
International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

DOI : 10.5121/ijcsit.2011.3211 152

A Novel Parallel Algorithm for Clustering
Documents Based on the Hierarchical

Agglomerative Approach

Amal Elsayed Aboutabl
1
 and Mohamed Nour Elsayed

2

1
Computer Science Department, Faculty of Computers and Information,

Helwan University, Cairo, Egypt
aaboutabl@helwan.edu.eg

2
Faculty of Computers and Information Sciences, Princess Noura University (Former

Riyadh University), Riyadh, Kingdom of Saudi Arabia
mnour@pnu.edu.sa

ABSTRACT

As the amount of internet documents has been growing, document clustering has become practically

important. This has led the interest in developing document clustering algorithms. Exploiting parallelism

plays an important role in achieving fast and high quality clustering. In this paper, we propose a parallel

algorithm that adopts a hierarchical document clustering approach. Our focus is to exploit the sources of

parallelism to improve performance and decrease clustering time. The proposed parallel algorithm is

tested using a test-bed collection of 749 documents from CACM. A multiprocessor system based on

message-passing is used. Various parameters are considered for evaluating performance including

average inter-cluster similarity, speedup and processors' utilization. Simulation results show that the

proposed algorithm improves performance, decreases the clustering time, and increases the overall

speedup while still keeping a high clustering quality. By increasing the number of processors, the

clustering time decreases till a certain point where any more processors will no longer be effective.

Moreover, the algorithm is applicable for different domains for other document collections.

KEYWORDS

Hierarchical Clustering, Parallel Algorithms, Simulation, Document Collection, Performance Evaluation

1. INTRODUCTION

Document clustering is the grouping of documents into clusters where each cluster contains

documents which are more similar to each other than documents in other clusters. The need for

document clustering emerges from the existence of vast amount of information on the internet

nowadays. This huge amount of documents needs to be organized in such a way to facilitate

faster and easier access. There are mainly three challenges with document clustering: high

dimensionality of data, high volume of data and the high clustering quality needed [1]. Various

document clustering algorithms attempt to find a tradeoff between accuracy and speed.

Clustering techniques are, in general, classified into partitioning and hierarchical methods

[1,2]. Partitioning methods, which are based on the K-means method and its variants, assign

every document, iteratively, to a single cluster until k clusters are formed. An initial clustering

is chosen (often at random). Every document is compared to the set of cluster centroids and the

document is assigned to the cluster with the most similar centroid. Hierarchical clustering

produces a set of nested clusters organized as a hierarchical tree, normally visualized as a

dendrogram (Figure 1) showing the sequence of merges and splits. The desired number of

clusters can be obtained by cutting the dendrogram at the proper level. There are two main types

of hierarchical clustering: splitting (divisive) and agglomerative methods. Splitting methods

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

153

work in a top-down manner starting with one cluster including all documents. Splitting occurs,

iteratively, until the desired number of clusters is reached. Agglomerative clustering algorithms

are more popular where clusters are merged in a bottom-up manner to form a hierarchy of

clusters. Initially, each document is assumed to be a single cluster. Iteratively, the closest pair of

clusters are merged until k clusters are formed. A similarity matrix is used to store cluster-to-

cluster similarities [3]. The basic hierarchical agglomerative algorithm is as follows:

Compute the similarity matrix

Let each data point be a cluster

Repeat

 Merge the two closest clusters

 Update the proximity matrix

Until the desired number of clusters is reached

Figure 1. An example dendogram showing how clusters are merged/split at each step

This paper is organized as follows: previous related work is first presented. Second, the

proposed parallel algorithm is introduced. Then, simulation work is presented followed by a

discussion of the experimental results. Finally, some concluding remarks are recommended.

2. RELATED WORK

A number of document clustering algorithms have been proposed in literature [1]. Hierarchical

clustering algorithms are typically viewed as more accurate than other types of algorithms [6].

The reason is that it is a bottom-up algorithm which, initially, assumes that each document is a

cluster and then merges the most similar clusters in an iterative manner. The number of

iterations depends on k, the number of needed clusters. Because of its quadratic computational

complexity, hierarchical clustering algorithms are unpractical for large document collections. A

number of algorithms that exploit parallelism in hierarchical clustering algorithms have been

introduced in literature [3,4,5,7,8,9,10]. A parallel hierarchical clustering algorithm is

introduced in [3] which is used as the clustering subroutine for a parallel buckshot algorithm. A

distributed clustering technique (RACHET) is developed [9] in which hierarchical clustering

algorithms are used to generate local dendrograms. Descriptive statistics are used to minimize

the representation of cluster centroids and hence decrease communication cost.

Various methods are classically known for defining inter-cluster similarity [6,12,13,14]. The

Single-link method calculates the similarity of two clusters based on the two most similar points

(documents) in different clusters. This single-link merge criterion is local. In the complete-

linkage method, similarity of two clusters is based on the two least similar (most distant) points

in different clusters. This complete-link merge criterion is non-local; the entire structure of the

clustering can influence merge decisions. Similarity, in the group average method, is the

average of the pairwise distance between points in the two clusters. This method can avoid the

pitfalls of the single-link and complete-link criteria both of which equate cluster similarity with

the similarity of a single pair of documents.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

154

3. PROPOSED ALGORITHM

In this work, parallelism is exploited to perform document clustering based on the hierarchical

agglomerative clustering method. Hierarchical agglomorative clustering starts by considering

each document as a separate cluster. The two closest clusters are merged (agglomerated) into a

single cluster. The agglomeration step is repeated forming a hierarchical structure (tree). This

tree structure can be broken at certain edges to obtain the final clustering based on some

criterion, such as the number of needed clusters or some cluster quality criterion. In our

algorithm, a threshold value is used to stop merging. This threshold value is decremented with

each iteration of the loop till a minimum threshold value is reached.

3.1. Data Model

The data considered for clustering in this work are documents. The vector space model, a

common representation for data to be clustered [6,11], is used to represent documents for

clustering. Each document is represented as a vector whose dimensionality is the number of

terms (features) considered for clustering.

D = {di} i=1,…,ND

T= {tj} j=1,…,NT

V = {vi} , i=1,…., ND

vi= [vij]

 ��� = � 1 �		
� ∈ ��
0 �
ℎ������ �

The vector size is equal to the number of terms considered.

D is the set of documents

T is the set of document terms considered

NT is the number of terms considered

V is the set of document vectors

ND is the total number of documents

vi is the vector space representation of document di

vij is the jth element in vector vi and has the value of 1 if term tj exists in document di , 0

otherwise.

Processors can be represented as a connected graph G(P,E) where P={pi}, i=1,…NP is the set of

processors, NP is the number of processors. E={eij} is the set of edges (communication links)

connecting the nodes where the edge eij connects the nodes pi and pj , i≠j. Processors are

assumed to be fully connected, so the number of edges is |E|= NP (NP -1)/2

Initially, documents are distributed equally among processors. Each processor pi is assigned

ND/NP documents. The set of documents assigned to pi is denoted by Di, Di ⊂D and |Di|=ND/NP.

The proposed clustering method is based on hierarchical agglomerative clustering which is

performed independently on each processor in parallel. As an initial step, each document is

assumed to be a cluster on its own. The set of clusters on pi is denoted by Ci = {ck} k=1,…, ���
the number of clusters on processor pi. Each cluster ck contains a set of documents Dk⊂Di.

Initially, |Ci|=|Di| and |ck|=1. Each processor pi performs clustering based on data about clusters

existing in its local memory only. At each merging step, the cluster-to-cluster similarity matrix

is computed. Each processor has its own similarity matrix. The two most similar clusters are

merged into one cluster. If cl and cm are the two clusters to be merged on pi then a new cluster

ck=Dl ∪ Dm and Ci= (Ci- {cl, cm}) ∪ ck and the number of clusters |Ci| is decremented by one.

Merging continues on each processor until the distance between the two most similar clusters is

below threshold (an input threshold value). A new merging phase starts after clusters are

exchanged between processors. Every even-numbered processor exchanges half of its clusters

with the next processor. In the following exchange step, every odd-numbered processor

exchanges half of its clusters with the next processor. Exchange of clusters continues to occur

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

155

interchangeably between even and odd-numbered processors. It is assumed that the number of

processors Np is even. The value of threshold is decremented before each merging step by a

predefined value threshdec. Exchange of clusters between processors allows each processor to

take the clustering decision i.e. which clusters to merge, based on a larger pool of clusters than

the one assigned at the beginning. Decrementing threshold before each merging step aims at

improving clustering quality with each merging step. The following sequence of steps occurs on

each processor:

- merge the two most similar clusters until threshold is reached.

- pi and pi+1 (i is even) exchange half of their clusters

- decrement threshold by threshdec

- merge the two most similar clusters until threshold is reached.

- pi and pi+1 (i is odd) exchange half of their clusters

- decrement threshold by threshdec

This sequence is repeated till threshold reaches a predefined input value threshmin.

3.2. Parallel Threshold-based Clustering Algorithm

Input : P, D, threshold, threshdec, threshmin

Output : Ci ∀ pi (the set of clusters Ci formed on processor pi)

1. Assign ND/NP documents to each processor pi.

2. Each cluster contains only one document.

3. odd=true

4. while threshold≥threshmin

5. for each processor pi do in parallel

6. Compute similarity matrix for clusters Ci on pi

7. Find the two most similar clusters cl and cm

8. if distance(cl,cm)≤ threshold

9. Merge cl and cm into one cluster ck , ck=Dl ∪ Dm and Ci=(Ci-{cl, cm})∪ck

10. Repeat from step 6

11. endif

12. endfor

13. if odd=true

14. for each processor pi i=1,3 to NP-1 do in parallel

15. pi and pi+1 exchange half of their clusters

16. endfor

17. odd = false

18. else // odd is false

19. for each processor pi i=2,4 to NP do in parallel

20. pi and p(i mod Np)+1 exchange half of their clusters

21. endfor

22. odd = true

23. endif

24. Decrement threshold by threshdec

25. endwhile.

4. SIMULATION

The described models are simulated by a developed C++ program. The input parameters to the

simulator are the number of processors, the number of documents, document vectors, threshold ,

threshmin and threshdec. The simulator outputs include the resulting clusters on each processor

and some quality measures such as the average cluster similarity, number of merges performed

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

156

on each processor, maximum number of merges, number of sends by each processor and

maximum number of sends.

4.1. Data Structures

Double linked lists are used to represent processors, clusters and documents. These linked lists,

which are created dynamically, are nested so as to simulate the parallel clustering system

(Figure 2).

Processors double linked list: Each node in the linked list represents a processor. The attributes

associated with each processor are:

Lclus : the number of local clusters

fdoc and ldoc : the first and last document id’s assigned initially to the processor

nmerges : number of cluster merges

nsends : number of clusters sent

chead,ctail : point to the head and tail of the clusters’ linked list of the processor

SM : similarity matrix

next and prev : point to the next and prev processor’s node in the linked list

Clusters double linked list : Each processor’s node in the processors linked list points to its own

local double linked list of clusters. Each node in the clusters’ double linked list represents a

cluster on the related processor. The attributes associated with each cluster are :

cid : cluster id

centroid : a vector representing the computed cluster centroid

ndocs : the number of documents in the cluster

dhead,dtail : point to the head and tail of the documents’ linked list of the cluster

next and prev : point to the next and previous cluster in the linked list

Documents double linked list: Each cluster node in the clusters linked list points to its double

linked list of documents. Each node in the documents double linked list represents a document

having a document id docid, next and prev pointers.

Merging of clusters is implemented by connecting the documents double linked lists of one of

the two clusters to be merged to the end of the documents double linked list of the other cluster.

The first cluster is then freed from memory and the attributes of the other cluster node are

updated. Merging is performed easily and quickly using the dhead and dtail attributes in the

clusters double linked list as well as the next and prev attributes in the documents double linked

list.

Figure 2. Nested double linked lists used for simulating processors, clusters and documents

…………...

Processors Linked List

p1 p 2

prev next ………. prev nextLclus SM cheadnsends nmerges ldocfdoc ctail

cid nextcentroid dtaildheadndocsprev

p2 clusters linked list

…………...

docid nextprev

p1 clusters linked list

…………...

Documents linked list of a cluster

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

157

4.2. Architectural Model

The architectural model adopted in this work is the multiprocessor system based on message

passing (Figure 3). The parallel architectural model consists of a set of processing nodes; each

has its own memory. The clustering operation is done in parallel by the computer processors.

During the document exchange among processors, the processors can communicate together via

the interconnection network which is fully-connected. Such network facilitates sending and

receiving messages among processors besides any other data transfer.

Figure 3. The Multiprocessor System based on Message Passing

4.3. Domain Model

The proposed parallel algorithm is run on a document collection with 749 documents obtained

from CACM. The collection of the CACM is one of the most popular datasets and/or

benchmarks for testing the document clustering operation. Each document in the collection is

described using the vector space model. Each document is represented also to be a binary vector

in the term-space. The document vectors are extracted based on 18 terms. For more details

about the chosen document collection, the reader can refer to

http://ir.dcs.gla.ac.uk/resources/test_collections/cacm/.

4.4. Cost Model

The cost model in this research work involves several aspects. It includes the merging

operations of the most similar clusters, exchanging clusters among processors, updating the

similarity matrix on each processor and monitoring of threshold values as well as the sizes of

the cluster pools. The number of merges is computed as the sum of the maximum number of

merges performed by all processors during all iterations of the while loop of the algorithm. The

maximum number of merges during an iteration is considered to be the processing makespan

for this iteration. Hence, the number of merges are computed as ∑ max �� ∀ ��� , where i is the

number of iteration of the outer loop of the algorithm and mj is the number of merges on

processor Pj. Computation of the cluster centroids and the similarity values are considered as

follows.

Computing Cluster Centroids : A cluster centroid is a vector representing the central point of

the cluster. It is the average of all document vectors in the cluster. Its coordinates are the

arithmetic mean of each dimension separately over all document vectors in the cluster. We

denote the centroid vector for cluster ck as w !!!!!" . The i
th
 element of the centroid vector w !!!!!" is

computed as :

w $ = % ∑ x&|()|
&*+ ,
|D | ∀ x!"ϵV

Interconnection Network

P1

M1

P2

M2

PNp

MNp

P3

M3

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

158

where xi is the ith element of document vector x!" , |Dk| is the number of documents in cluster ck

and Vk is the set of document vectors in cluster ck.

Computing similarity : The average cluster similarity is computed based on the cosine

similarity measure; the most commonly used similarity measure in document clustering [3,11].

Cosine similarity is a normalized metric because its values fall in [0,1]. Using cosine similarity,

the similarity between the two vectors x!"& and x!"0 is computed as :

S2x3!!!" , x5!!!"6 = x3!!!". x5!!!"
‖x3!!!"‖8x5!!!"8

 where the Euclidean norm ‖v!"‖ = :v+;+ ⋯ + v>; , d is the dimensionality of the vector .

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, simulation results are presented to measure the performance of the proposed

parallel algorithm. It is important to mention that speed and capacity of various components in

high performance computers have increased dramatically. This involves processors, memories,

links, and others. The interconnection network topologies have become more flexible and

efficient. As the adopted interconnection network is fully-connected, the waiting time to

exchange data among processors is negligible. In our case there are exactly 120 links when the

number of processing nodes considered is 16. On the other hand, the number of sends among

processors and the time consumed for merging the most similar documents are considered.

Simulation experiments are performed by varying the number of processors, threshold and

threshmin. Figures 4(a-c) and Figures 5(a-c) show the simulation results obtained when threshold

values of 0.8 and 0.5 are used. As the resulting number of clusters is not predefined, each

experiment results in a different number of clusters. The number of processors used is varied

from 1 to 16 as shown and a fully-connected architecture is assumed. The resulting number of

clusters increases as the number of processors and threshmin are increased. Higher number of

processors results into more documents partitioning and hence a larger number of clusters.

Moreover, higher values for threshmin , which is meant to increase the cluster quality by

restricting the merging process, also leads to an increase in the number of clusters. It is

noticeable that the number of resulting clusters has a maximum of 38 clusters for threshold

values from 0.1 to 0.6 for all values of Np while the number of clusters increases at a higher rate

for threshmin values from 0.7 to 0.9 with a maximum of 168 clusters. The average intracluster

similarity, based on cosine similarity, is used to measure the clustering quality. Higher threshmin

values produce higher quality of clusters. The effect of using more processors in increasing the

cluster quality is more apparent for smaller than for higher threshmin values. Merges and sends

are computed (Table 4) as the sum of the maximum number of merges/sends performed by all

processors during all iterations of the while loop of the algorithm.

A sample of the simulation results recorded per iteration is shown in Tables 1-3. These three

experiments produce the same number of clusters (20 clusters); the reason for which these

particular experiments are presented here to evaluate the benefits of parallelism. Our algorithm

does not require a predefined number of clusters. Based upon these three experiments, speedup,

utilization and efficiency are calculated. Regardless of whether the number of clusters is known

or unknown beforehand, the achieved speedup has the same meaning here since the number of

input documents and the number of resulting clusters are identical in the chosen experiments

(the same problem size). Speedup is the ratio of the execution time for clustering documents on

one processor to that time for clustering the same documents into the same number of clusters

on Np processors. Utilization is a measure of how much, of the total time, processors are busy.

Efficiency is the ratio between the speedup achieved and the number of processors used.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

159

(a)

(b)

(c)

Figure 4 (a-c). Simulation results with thresh=0.5, threshmin=0.1,0.2,…,0.5 and threshdec=0.1.

Each point in the charts represents an independent experiment.

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5

T
o

ta
l

N
u

m
b

e
r

o
f

C
lu

st
e

rs

Threshmin

Threshold=0.5

Np=1

Np=2

Np=4

Np=8

Np=16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5

A
v

g
.

In
tr

a
cl

u
st

e
r

S
im

il
a

ri
ty

Threshmin

Threshold=0.5

Np=1

Np=2

Np=4

Np=8

Np=16

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5

A
v

g
.

P
ro

ce
ss

o
r

U
ti

li
za

ti
o

n
 (

%
)

Threshmin

Threshold=0.5

Np=1

Np=2

Np=4

Np=8

Np=16

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

160

(a)

(b)

(c)

Figure 5 (a-c). Simulation results with thresh=0.8, threshmin=0.1,0.2,…,0.8 and threshdec=0.1.

Each point in the charts represents an independent experiment.

0

20

40

60

80

100

120

140

160

180

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

e
r

o
f

re
su

lt
in

g
 c

lu
st

e
rs

threshmin

Threshold=0.8
Np=1

Np=2

Np=4

Np=8

Np=16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

g
.I

n
tr

a
cl

u
st

e
r

S
im

il
a

ri
ty

threshmin

Threshold=0.8

Np=1

Np=2

Np=4

Np=8

Np=16

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

g
.

P
ro

ce
ss

o
r

U
ti

li
za

ti
o

n
 (

%
)

threshmin

Threshold=0.8

Np=1

Np=2

Np=4

Np=8

Np=16

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

161

Table 1. Experiment results for three consecutive iterations with Np=1 , threshdec=0.1 .

Measure i=1

t=0.8

i=2

t=0.7

i=3

t=0.6

P
er

it
er

at
io

n
 No. of Clusters 114 59 20

No. of Merges 635 55 39

Max. Merges 635 55 39

Avg. intra-cluster similarity 0.98 0.96 0.93

Table 2. Experiment results for five consecutive iterations with Np=4 , threshdec= 0.1 (i denotes

the iteration number and t is the threshold).

Measure i=1

t=0.8

i=2

t=0.7

i=3

t=0.6

i=4

t=0.5

i=5

t=0.4

P
er

 i
te

ra
ti

o
n
 No. of Clusters 128 69 36 24 20

No. of Merges 621 59 33 12 4

No. of Sends 0 65 36 19 14

Max. Merges 175 22 12 4 2

Max. Sends 0 24 14 6 4

Avg. intra-cluster similarity 0.99 0.96 0.94 0.90 0.88

 E
n
d

o
f

ex
p

.

Speedup 3.05

Efficiency 75%

Utilization 0.85

Table 3. Experiment results for 7 consecutive iterations with Np=8 , threshdec = 0.1 .

Measure i=1

t=0.8

i=2

t=0.7

i=3

t=0.6

i=4

t=0.5

i=5

t=0.4

i=6

t=0.3

i=7

t=0.2

P
er

 i
te

ra
ti

o
n
 No. of Clusters 148 83 48 35 29 26 20

No. of Merges 601 65 35 13 6 3 6

No. of Sends 0 76 44 26 20 17 15

Max. merges 90 14 8 4 3 1 2

Max. sends 0 15 10 5 3 3 2

Avg. intra-cluster similarity 0.99 0.97 0.94 0.92 0.90 0.89 0.87

 E
n

d

o
f

ex
p
.

Speedup 5.17

Efficiency 65%

Utilization 0.75

6. CONCLUSION

In this research work, we have analyzed and discussed a method for document clustering based

on the agglomerative hierarchical approach. We proposed a high performance method for

parallelizing the agglomerative document clustering algorithm. The experimental results in this

research work presented the effectiveness of the proposed parallel algorithm. The effectiveness

of the proposed parallel algorithm was very clear in decreasing the clustering time, increasing

the overall speedup, and achieving high quality clustering. This was achieved for all the

resulting clusters for all the experiments. Parallel processing in this concern is a very successful

solution for the main problems associated with the document clustering. It is concluded that

parallel processing plays an important role in dealing with the complexities of high

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

162

dimensionality of data used during the clustering operation. Parallelism has also a vital role in

handling the high volume of data of any document collection. Apart from the document

clustering, it is expected that the proposed parallel algorithm is scalable and effective for other

object clustering in different applications.

Table 4. Max. number of merges and max. number of sends summed over all iterations of the

algorithm . The number of processors Np is varied. Threshold=0.5 and 0.8 and

threshmin=0.1,..,0.8

Threshold t t=0.5 t=0.8

Threshmin 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Np=1 Merges 748 743 737 734 733 748 743 737 734 733 729 690 635

Sends 0 0 0 0 0 0 0 0 0 0 0 0 0

Np=2 Merges 376 374 370 367 366 408 404 400 398 396 392 370 337

Sends 16 14 10 5 0 86 83 79 74 68 61 42 0

Np=4 Merges 191 189 187 185 184 221 219 217 215 213 209 197 175

Sends 12 10 7 4 0 56 54 51 48 44 38 24 0

Np=8 Merges 99 98 96 95 94 124 122 120 119 116 112 104 90

Sends 10 8 6 4 0 40 38 36 33 30 25 5 0

Np=16 Merges 60 59 58 57 56 78 77 75 74 72 68 62 54

Sends 7 5 4 2 0 28 26 24 22 19 15 8 0

REFERENCES

[1] M. Steinbach , G. Karypis & V. Kumar (2000), "A comparison of document clustering

techniques", In 6th ACM SIGKDD World Text Mining Conference, Boston, MA, USA.

[2] S. Xu & J. Zhang (2004), "A Parallel Hybrid Web Document Clustering Algorithm and its

Performance Study", The Journal of Supercomputing (Special issue: Parallel and distributed

processing and applications), Vol. 30 , No. 2, pp. 117-131.

[3] R. Cathey, E. Jensen, S. Betzel, O. Frieder & D. Grossman (2007), " Exploiting parallelism to

support scalable hierarchical clustering", Journal of the American Society for Information

Science and Technology, Vol. 58, No. 8, pp. 1207-1221.

[4] E. Dahlhaus (2000), "Parallel algorithms for hierarchical clustering and applications to split

decomposition and parity graph recognition", Journal of Algorithms , Vol. 36, No. 2, pp. 205–

240.

[5] S. Ranka & S. Sahni (1991), "Clustering on a Hypercube Multicomputer", IEEE Transactions on

Parallel and Distributed Computing, Vol. 2, No. 2, pp.129-137.

[6] C. Olson (1995), "Parallel algorithms for hierarchical clustering", Parallel Computing , Vol. 21,

pp. 1313–1325.

[7] K. Hammouda & M. Kamel (2006), "Collaborative Document Clustering" , In proceedings of

2006 SIAM Conference on Data Mining (SDM06), pp. 453-463, Bethesda, Maryland.

[8] S. Rajesekanan (2005), "Efficient Parallel Hierarchical Clustering Algorithms", IEEE

Transactions on Parallel and Distributed Systems, Vol. 16, No. 6, pp. 497-502.

[9] D. Deb, M. Muztaba Fuad & R. Angryk (2006), "Distributed Hierarchical Document

Clustering", In Proceedings of the 2nd IASTED International Conference on Advances in

computer science and technology, pp. 328-333, Puerto Vallarta, Mexico.

[10] R. Alfred, E. Paskaleva, D. Kazakov & M. Bartlett (2007), "Hierarchical Agglomerative

Clustering of English-Bulgarian Parallel Corpora", In Proceedings of International Conference

on Recent Advances in Natural Languages Processing (RANLP 2007), Borovets, Bulgaria.

International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011

163

[11] M. Berry, Z. Drmac & E. Jessup (1999), "Matrices, Vector Spaces and Information Retreival",

Siam Review, Vol. 41 No. 2, pp. 335-362.

[12] M. Khalilian & N. Mustapha (2010), "Data Stream Clustering: Challenges and Issues", In

Proceedings of the International Multiconference of Engineers and Computer Scientists IMECS

2010, Hong Kong, pp. 978-988.

[13] G. J. Torres, R. B. Basnet, A. H. Sung, S. Mukkamala, & B. M. Ribeiro (2009), "A Similarity

Measure for Clustering and its Applications", International Journal of Electrical, Computer, and

Systems Engineering, Vol. 3, No. 3, pp. 164-170.

[14] R. Martinez-Morais, F.J. Alfaro-Cortes, & J. L. Sanchez (2010), "Providing QoS with the Deficit

Table Scheduler", IEEE Transactions on Parallel and Distributed Systems, Vol. 21, No. 3, pp.

327-341.

Authors

Amal Elsayed Aboutabl is currently an

Assistant Professor at the Computer Science

Department, Faculty of Computers and

Information, Helwan University, Cairo, Egypt.

She received her B.Sc. in Computer Science

from the American University in Cairo and both

of her M.Sc. and Ph.D. in Computer Science

from Cairo University. She worked for IBM

and ICL in Egypt for seven years. She was also

a Fulbright Scholar at the Department of

Computer Science, University of Virginia,

USA. Her current research interests include

parallel computing and performance evaluation.

Mohamed Nour Elsayed received his M.Sc.

and Ph.D. degrees in computer engineering

from the Faculty of Engineering Ain Shams

University, Cairo in 1987 and 1993

respectively. He taught about twenty years at

the American University in Cairo. Also, he was

the head of the Informatics Dept. at the

Electronics Institute, Cairo. Currently, he is a

Professor of Computers at the Faculty of

Computers and Information Sciences at Princess

Nora University (former Riyadh University),

Riyadh-KSA. He is a member of the University

Scientific Council. He served as a program

committee member of several computer

conferences. His research interests include high

performance computing, performance analysis,

and artificial intelligence applications. He is a

member of the IEEE, IEEE Computer Society,

Computational Intelligence Society, and

Language Engineering Society.

