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ABSTRACT 

As the amount of internet documents has been growing, document clustering has become practically 

important. This has led the interest in developing document clustering algorithms. Exploiting parallelism 

plays an important role in achieving fast and high quality clustering. In this paper, we propose a parallel 

algorithm that adopts a hierarchical document clustering approach. Our focus is to exploit the sources of 

parallelism to improve performance and decrease clustering time. The proposed parallel algorithm is 

tested using a test-bed collection of 749 documents from CACM. A multiprocessor system based on 

message-passing is used. Various parameters are considered for evaluating performance including 

average inter-cluster similarity,  speedup  and processors' utilization.  Simulation results show that the 

proposed algorithm improves performance, decreases the clustering time, and increases the overall 

speedup while still keeping a high clustering quality. By increasing the number of processors, the 

clustering time decreases till a certain point where any more processors will no longer be effective. 

Moreover, the algorithm is applicable for different domains for other document collections. 
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1. INTRODUCTION 

Document clustering is the grouping of documents into clusters where each cluster contains 

documents which are more similar to each other than documents in other clusters. The need for 

document clustering emerges from the existence of vast amount of information on the internet 

nowadays. This huge amount of documents needs to be organized in such a way to facilitate 

faster and easier access. There are mainly three challenges with document clustering: high 

dimensionality of data, high volume of data and the high clustering quality needed [1]. Various 

document clustering algorithms attempt to find a tradeoff between accuracy and speed.  

Clustering techniques are, in general, classified into partitioning and hierarchical methods 

[1,2]. Partitioning methods, which are based on the K-means method and its variants, assign 

every document, iteratively, to a single cluster until k clusters are formed. An initial clustering 

is chosen (often at random). Every document is compared to the set of cluster centroids and the 

document is assigned to the cluster with the most similar centroid. Hierarchical clustering 

produces a set of nested clusters organized as a hierarchical tree, normally visualized as a 

dendrogram  (Figure 1) showing the sequence of merges and splits. The desired number of 

clusters can be obtained by cutting the dendrogram at the proper level. There are two main types 

of hierarchical clustering: splitting (divisive) and agglomerative methods. Splitting methods 



International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 2, April 2011 

153 
 

work in a top-down manner starting with one cluster including all documents. Splitting occurs, 

iteratively, until the desired number of clusters is reached. Agglomerative clustering algorithms 

are more popular where clusters are merged in a bottom-up manner to form a hierarchy of 

clusters. Initially, each document is assumed to be a single cluster. Iteratively, the closest pair of 

clusters are merged until k clusters are formed. A similarity matrix is used to store cluster-to-

cluster similarities [3]. The basic hierarchical agglomerative algorithm is as follows: 

Compute the similarity matrix 

Let each data point be a cluster 

Repeat 

 Merge the two closest clusters 

 Update the proximity matrix 

Until the desired number of clusters is reached 

 
 

Figure 1. An example dendogram showing how clusters are merged/split at each step 

This paper is organized as follows: previous related work is first presented. Second, the 

proposed parallel algorithm is introduced. Then, simulation work is presented followed by a 

discussion of the experimental results. Finally, some concluding remarks are recommended. 

2. RELATED WORK 

A number of document clustering algorithms have been proposed in literature [1]. Hierarchical 

clustering algorithms are typically viewed as more accurate than other types of algorithms [6].  

The reason is that it is a bottom-up algorithm which, initially, assumes that each document is a 

cluster and then merges the most similar clusters in an iterative manner. The number of 

iterations depends on k, the number of needed clusters.  Because of its quadratic computational 

complexity, hierarchical clustering algorithms are unpractical for large document collections. A 

number of algorithms that exploit parallelism in hierarchical clustering algorithms have been 

introduced in literature [3,4,5,7,8,9,10]. A parallel hierarchical clustering algorithm is 

introduced in [3] which is used as the clustering subroutine for a parallel buckshot algorithm.  A 

distributed clustering technique (RACHET) is developed [9] in which hierarchical clustering 

algorithms are used to generate local dendrograms. Descriptive statistics are used to minimize 

the representation of cluster centroids and hence decrease communication cost.  

Various methods are classically known for defining inter-cluster similarity [6,12,13,14]. The 

Single-link method calculates the similarity of two clusters based on the two most similar points 

(documents) in different clusters. This single-link merge criterion is local. In the complete-

linkage method, similarity of two clusters is based on the two least similar (most distant) points 

in different clusters. This complete-link merge criterion is non-local; the entire structure of the 

clustering can influence merge decisions. Similarity, in the group average method, is the 

average of the pairwise distance between points in the two clusters. This method can avoid the 

pitfalls of the single-link and complete-link criteria both of which equate cluster similarity with 

the similarity of a single pair of documents.  
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3. PROPOSED ALGORITHM 

In this work,  parallelism is exploited to perform document clustering based on the hierarchical 

agglomerative clustering method.  Hierarchical agglomorative clustering starts by considering 

each document as a separate cluster. The two closest clusters are merged (agglomerated) into a 

single cluster. The agglomeration step is repeated forming a hierarchical structure (tree). This 

tree structure can be broken at certain edges to obtain the final clustering based on some 

criterion, such as the number of needed clusters or some cluster quality criterion. In our 

algorithm, a threshold value is used to stop merging. This threshold value is decremented with  

each iteration of the loop till a minimum threshold value is reached. 

3.1. Data Model  

The data considered for clustering in this work  are documents. The vector space model, a 

common representation for data to be clustered [6,11],  is used to represent documents for 

clustering.  Each document is represented as a vector whose dimensionality is the number of 

terms (features) considered for clustering. 

D = {di}    i=1,…,ND 

T= {tj}      j=1,…,NT 

V = {vi} , i=1,…., ND 

vi= [vij]  

 ��� = � 1 �		   
� ∈ ��
0 �
ℎ������ � 

The vector size is equal to the number of terms considered. 

D is the set of documents  

T is the set of document terms considered 

NT  is the number of terms considered  

V is the set of document vectors   

ND  is the total number of documents 

vi is the vector space representation of document di 

vij is the jth element in vector vi  and has the value of 1 if term tj exists in document di , 0 

otherwise. 

 

Processors can be represented as a connected graph G(P,E) where P={pi}, i=1,…NP is the set of 

processors, NP  is the number of processors.  E={eij} is the set of edges (communication links) 

connecting the nodes where the edge eij connects the nodes pi and pj , i≠j. Processors are 

assumed to be fully connected, so the number of edges is |E|= NP (NP -1)/2 

Initially, documents are distributed equally among processors. Each processor pi is assigned 

ND/NP documents. The set of documents assigned to pi is denoted by Di, Di ⊂D and |Di|=ND/NP. 

The proposed clustering method is based on hierarchical agglomerative clustering which is 

performed independently on each processor in parallel. As an initial step, each document is 

assumed to be a cluster on its own. The set of clusters on pi is denoted by Ci = {ck} k=1,…, ���  
the number of clusters on processor pi. Each cluster ck contains a set of documents Dk⊂Di. 

Initially, |Ci|=|Di| and |ck|=1. Each processor pi performs clustering based on data about clusters 

existing in its local memory only. At each merging step, the cluster-to-cluster similarity matrix 

is computed. Each processor has its own similarity matrix. The two most similar clusters are 

merged into one cluster. If cl and cm are the two clusters to be merged on pi then a new cluster 

ck=Dl ∪ Dm and Ci= (Ci- {cl, cm}) ∪ ck and the number of clusters |Ci| is decremented by one. 

Merging continues on each processor until the distance between the two most similar clusters is 

below threshold (an input threshold value). A new merging phase starts after clusters are 

exchanged between processors. Every even-numbered processor exchanges half of its clusters 

with the next processor. In the following exchange step, every odd-numbered processor 

exchanges half of its clusters with the next processor. Exchange of clusters continues to occur 
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interchangeably between even and odd-numbered processors. It is assumed that the number of 

processors Np is even. The value of  threshold is decremented before each merging step by  a 

predefined value threshdec. Exchange of clusters between processors allows each processor to 

take the clustering decision i.e. which clusters to merge, based on a larger pool of clusters than 

the one assigned at the beginning. Decrementing threshold before each merging step aims at 

improving clustering quality with each merging step. The following sequence of steps occurs on 

each processor: 

- merge the two most similar clusters until threshold  is reached. 

- pi and pi+1 (i is even) exchange half of their clusters 

- decrement threshold by threshdec 

- merge the two most similar clusters until threshold is reached. 

- pi and pi+1 (i is odd) exchange half of their clusters 

- decrement threshold by threshdec 

This sequence is repeated till threshold reaches a predefined input value threshmin. 

3.2. Parallel Threshold-based Clustering Algorithm 

Input   : P, D, threshold, threshdec, threshmin 

Output : Ci ∀ pi  (the set of clusters Ci formed on processor pi) 

 

1. Assign ND/NP documents  to each processor pi. 

2. Each cluster contains only one document. 

3. odd=true 

4. while threshold≥threshmin 

5.   for each processor pi do in parallel 

6.        Compute similarity matrix for clusters Ci on pi 

7.        Find the two most similar clusters cl and cm 

8.        if distance(cl,cm)≤ threshold 

9.           Merge cl and cm into one cluster ck , ck=Dl ∪ Dm and Ci=(Ci-{cl, cm})∪ck 

10.        Repeat from step 6  

11.      endif 

12.  endfor 

13.  if odd=true 

14.   for each processor pi i=1,3 to NP-1 do in parallel   

15.        pi and pi+1 exchange half of their clusters 

16.   endfor 

17.   odd = false 

18.  else  // odd is false 

19.   for each processor pi i=2,4 to NP do in parallel   

20.       pi and p(i mod Np)+1 exchange half of their clusters    

21.   endfor 

22.   odd = true 

23.  endif 

24.  Decrement threshold by threshdec 

25. endwhile. 

4. SIMULATION 

The described models are simulated by a developed C++ program. The input parameters to the 

simulator are the number of processors, the number of documents, document vectors, threshold ,  

threshmin and threshdec. The simulator outputs include the resulting clusters on each processor 

and some quality measures such as the average cluster similarity, number of merges performed 
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on each processor, maximum number of merges, number of sends by each processor and 

maximum number of sends. 

4.1. Data Structures 

Double linked lists are used to represent processors, clusters and documents. These linked lists, 

which are created dynamically, are nested so as to simulate the parallel clustering system 

(Figure 2). 

Processors double linked list: Each node in the linked list represents a processor.  The attributes 

associated with each processor are: 

Lclus : the number of local clusters  

fdoc and ldoc : the first and last document id’s assigned initially to the processor 

nmerges : number of cluster merges  

nsends : number of clusters sent 

chead,ctail : point to the head and tail of the clusters’ linked list of the processor 

SM : similarity matrix  

next and prev : point to the next and prev processor’s node in the linked list 

Clusters double linked list : Each processor’s node in the processors linked list points to its own 

local double linked list of clusters. Each node in the clusters’ double linked list represents a 

cluster on the related processor. The attributes associated with each cluster are : 

cid : cluster id 

centroid : a vector representing the computed cluster centroid 

ndocs : the number of documents in the cluster 

dhead,dtail : point to the head and tail of the documents’ linked list of the cluster 

next and prev : point to the next and previous cluster  in the linked list 

Documents double linked list: Each cluster node in the clusters linked list points to its double 

linked list of documents. Each node in the documents double linked list represents a document 

having a document id docid, next and prev pointers. 

Merging of clusters is implemented by connecting the documents double linked lists of one of 

the two clusters to be merged to the end of the documents double linked list of the other cluster. 

The first cluster is then freed from memory and the attributes of the other cluster node are 

updated. Merging is performed easily and quickly using the dhead and dtail attributes in the 

clusters double linked list as well as the next and prev attributes in the documents double linked 

list. 

 
  

Figure 2. Nested double linked lists  used for simulating processors, clusters and documents 

…………...

Processors Linked List

p1 p 2

prev next ………. prev nextLclus SM cheadnsends nmerges ldocfdoc ctail

cid nextcentroid dtaildheadndocsprev

p2 clusters linked list

…………...

docid nextprev

p1 clusters linked list

…………...

Documents  linked list of a cluster
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4.2. Architectural Model 

The architectural model adopted in this work is the multiprocessor system based on message 

passing (Figure 3). The parallel architectural model consists of a set of processing nodes; each 

has its own memory. The clustering operation is done in parallel by the computer processors. 

During the document exchange among processors, the processors can communicate together via 

the interconnection network which is fully-connected. Such network facilitates sending and 

receiving messages among processors besides any other data transfer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Multiprocessor System based on Message Passing 

4.3. Domain Model 

The proposed parallel algorithm is run on a document collection with 749 documents obtained 

from CACM. The collection of the CACM is one of the most popular datasets and/or 

benchmarks for testing the document clustering operation. Each document in the collection is 

described using the vector space model. Each document is represented also to be a binary vector 

in the term-space. The document vectors are extracted based on 18 terms. For more details 

about the chosen document collection, the reader can refer to 

http://ir.dcs.gla.ac.uk/resources/test_collections/cacm/. 

4.4. Cost Model 

The cost model in this research work involves several aspects. It includes the merging 

operations of the most similar clusters, exchanging clusters among processors, updating the 

similarity matrix on each processor and  monitoring of  threshold values as well as the sizes of 

the cluster pools. The number of merges is computed as the sum of the maximum number of 

merges performed by all processors during all iterations of the while loop of the algorithm. The 

maximum number  of merges during an iteration is considered to be the processing makespan 

for this iteration. Hence, the number of merges are computed as ∑ max ��    ∀ ���  , where i is the 

number of iteration of the outer loop of the algorithm and mj is the number of merges on 

processor Pj. Computation of the cluster centroids and the similarity values are considered as 

follows. 

Computing Cluster Centroids  :  A cluster centroid is a vector representing the central point of 

the cluster. It is the average of all document vectors in the cluster. Its coordinates are the 

arithmetic mean of each dimension separately over all document vectors in the cluster. We 

denote the centroid vector for cluster ck as w !!!!!" .  The i
th
 element of the centroid vector w !!!!!"   is 

computed as : 

w $ = % ∑ x&|()|
&*+  ,
|D |    ∀ x!"ϵV    

Interconnection Network 

P1 

M1 

P2 

M2 

PNp 

MNp 

P3 

M3 
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where  xi is the ith element of document vector x!"  ,  |Dk|  is the number of documents in cluster ck 

and Vk is the set of document vectors in cluster ck. 

Computing similarity :  The average cluster similarity is computed based on the cosine 

similarity measure;  the most commonly used similarity measure in document clustering [3,11]. 

Cosine similarity is a normalized metric because its values fall in [0,1]. Using cosine similarity, 

the similarity between the two vectors x!"&  and x!"0 is computed as : 

S2x3!!!" , x5!!!"6 = x3!!!". x5!!!"
‖x3!!!"‖8x5!!!"8 

 where the Euclidean norm ‖v!"‖ = :v+;+ ⋯ + v>;  , d is the dimensionality of the vector . 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, simulation results are presented to measure the performance of the proposed 

parallel algorithm. It is important to mention that speed and capacity of various components in 

high performance computers have increased dramatically. This involves processors, memories, 

links, and others. The interconnection network topologies have become more flexible and 

efficient. As the adopted interconnection network is fully-connected, the waiting time to 

exchange data among processors is negligible. In our case there are exactly 120 links when the 

number of processing nodes considered is 16. On the other hand, the number of sends among 

processors and the time consumed for merging the most similar documents are considered. 

Simulation experiments are performed by varying the number of processors, threshold and 

threshmin.  Figures 4(a-c) and Figures 5(a-c) show the simulation results obtained when threshold 

values of 0.8 and 0.5 are used. As the resulting number of clusters is not predefined, each 

experiment results in a different number of clusters. The number of processors used is varied 

from 1 to 16 as shown and a fully-connected architecture is assumed. The resulting number of 

clusters increases as the number of processors and threshmin  are increased.  Higher number of 

processors results into more documents partitioning and hence a larger number of clusters. 

Moreover, higher values for threshmin , which is meant to increase the cluster quality by 

restricting the merging process, also leads to an increase in the number of clusters. It is 

noticeable that the number of resulting clusters has a maximum of 38 clusters for threshold 

values from 0.1 to 0.6 for all values of Np while the number of clusters increases at a higher rate 

for threshmin values from 0.7 to 0.9 with a maximum of 168 clusters. The average intracluster 

similarity, based on cosine similarity, is used to measure the clustering quality.  Higher threshmin 

values produce higher quality of clusters. The effect of using more processors in increasing the 

cluster quality is more apparent for smaller than for higher  threshmin values. Merges and sends 

are computed (Table 4) as the sum of the maximum number of merges/sends performed by all 

processors during all iterations of the while loop of the algorithm.  

A sample of the simulation results recorded per iteration is shown in Tables 1-3. These three 

experiments produce the same number of clusters (20 clusters); the reason for which these 

particular experiments are presented here to evaluate the benefits of parallelism. Our algorithm 

does not require a predefined number of clusters. Based upon these three experiments, speedup, 

utilization and efficiency are calculated. Regardless of whether the number of clusters is known 

or unknown beforehand, the achieved speedup has the same meaning here since the number of 

input documents and the number of resulting clusters are identical in the chosen experiments 

(the same problem size). Speedup is the ratio of the execution time for clustering documents on 

one processor to that time for clustering the same documents into the same number of clusters 

on Np processors. Utilization is a measure of how much, of the total time, processors are busy. 

Efficiency is the ratio between the speedup  achieved and the number of processors used. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 4 (a-c).  Simulation results with thresh=0.5, threshmin=0.1,0.2,…,0.5 and threshdec=0.1. 

Each point in the charts represents an independent experiment. 
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(a) 

 

 
(b) 

 
(c ) 

Figure 5 (a-c). Simulation results with thresh=0.8, threshmin=0.1,0.2,…,0.8 and threshdec=0.1. 

Each point in the charts represents an independent experiment. 
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Table 1.  Experiment results for three consecutive iterations with Np=1 , threshdec=0.1 .  

Measure i=1  

t=0.8 

i=2  

t=0.7 

i=3 

t=0.6 

P
er

 

it
er

at
io

n
 No. of Clusters 114 59 20 

No. of Merges 635 55 39 

Max.  Merges 635 55 39 

Avg. intra-cluster similarity 0.98 0.96 0.93 

Table 2.  Experiment results for five consecutive iterations with Np=4 , threshdec= 0.1  (i denotes 

the iteration number and t is the threshold).  

Measure i=1  

t=0.8 

i=2  

t=0.7 

i=3  

t=0.6 

i=4  

t=0.5 

i=5  

t=0.4 

P
er

 i
te

ra
ti

o
n
 No. of Clusters 128 69 36 24 20 

No. of Merges 621 59 33 12 4 

No. of Sends 0 65 36 19 14 

Max.  Merges 175 22 12 4 2 

Max. Sends 0 24 14 6 4 

Avg. intra-cluster similarity 0.99 0.96 0.94 0.90 0.88 

 E
n
d
 

o
f 

ex
p

. 

Speedup 3.05 

Efficiency 75% 

Utilization 0.85 

Table 3. Experiment results for 7 consecutive iterations with Np=8 , threshdec = 0.1 . 

Measure i=1  

t=0.8 

i=2  

t=0.7 

i=3  

t=0.6 

i=4  

t=0.5 

i=5  

t=0.4 

i=6  

t=0.3 

i=7  

t=0.2 

P
er

 i
te

ra
ti

o
n
 No. of Clusters 148 83 48 35 29 26 20 

No. of Merges 601 65 35 13 6 3 6 

No. of Sends 0 76 44 26 20 17 15 

Max.  merges 90 14 8 4 3 1 2 

Max. sends 0 15 10 5 3 3 2 

Avg. intra-cluster similarity 0.99 0.97 0.94 0.92 0.90 0.89 0.87 

 E
n

d
 

o
f 

ex
p
. 

Speedup 5.17 

Efficiency 65% 

Utilization 0.75 

6. CONCLUSION 

In this research work, we have analyzed and discussed a method for document clustering based 

on the agglomerative hierarchical approach. We proposed a high performance method for 

parallelizing the agglomerative document clustering algorithm. The experimental results in this 

research work presented the effectiveness of the proposed parallel algorithm. The effectiveness 

of the proposed parallel algorithm was very clear in decreasing the clustering time, increasing 

the overall speedup, and achieving high quality clustering. This was achieved for all the 

resulting clusters for all the experiments. Parallel processing in this concern is a very successful 

solution for the main problems associated with the document clustering. It is concluded that 

parallel processing plays an important role in dealing with the complexities of high 
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dimensionality of data used during the clustering operation. Parallelism has also a vital role in 

handling the high volume of data of any document collection. Apart from the document 

clustering, it is expected that the proposed parallel algorithm is scalable and effective for other 

object clustering in different applications. 

Table 4.  Max. number of merges and max. number of sends summed over all iterations of the 

algorithm . The number of processors Np is varied. Threshold=0.5 and 0.8 and 

threshmin=0.1,..,0.8 

Threshold t t=0.5 t=0.8 

Threshmin 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Np=1 Merges 748 743 737 734 733 748 743 737 734 733 729 690 635 

Sends 0 0 0 0 0 0 0 0 0 0 0 0 0 

Np=2 Merges 376 374 370 367 366 408 404 400 398 396 392 370 337 

Sends 16 14 10 5 0 86 83 79 74 68 61 42 0 

Np=4 Merges 191 189 187 185 184 221 219 217 215 213 209 197 175 

Sends 12 10 7 4 0 56 54 51 48 44 38 24 0 

Np=8 Merges 99 98 96 95 94 124 122 120 119 116 112 104 90 

Sends 10 8 6 4 0 40 38 36 33 30 25 5 0 

Np=16 Merges 60 59 58 57 56 78 77 75 74 72 68 62 54 

Sends 7 5 4 2 0 28 26 24 22 19 15 8 0 
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