ = 1 or γ = 0)        HEFTM algorithms for the random task graphs 

                                                                               when ( λ = 1 or γ = 0) 
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Another set of experiments are conducted to evaluate the energy consumption. For this 

experiment, random task graphs are generated with number of tasks in the task graph tasks 

ranges from 10 to 50 in step size of 10, using the graph characteristics values given in section 

6.1 and these graphs scheduled onto the HMCS consisting of four nodes with an objective to 

minimize the energy consumption (by setting λ = 0 or γ = 1). The total energy consumption of 

all the four nodes to complete the program is computed and plotted in Figure 4. Each data point 

in the reported graph is the average of the data obtained in 60 experiments. On an average the 

energy consumed by all the nodes to complete the execution of an application is less when the 

HPSM algorithm is used instead of PETSM and HEFTM algorithms. The average energy 

consumption based ranking of the algorithms is HPSM, PETSM and HEFTM.    

Again, for the above experiments, the average schedule length generated by each of the 

algorithm has been determined and plotted and is shown in Figure 5.  The result shows that the 

HPSM algorithm generates a more minimum schedule length than HEFTM and PETS 

algorithms. The ranking of the algorithm based on the average schedule length for this 

experiment is HPSM, PETSM and HEFTM. 

 

   

Figure 4 Average energy consumption of              Figure 5 Average SL generated by HPSM 

four processors by HPSM, PETSM and                 PETSM and HEFTM algorithms for the 

HEFTM algorithms for random task graphs           random task graphs when ( λ = 0 or γ = 1) 

The first and the second experiments show that, when the minimization of the schedule length is 

the primary objective of the algorithms, then the energy consumed by the node increases 

correspondingly. On an average the schedule length generated by the HPSM, PETS and the 

HEFTM algorithm are 2208, 2328 and 2390 by consuming 5794, 5974 and 6258 units of energy 

respectively. When minimization of the energy consumption is the primary objective of the 

algorithms, then the schedule length generated by each of the algorithms increases 

correspondingly. On an average the total energy consumed by all the four processors by the 

HPSM, PETS and the HEFTM algorithms are 5203, 5433 and 5569 energy units with the 

schedule length of 3023, 3118 and 3236 respectively. 

 In another experiment, the performances of the algorithms are studied with respect to the 

schedule length and energy consumption by varying the λ value from 0 to 1 in step size of 0.2. 

For this experiment, random task graphs with 50 tasks have been generated and scheduled onto 

a HMCS consisting of 4 nodes. The other graph characteristics are as given in section 6.1. The 

schedule length generated by each of the algorithm is plotted and shown in Figure 6. Each data 

point in the reported graph is the average of the data obtained in 60 experiments. For the same 

experiment, the energy consumed by the processors is determined and plotted in Figure 7. This 
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experiment confirms that when the schedule length decreases energy consumption increases and 

vice versa.  

 

Figure 6 Average SL generated by HPSM,            Figure 7 Average energy consumption 

PETSM and  HEFTM algorithms for  different      of the processors for different weight of λ 
weight values of λ                                                 by  HPSM, PETSM and HEFTM algorithms 

 

Finally, the performances of the algorithms are studied with respect to the node mobility. For 

the experimental purpose, it is assumed that nodes in HMCS have limited mobility and if any 

node wishes to leave the network, it has to send notification to the scheduler and can leave only 

after getting the acknowledgement from the scheduler. For this experiment, random task graphs 

with 100 tasks have been generated using the graph characteristic given in section 6.1 and 

scheduled onto the twelve nodes. Whenever a node leaves the network or when the node 

becomes unavailable due to energy exhaustion, the incomplete tasks in the leaving node or the 

energy exhausted node are rescheduled to the other node which has similar or higher profile 

than the leaving node or the energy exhausted node.  The performance of the algorithms in 

terms of schedule length when none of the nodes join the network is studied and plotted in 

Figure 8.   

 

Figure 8 Average SL generated by HPSM, PETSM and HEFTM algorithms for different 
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The experiment results show that the schedule length is increased whenever the nodes leave the 

network and the tasks in the leaving nodes are rescheduled to other nodes. Each data point in the 

figure is the average of 50 experiments. The rescheduling of tasks, at run-time, shows that the 

HEFTM algorithm is marginally better than the HSPM and PETSM algorithms.  

7. CONCLUSION 

The scheduling of DAG-structured application onto the HMCS is explored in this paper with an 

objective to minimize the schedule length or energy consumption or both, based on the weights 

given for minimizing the schedule length or energy. As the execution of an application on 

HMCS demands both the compile-time and runt-time support, a new       two-phase task 

scheduling algorithm namely, HPSM has been proposed and developed, which considers either 

the minimization of the schedule length or the energy utilization or both, at the compile-time 

based on the needs and rescheduling of tasks whenever a node leaves the HMCS or the energy 

of the node exhausted at the run-time. The performance of the HPSM algorithm is compared 

with the PETSM and HEFTM, the modified versions of the PETS and HEFT algorithms 

respectively.  Simulation experiments have been conducted to study the effectiveness of the 

algorithms in terms of the schedule length and energy consumption using a large set of 

randomly generated task graphs. The experimental results show that the HPSM algorithm 

significantly performs better than the PETSM and the HEFTM algorithms. 
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