
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

DOI : 10.5121/ijcsit.2011.3207 94

MODEL BASED SYSTEM ENGINEERING APPROACH OF

A LIGHTWEIGHT EMBEDDED TCP/IP

M. Z. Rashed
Computer science Dept, Faculty of computer science, Mansoura University, Egypt

Magdi_12003@yahoo.com

Ahmed E. Hassan
Electrical engineering Dept, Faculty of engineering, Mansoura University, Egypt

dr.hassan@ahmed-hassan.org

Ahmed I. Sharaf
Computer science Dept, Faculty of computer science, Mansoura University, Egypt

Ahmed.sharaf.84@gmail.com

 ABSTRACT:

The use of embedded software is growing very rapidly. Accessing the internet is a necessary

service which has large range of applications in many fields. The Internet is based on TCP/IP

which is a very important stack. Although TCP/IP is very important there is not a software

engineering model describing it. The common method in modeling and describing TCP/IP is RFCs

which is not sufficient for software engineer and developers. Therefore there is a need for software

engineering approach to help engineers and developers to customize their own web based

applications for embedded systems.

This research presents a model based system engineering approach of lightweight TCP/IP. The

model contains the necessary phases for developing a lightweight TCP/IP for embedded systems.

The proposed model is based on SysML as a model based system engineering language.

KEYWORDS

Communication protocol, embedded systems, TCP/IP, SysML , system engineering.

1-INTRODUCTION:

Embedded systems are collection of both software and hardware components that are

tightly coupled which make it hard or very difficult to upgrade or replace any of the

system components [16] .Embedded systems are special purpose computing devices

which deigned to perform dedicated functions [21]. These systems vary in size, scope of

use and complexity. Also these systems reside nearly in many devices. Embedded

systems are usually resource limited in terms of processing power, memory, and power

consumption, thus embedded software should be designed to make the best use of limited

resources. A networked embedded system is a collection of spatially and functionally

distributed embedded nodes, which are interconnected by means of wired or wireless

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

95

communication infrastructure and communication protocol. Networked embedded

systems can offer new services and more complex functions by means of connecting

many other systems together. Networked embedded systems are most common in use and

can be found in industrial planets, Mobile embedded devices, Telecommunication and

wireless sensor network [25].

Networked embedded systems are based on a communication protocol. The most

common and standard protocol is Internet Protocol Suite (TCP/IP). TCP/IP [17], [27] is

known as a standard communication protocol for hosts to connect the Internet. TCP/IP is

a set of communications protocols used for the Internet and other similar networks.

TCP/IP protocol stack and its layers is discussed in the next section.

TCP/IP protocol stack

The TCP/IP model consists of four layers. From lowest to highest, these are the Link

Layer, the Internet Layer, the Transport Layer, and the Application Layer [10]. The

TCP/IP stack is viewed as a set of layers from telecommunication point of view .Each

layer solves a set of problems involving the transmission of data, and provides a well-

defined service to the upper layer protocols based on using services from some lower

layers. Upper layers are logically closer to the user and deal with more abstract data,

relying on lower layer protocols to translate data into forms that can eventually be

physically transmitted.

Each layer form the stack consists of many protocols, each protocol solve a set of

problems and has its detailed requirements and specifications. The whole TCP/IP protocol

stack and its detailed protocols are defined in several documents which are called request

for comment (RFC) provided by the IETF. Although the RFC document can describe the

protocol specifications in accurate technique, it has some fundamental limitations [9].

Requirements traceability is established and maintained in the document based approach

by tracing requirements between the specifications at different levels of the specification

hierarchy. Requirements management tools are used to parse requirements contained in

the specification documents and captures them in a requirements database. The

traceability between requirements and design is maintained by identifying the part of the

system or subsystem that satisfies the requirement, and/or the verification procedures used

to verify the requirement, and then reflecting this in the requirements database.

Also completeness, consistency, and relationships between requirements, design,

engineering analysis, and test information are difficult to assess since this information is

spread across several documents. This makes it difficult to understand a particular aspect

of the system and to perform the necessary traceability and change impact assessments.

This, in turn, leads to poor synchronization between system level requirements and design

and lower-level hardware and software design. It also makes it difficult to maintain or

reuse the system requirements and design information for an evolving or variant system

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

96

design. Also, progress of the systems engineering effort is based on the documentation

status that may not adequately reflect the system requirements and design quality.

These limitations can result in inefficiencies and potential quality issues that often show

up during integration and testing, or worse, after the system is delivered to the customer.

Another approach used in modeling is called model based approach which is discussed in

the next section.

Model based system engineering

Model based approach has been standard practice in electrical and mechanical design and

other disciplines for many years. Mechanical engineering transitioned from the drawing

board to increasingly more sophisticated two-dimensional (2D) and then three-

dimensional (3D) computer-aided design tools beginning in the 1980s. Electrical

engineering transitioned from manual circuit design to automated schematic capture and

circuit analysis in a similar time frame. Computer-aided software engineering became

popular in the 1980s for using graphical models to represent software at abstraction levels

above the programming language. The use of modeling for software development is

becoming more widely adopted, particularly since the advent of the Unified Modeling

Language in the 1990s.

Model-based systems engineering (MBSE) is the formalized application of modeling to

support system requirements, design, analysis, verification, and validation activities

beginning in the conceptual design phase and continuing throughout development and

later life cycle phases. MBSE is intended to facilitate systems engineering activities that

have traditionally been performed using the document-based approach and result in

enhanced communications, specification and design precision, system design integration,

and reuse of system artifacts. The output of the systems engineering activities is a

coherent model of the system (i.e., system model), where the emphasis is placed on

evolving and refining the model using model based methods and tools.

MBSE provides an opportunity to address many of the limitations of the document-based

approach by providing a more rigorous means for capturing and integrating system

requirements, design, analysis, and verification information, and facilitating the

maintenance, assessment, and communication of this information across the system’s life

cycle. Some of the MBSE potential benefits include the following:

1. Enhanced communications.

1.1. Shared understanding of the system across the development team and other

stakeholders.

1.2. Ability to integrate views of the system from multiple perspectives.

2. Reduced development risk.

2.1. More accurate cost estimates to develop the system.

2.2. Ongoing requirements validation and design verification.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

97

3. Improved quality.

3.1. More complete, unambiguous, and verifiable requirements.

3.2. More rigorous traceability between requirement, design, analysis and testing.

3.3. Enhanced design integrity.

4. Increased productivity.

4.1. Reuse of existing models to support design evolution.

4.2. Reduced errors and time during integration and testing.

MBSE [6] can provide additional rigor in the specification and design process when

implemented using appropriate methods and tools [7]. The OMG announced SysML as a

system engineering modeling language which is discussed in the next section.

SysML

The OMG Systems Modeling Language (OMG SysML) is a general purpose graphical

modeling language [26], [20]. SysML [23],[29] can be used for specifying, analyzing,

designing and verifying systems that may include hardware, software, information,

personnel, procedures and facilities. This modeling language can integrate with any other

engineering analysis model through a graphical and semantic foundation for modeling

system requirement, behavior, structure and parametric. SysML has the following

advantages over UML:

1. SysML's semantics are more flexible and expressive. SysML reduces UML's

software-centric restrictions and adds two new diagram types, requirement and

parametric diagrams.

2. SysML is a smaller language that is easier to learn and apply. Since SysML

removes many of UML's software-centric constructs, the overall language is

smaller as measured both in diagram types and total constructs

Model based approach is used in case of wireless sensor network by the center of

embedded systems [24].SysML considered to be a lead modeling language. Sanda

Mandutianu also used MBSE and SysML in modeling space mission systems and

applying to a JPL space mission in early stages of formulation [19].

Authors of this work presented a detailed model based system engineering approach for

lightweight embedded TCP/IP. The model is based on SysML. Section 2 discusses the

previous related work. Section 3 discusses the proposed model and it details. Section 4

discusses the Future work. Section 5 discusses the conclusion

2-Related work:

Many authors and software vendors developed various versions of communication

protocols for standard workstations and embedded systems.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

98

Developing communication protocol is a special type of software development, which is a

critical, complex and real time software. There is a gap between the art of software

engineering and the practice of developing communication protocols [14].

Communication protocols usually developed using C language because of its time

performance and fast execution time, which make it a good choice for developing

communication protocols and embedded systems [5]. Developing TCP/IP for embedded

systems is an important research area, which is discussed by many authors and micro-

controller vendors.

Atmel provided an AVR internet toolkit [4], which can be used for 8 bit embedded

internet applications. This toolkit is suitable for the manufacture products only. Aittamaa

et al proposed a modular TCP/IP stack for embedded systems with a tiny timber interface

[3]. Simon work added Point to Point Protocol (PPP) for embedded TCP/IP stack. Also

Jakobsson et al developed a TCP/IP stack for a real time embedded systems [13]. Ognyan

Dimitrov et al developed their own lightweight TCP/IP for embedded systems using

PIC18F67J60 [22].

One proposed approach to solve the problem of communication protocol developing is

using a formal description language technique to create the protocol specification. SDL

[8], Estell [12] and Lotos [11] are examples of formal description languages used for this

problem. Since SDL is the most widely adopted language, there is no reusability [14] in

the design phase and very limited in the implementation phase.

Adams Dunkels presented two proposal based on the first approach for this problem

which called UIP [1] and IwIP [18]. His proposals are based on redesigning TCP/IP as

lightweight separate software that is targeting tiny 8 bit microcontrollers. There are three

weak points in Dunkels's proposals. First, there is no software model. Since

communication protocols are complex software, modeling is necessary process. Software

modeling and analysis can improve system maintenance, flexibility, extensibility and ease

of system understanding. Second, both UIP and IwIP are targeting tiny embedded systems

that make it difficult to difficult to use the solution for anther microcontroller architecture.

Lastly, there is no modularity in which makes it hard to customize the functionality of

system. It could be clearer if the authors of the system presented the architecture.

The work presented in this paper is a SysML model of a lightweight TCP/IP for

embedded systems. The proposed top level model is discussed in section 3. The

components details and its model are discussed in section 4.

3.) Proposed Top level model

This section presents an overview of proposed system. This section contains requirement,

use case and package diagram of the system.

3.1) Requirement Diagram:

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

99

Requirement diagrams are a new feature added to SysML and not existing in UML2.0

[28], requirement diagrams can describes the requirement of the systems from many

different viewpoints. The top level requirement diagram shows the system requirement,

user requirement and developer requirement, each category has its specific requirement to

gain the best usage from the system as shown in Figure 1.The requirement properties

shown include some standard SysML requirement prosperities such as “Id”,“Text”,

“RiskType” and “Verification”. The enumeration list of each requirement property is

shown in Table 1.

Requirement

property

Enumeration

list

Description

Id None The sequence Id of requirement item

Text None Short description of requirement item

RiskType The expected risk that could occurs by developer

 High

 Med

 Low

Verification The verification method/technique used

 Analysis Indicates that verification will be performed by

verification of requirement and sub requirements under

specific conditions.

Figure 1 Top level requirement diagram

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

100

 Demo Indicates that verification will be performed in real

environment and with the use of laboratory equipment.

 Inspection Indicates that verification will be performed by

examination of the component, comparing the appropriate

characteristics with a pre-determined standard.

CPU The central processing power properties

OS The type of the used operating system

Table 1 list of requirement prosperities and its enumeration list

3.2) System behavior:

This section presents the overall system behavior though use case diagram. Use case is a

behavior diagram which is common between UML2.0 and SysML. The top level use case

of the proposed system is shown in Figure2.

3.3) System Structure:

Figure 2Top level use case of the proposed system

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

101

This section presents the overall system

structure through package diagram.

Figure 3 shows the package diagram of

the system structure. The package

diagram includes the components of the

system from software engineering point

of view. The system contains five

componenets which are:

� Hardware

� Device driver

� TCP/IP core layer which includes

o Time manager

o Memoery manager

o Multi-threading

o Lightweight TCP/IP kernel.

� Socket layer.

� User application layer.

The next section discusse each

componenet of the system componenets

with its details and model. User

application componenet is out of this

paper scope and is not discussed.

4.) Components details:

In this section the system components will be discussed in some manner of details. Each

component will be introduced through structure and behavior models.

4.1) Hardware

The hardware layer includes the basic hardware components. The internal block diagram

is shown in Figure 4. The used approach presents a simple I/O mapping using a simple

microcontroller and Ethernet controller. For very fast throughput, as may be required for

voice or video streaming, a small microprocessor will not be fast enough. This is because

microprocessors require many instructions to transfer data from one location to another.

Using a FPGA with an internal CPU core (an embedded processor) could perfrom high

thoughput and fast accessing. Arriving frames are pre-processed by the FPGA hardwired

logic (first processor), and stored in dual port RAM for further processing by the program

based embedded core. Pipelined functions such as checksums, header address

comparisons etc are handled by the first processor in real time. Operations such as

management of state tables, connection establishment and other higher-layer software

intensive functions are handled by the second processor. Designs like these can be fast

enough for real-time 100 Mbps and even 1000 Mbps systems.

Figure3 Top level package diagram of the

proposed system.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

102

4.2) Device driver

This section describes techniques used for modeling the device driver behavior, use case

is shown in Figure 5. The supported methods in this use case are discuused as follows:

� Direct hardware accessing

This category contains direct hardware accessing methods like chip hard reset, read

from register and write to register.

� Initializing and status

 This category contains initializing method and

return status.

� Data Transmission

This category contains three basic methods

which are initializing registers and memory, read from

DMA and perform physical transfer.

� Data receiving

This category also contains three basic methods

which are polling the device, initializing the registers

and perform data transfer and memory de-allocation.

Another aspect of device driver behavior is activity diagram. Figure 6 shows activity

diagram of sending frame, Figure 7 shows activity diagram of receiving frame.

4.3) TCP/IP core layer

Figure 4 I/O mapping between a microcontroller and Ethernet controller

Figure 5 device driver use case

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

103

This layer consists of lightweight TCP/IP (kernel), timer manager, multi-threading

manager and memory manager. This section discusses the details of those layer

components.

4.3.1) Lightweight TCP/IP (kernel)

This layer is considered as the most important component, which is discussed in some

manner of details. The kernel component contains the data structures and functions used

by TCP and IP protocols. Figure7 shows the IP use case. The IP methods which are use

by the kernel are: "IPH_Init", "IPH_Handler", "IPH_FillPacket", "IPH_FillHdr" and

"IPH_ChkSum". The description of these methods is shown in Table1 Appendix A. The

relation between the kernel and IP can be illustrated from two scenarios which are

sending and receiving data.

First scenario, discuss how should the kernel send data from

application program or user process. Figure 8 shows the detailed

sequence diagram of sending data using IP. Second scenario,

discuss how the kernel should handle the received IP packet and

perform required processing. Figure 9 shows the activity diagram

of receiving data. In this scenario, the kennel extracts some

information from the received packet such source and destination

IP address, protocol type and so on. The kernel then calls the

corresponding module to handle the data

Figure 6 send data activity diagram

Figure 7 receive data activity diagram

Figure 8 IP use case

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

104

Figure 11 TCP Sequence diagram

Figure 9 activity diagram of receiving

data

Figure 10 TCP use case

diagram

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

105

TCP is a little different protocol than IP. TCP is

a point-to-point, connection oriented, reliable,

and byte stream protocol. The proposed use

case of TCP is shown in Figure 10. This use

case illustrates the interaction between the

kernel and TCP. Table 2 Appendix A shows the

description of this use case. The relation

between the kernel and TCP is illustrated into

send/receive scenarios. First scenario, discuss

how should the kernel send TCP segment

typically from TCP_User to remote TCP_User.

Figure 11 illustrates the used sequence diagram

to send TCP segment.

The second scenario, discuss how the kernel

should handle a received TCP segment. Figure

12 illustrates the used approach.

4.3.2) Multi-threading

Multi-threading [15] technique is very useful

approach used in general development.

Embedded systems need collaborative task

execution with especial features. Embedded

systems requires more lightweight software that

can be managed and executed in limited

processing power such as 8-16 bit

microcontroller. This work contains a

lightweight multi-threading technique. The multi-threading state

machine is shown in Figure12.

This work contains a lightweight multi-threading technique

which is based on Protothread [2] . The proposed multi-

threading technique is based on duff device principal. Duff

device state that a case statement is still legal within a sub-block

of its matching switch statement. This technique is stack less

thread which provides linear code execution for event driven

systems. One advantage of these threads is there is no need to

implement thread per stack as ordinary thread. In memory

constrained systems, the overhead of allocating multiple Figure 13 Multi-threading use

case

Figure 12 Multi-threading state machine

diagram

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

106

stacks can consume large amounts of the available memory.

The Protothread mechanism does not specify any specify method to invoke or schedule a

Protothread this is defined by the system using Protothread. If a Protothread is run on top

of an underlying event-driven system, the Protothread is scheduled whenever the event

handler containing the Protothread is invoked by the event scheduler. The supported

functions are shown in Figure 13 which illustrates the use case diagram of the proposed

multi-threading technique. The internal block diagram of the multi-threading is shown in

Figure 14.

4.3.3) Timer manager

One critical point in any communication protocol process is time

management. Protocol process depends on time for many cases such

as connection time out, resend data and wait for acknowledgement.

Connection oriented protocol usually use time manager in order to

control connection time, determine waiting time. Therefore time

management component in TCP/IP is important. Calculating the

intervals is determined by the hardware clock. Time manager should

provide basic operations such as set time interval, restart the timer

and reset the timer with the last configured interval value. These

operating are shown in Figure 14 which represents the use case

of Time manager module.

4.3.4) Memory manager

Memory is the most critical hardware component in any

computer system. The kernel could access the memory in

order to perform any of the following functions:

• Initialize memory block.

• Allocate block

• De-allocate block

Figure 15 show the use case of memory manager functions

and how to deal with memory block, "Init_Block" which

represents the declaration of memory block to be handled,

"Block_alloc" which represents the allocation of memory

that already declared and "Block_free" which represents the

memory de-allocation of declared block. The proposed

behavior for the memory manager is to use single buffer for

holding packets , when a packet is arrived the device driver

place it in the global buffer and call the kernel modules. If the packet contains data, the

kernel notifies the corresponding application. When the application receives a notify

message it have to take one action from the following:

Figure 14 Timer manager

use case

Figure 15 memory

management use case use

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

107

• Perform online processing on global buffer

• Copy the packet contents to secondary buffer and perform the processing on it.

Figure 16 shows the proposed activity diagram which illustrates the workflow in memory

manager.

One other view is also important in memory management is the functionality of the

proposed architecture which demonstrate what will the module do with memory blocks.

4.4) Socket Layer

The next layer in the proposed architecture is

called socket layer. This layer represents socket

and the functions used to handles socket. Socket is

defined as end point of a bidirectional

communication link between hosts or between

processes on the same host. Socket component is

based heavily on the thread mechanism that make

socket inherits the complexity of thread, the socket

being by invoking “Begin_thread" and terminated

by "End_thread". Figure 16 shows the internal

block diagram of socket manager. Figure 17 shows

the corresponding use case which illustrate the

main functionality of socket management

component.

Figure 16 activity diagram of memory management.

Figure 16 internal block diagram of

socket manager

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

108

FUTURE WORK

We plan to develop this model for a real 8 bit microprocessor and complete the

implementation phase. We also plan to compare our implementation result against any

similar work from complexity point of view and run time performance.

CONCLUSION

We presented in this research paper anther view of lightweight TCP/IP to fit embedded

systems. Although TCP/IP protocol stack is described in several RFC documents, the text

based approach has many limitations. The model based approach is used here using

SysML as modeling language to model a lightweight TCP/IP architecture for embedded

systems environment. The model presents a requirement, analysis and design phases of

lightweight TCP/IP. Also the main components and protocols are modeled using SysML.

The presented model illustrate SysML befits in modeling communication protocols and

TCP/IP protocol stack.

Figure17 socket management use case

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

109

APPENDIX A

Method Name Description

IPH_Init This method initialize the IP header

IPH_Handler

This method is called when IP packet is received, checks the

protocol field and calls the corresponding module such ICMP, TCP

… and so on.

IPH_FillPacket This method is used to fill the packet data.

IPH_FillHdr This method is used to fill the IP packet header

IPH_ChkSum
This method is used to validate the packet data and order by

applying packet check sum

Table 1 IP methods descriptions

Method Name Description

TCP_Init This method initialize the TCP header

TCP_Handler
This method is used to handle the TCP segment, it also handle the

TCP SYN, FIN, RST and normal ACK status.

TCP_User
This method is used to notify the TCP applications with the correct

data.

TCP_putch This method is used to send character over TCP

TCP_Tx This method is used to send TCP segment

TCP_Timer
This method is used to handle timer timeout during SYN received

and ACK wait status.

Table 2 TCP methods description

REFERENCES:

1. A.Dunkels. UIP a TCP/IP stack for 8-and16-bit microcontrollers. [Web page]

http://www.sics.se/~adam/uip/index.php/Main_Page

2. Adam Dunkels et al, 2006. Protothreads: Simplifying Event-Driven Programming of Memory-

Constrained Embedded Systems. Acm

3. Aittamaa, Simon and Rova, Isak. 2007. A modular TCP/IP stack for embedded systems with a

tinyTimberinterface. Lulea University of Technology, Sweden.

4. Atmel. [Web page] http://www.atmel.com.

5. Barr. 2006. Programming Embedded Systems. O'Reilly.

6. Buede, Dennis M. 2009 The Engineering design of Systems models and methods. John Wiley &

Sons.

7. E. Andrianarison , J-D. Piques, 2010, SysML for embedded automotive Systems: a practical

approach. ERTS².

8. Ellsberger, Jan. 1997.SDL: Formal Object-Oriented Language for Communicating Systems. Prentice

Hall PTR

9. Friedenthal, Sanford et al. 2010. A Practical Guide to SysML , Elsevier

10. Insam, Edward, 2003. TCP/IP Embedded Internet Applications. Elsevier.

11. ISO, 1989 Lotos. ISO international standard IS8807

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

110

12. ISO, 1989 Estell. ISO international standard IS8807.

13. Jakobsson, Stefan and Dahlberg, Erik. 2007. Development of a TCP/IP Stack in real time embedded

system. Umea University, Department of Computing Science , Sweden

14. K.hramboulidis and A.Mikroyannidis. 2003. Using UML for the Design of Communication

Protocols: The TCP Case Study. International Conference on Software, Telecommunications and

Computer Networks.

15. Keith Curtis, 2006. Embedded Multitasking. Elsevier.

16. Li, Qing and Yao, Carolyn.2003. Real-Time Concepts for Embedded Systems, CMP Books.

17. Loshin, Pete.2003. TCP/IP Clearly Explained, Elsevier.

18. LwIP a lightweight TCP/IP stack. [Web page] http://www.sics.se/~adam/lwip/

19. Mandutianu, Sanda. 2009. Modeling Pilot for Early Design Space Missions. 7th Annual Conference

on Systems Engineering Research.

20. Marcos V. Linhares et al 2007. Introducing the Modeling and Verification process in SysML. 12th

IEEE Int. Conf. on Emerging Technologies and Factory Automation

21. Noergaard, Tammy et al. 2005. Embedded systems Architecture, Elsevier.

22. Ognyan Dimitrov et al 2008. Embedded Internet based system , Annual conference of the University

of Rousse

23. Omg, 2005 Systems Modeling Language (SysML) Specification

24. Sachdeva et al 2005.System Modeling. A Case Study on a Wireless Sensor Network. Center for

Embedded Computer System University of California, Irvine.

25. Sridhar, T 2003. Designing Embedded Communications Software. CMP Books ,

26. SysML. [Web page] http://SysML.org.

27. Tanenbaum, Andrew S. and Wetherall, David J. 2010. Computer Networks (5th Edition) Prentice

Hall.

28. Tim Weilkiens 2006. Systems Engineering with SysML/UML .Elsevier.

29. Vanderperren, Yves and Dehaene, Wim. 2005, SysML and Systems Engineering Applied to UML-

Based SoC Design. Citeseer.

