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ABSTRACT 

The degree of success in document summarization processes depends on the performance of the method 

used in identifying significant sentences in the documents. The collection of unique words characterizes 

the major signature of the document, and forms the basis for Term-Sentence-Matrix (TSM). The Positive 

Pointwise Mutual Information, which works well for measuring semantic similarity in the Term-

Sentence-Matrix, is used in our method to assign weights for each entry in the Term-Sentence-Matrix. 

The Sentence-Rank-Matrix generated from this weighted TSM, is then used to extract a summary from 

the document.  Our experiments show that such a method would outperform most of the existing methods   

in producing summaries from large documents. 
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1. INTRODUCTION 

The escalation of the computer networks and easy access methods to information has led to 

increasing amount of storage of information, mostly textual. According to the latest report from 

IDC [1], the world’s information is doubling every two years. In 2011, the information created 

around the world was more than 1.8 zettabytes. By 2020 the world will generate 50 times the 

amount of information and 75 times the number of "information containers" while IT staff to 

manage it will grow less than 1.5 times. The report also points out the necessity of new 

"information taming" technologies for information processing and storage. 

To speedup the accessing, the flow of information needs to be filtered and stored 

systematically. For example, the working of Information Retrieval Systems (IRS) can be made 

effective by summarizing the entire collection of documents. Automatic text summarization can 

help by providing condensed versions of text documents. Expected summarization holds a list 

of applications like information extraction, document retrieval [2], evaluation of answer books 

[3], etc.  

Since the first study on text extraction by Luhn appeared, the text summarization process has 

attracted lot of research activities [14,16,17]. Depending on the purpose and intended users, a 

summary can be generic or user-focused [4]. A generic summary covers all major themes or 

aspects of the original document to serve a broad readership community rather than a particular 

group. A user-focused (or topic-focused, query oriented) summary favors specific themes. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

48 

 

 

 

Summarization processes are traditionally confined to ad-hoc and simple techniques, without 

any symbolic or linguistic processing, and this limits the quality of summary that can be 

produced. Semantic similarity is a concept whereby a set of words within identified unique 

words are assigned a metric based on the worthiness/ correctness of their meaning or semantic 

content.  In this paper we suggest a method based on Positive Pointwise Mutual Information 

(PPMI) [5] an extension of Pointwise Mutual Information PMI[6] which gives more importance 

to measure the semantic similarity between the words in a document for document 

summarization. 

2. METHOD 

In linguistics, morphology [7] deals with the arrangement and relationships between the words 

in a document. In any type of text processing application, the first step will be morphological 

analysis. Tokenization, stop words elimination [8] and stemming [9] are the sub tasks that are 

followed in our method.  

2.1 Tokenization and stop words elimination 

Even though characters are the smallest unit, words are considered as the useful and 

informative building blocks of a document for processing. As depicted in the figure 1, the 

sentences in the document are separated and will be treated as the samples niS i ,...1, =  for the 

experiment. Words in iS are separated in the next step and the punctuation marks and other 

irrelevant notations will be removed from those words.  

Stop words are very commonly used words like ‘the’, ‘of’, ‘and’, ‘a’, ‘in’, ‘to’, ‘is’, ‘for’, 

‘with’, etc that do not contribute anything to the informational content of a document and hence 

it can be removed.  These stop words have much meaning in natural language processing 

techniques that evaluate grammatical structures, but they have less importance in statistical 

analysis. 

2.2 Stemming 

Generally the morphological variants of words separated from a document have analogous 

semantic understandings and can be considered as equivalent in IR system. A couple of 

algorithms [Lovins Stemming, Porter Stemming] for stemming [10,11] have been developed to 

reduce a word to its stem or root. After the stemming process, the terms of a document are the 

stems rather than the original words. Stemming algorithms not only reduce a word into stem, 

but also reduce the size of the list of words that has to be considered for analysis.   

We are following the Porter Stemming [11] method, which is a rule based algorithm that works 

with both suffixes and prefixes. The algorithm defines five successive steps each consisting of a 

set of rules for transformation.  

Here a word is represented as combination of consonants and vowels in the form  

[ ] [ ] )1(......VVCVCC  

where the sequence bracket denotes arbitrary presence of their content and this can be written 

as  

[ ]( ) [ ] )2(VVCC m   
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,where m is the number of occurrence of  VC.  

The further processing of stripping is decided by the rules applied in various steps in the 

algorithm. 

At the end of stemming process, the unique words,  

ij psjU ,....1, =  

where 
ips  is the number of unique words, will be separated from 

iS . After processing 

each sentence, the collection of unique words in the entire document tiTi ,....1, = , where t is the 

total number of unique words identified for the document is obtained. 

2.3 Term-Sentence-Matrix 

The occurrence of t words in the document is represented by a Term-Sentence-Matrix (TSM) of 

n columns and t rows, where t is the number of unique words and n is the number of sentences 

in the entire document. Each element ijF  of the matrix is suitably measure the importance of 

term i with respect to the sentence and the entire document. Initially ijF  is the frequency of that 

ith term in the jth sentence. 

2.4 Weighting the Elements 

TSM alone is not adequate for analyzing the feature of a document; terms that have a large 

frequency are not necessarily more imperative. A weight derived in respect of the local and 

document context can give more information than a frequency.  

Mutual Information (MI)[12] of an entry measures the amount of information contributed by 

that entry in the entire document. Consider a pair of outcomes x and y, say the occurrence of 

words x and y, the MI is defined as: 
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The measure is symmetric and can be positive or negative values, but is zero if x and y are 

independent.  

[ ])(log),(logmin),( ypxpyxMI −−≤≤∞−  

The value of MI maximizes when X and Y are perfectly associated. The negative MI shows that 

the co-occurrence is too small. The Positive PMI (PPMI) [12] is a modified version of PMI, in 

which all MI values that are less than zero are replaced with zero [13]. 
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Consider the TSM, F, with t rows and n columns. The row vector iW  corresponds to the ith 

word and the column vector jS  corresponds to the jth sentence..  

An element ijF gives the number of occurrence of i
th
 word in the j

th
 sentence. The row  f :i  

corresponds to a word iw and the column  f j: corresponds to a context jS .The PPMI value of 

an element can be calculated as  
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where pw is the probability that the word iw
 occurs in the sentence j with respect to the entire 

document, ipw
is the probability of word iw

 in the entire documents and ps is the probability 

of a sentence in the entire document. If 
iw  and js  are statistically independent, 

then pwpspwi =. , and thus 
jippmi is zero (since log(1) = 0). The product pspwi.  is what 

we would expect for pw if iw  occurs in js  by pure random chance. If there is semantic relation 

between iw  and js  , then the pw should be larger than it would be if iw  and js  were 

independent; hence pwi.ps  pw > , and 
jippmi  is positive; otherwise 

jippmi  should have a 

value zero. 

2.5 Ranking the sentence 

The total significance of kth sentence, sk, can be calculated from the PPMI matrix as 

)11(.
1

k

t

i
kik psPPMIs ∑
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=  
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,where kps  is the probability of kth sentence in context of document to be summarized. 

The sentences in the entire documents are ranked according to the ks . The sentences with 

required percentage weight is identified, and arranged in the order of as it in the original 

document. 

3. EXPERIMENTAL RESULTS 

A bunch of top hit articles in the online edition of Washington post are collected for the 

experiment. The articles contain an average of 850 words and 45 sentences. These articles are 

stored as plain text. The implementation strategy of our method is explained in the figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Here we are considering seven documents for discussing the implementation details. The figure 

2 explains the status of feature extracting process after the first phase.  

Even if the total number of words before and after stemming has a well defined relation, the 

number of words after stemming has considerably decreased in each document.  

An average of 50% of words is eliminated from each document in the first phase. 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1 

 DOCUMENT WISE WORD STATISTICS AFTER FIRST PHASE 

Document 

Nos 

Sentences 

(n) 

Total 

Nos of 

Words 

Total Nos of 

words after 
elimination 

(t) 

% words 
eliminated 

Birthctrl.txt 63 1121 572 49 

Elite.txt 34 728 309 58 

china.txt 52 994 468 53 

halmark.txt 58 950 424 55 

islam.txt 31 731 382 48 

nasa.txt 68 1158 569 51 

sep11.txt 25 408 180 56 

 

 

 
 

 

 
Figure 2:  The total number of words that has to be considered 

for the next phases is decreased significantly after the first 
phase. 

 

Figure1: There are three phases in the implementation; the document to be summarized is given to the tokenization process of 

first phase. The summary of the document will be outputted from the identify sentence process of the third phase.  
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The unique words identified in the first phase are used to create Term-Sentence-Matrix. 

Number of occurrence of ith word in jth sentence is the initial value of an entry, and naturally it 

will be 1 in most of the cases. The weight of each term in context of corresponding sentence 

and document are derived from the TSM using equations 6, 7, 8, 9 and 10. 

The least significant elements in the TSM are eliminated while calculating the PPMI. The 

sentences are ranked according to the weight obtained in PPMI.  

Weight of kth sentence, ks is calculated from the matrix PPMI using equation 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weight of a sentence is the direct measure of relevance of a sentence in a document. It is quite 

clear from the figure3 that in some cases, the weight of the sentence is not proportional to the 

number of words in it. For example, title is the first sentence in all documents used in the 

experiments, and the relevance of the words in the title is comparatively larger than other words 

in the remaining sentences. 

Number of sentences required in the abstract is identified and extracts the sentences with higher 

importance from the original document.  These sentences are arranged in order of original 

document to obtain the desired summary. 

4. EVALUATION 

There is no clear and standardized explanation for the question, what constitutes a good 

summary. Evaluation of summary is a major challenge in summarization systems. Researchers 

are working over the last decades to answer that complex question. Evaluation based on Latent 

Semantic Analysis[15] is new method in this area. This method evaluates the quality of 

summary through the content similarity between the document and its summary. 
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Figure 3: The number of words vs. weight of sentence. The data 

is normalized before plotting in order to get a standardized 

pattern. 
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4.1 Measure of Main Topic 

In addition to the existing PPMI matrix, we have constructed another matrix, SMI, for the 

summary from PPMI. SMI consist of t rows and l columns, where l is the number of sentences 

in the summary. The SVD method decomposes PPMI into three components as 

)12(T
VdSdUdPPMI =

  

and the SMI will be transformed as  

 

)13(T
VsSsUsMI =  

The first left singular vector of Ud is called the main topic[18] of the article. In this approach 

the main topic of both summary and document are calculated. 

These vectors are the most significant features of the document and summary.  

 

 

 

 

 

 

 

 

 

 

 

The classical cosine, φcos , between the “main topic vector” of document and the “summary” 

reveals the degree of quality of the abstract.  

∑
=

=
t

i

ii usud
1

)14(.cosφ  

Where ud and us are the main topic of Ud and Us respectively. The following figure shows the 

final result of evaluation. 
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Figure 4: Main topic of a document 

TABLE2:   

φcos BETWEEN THE MAIN TOPIC OF DOCUMENT AND ITS SUMMARY 

Doc 
Abstract in % 

10 15 20 25 30 

D1 0.9994 0.9998 0.9999 1 1 

D2 0.9637 0.9981 0.9981 0.9983 1 

D3 0.9942 0.9972 0.9972 0.9998 1 

D4 0.9973 0.999 1 1 1 

D5 0.971 0.9716 0.9696 0.9772 0.9985 

D6 0.9971 0.9947 0.9998 0.9999 1 

D7 0.9422 0.9348 0.8318 0.9981 0.9981 

AVG 0.9807 0.985 0.9709 0.9962 0.9995 

 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 

54 

 

 

 

The result given in table2 says that, as a general trend the difference between the features of 

documents and its abstract reduces on increasing the size of the abstract. 

The average value of the similarity, the overall degree of success of the method, measure φcos  

for the entire documents in the five test cases (% of abstract - 10 to 30) is 0.98646, which shows 

that the positive point wise mutual information technique gives a promising result in the 

connection with the main topic evaluation strategy. 

5. CONCLUSION 

The proposed summarization method contains three separate phases. The porter stemming 

algorithm in the morphological analysis phase has reduced the feature matrix considerably. The 

Positive Point Mutual Information technique is used to find out the weight of sentences in a 

document. It is shown here, that the Latent Semantic Analysis is a reliable summary evaluation 

mechanism. It is noted that summary of some document reaches its maximum result in the very 

initial stages of experiments. The overall average value of φcos , the distance measure between 

the main topics of summary and document, reveals that the importance of Positive Point Mutual 

Information in text data analysis and especially in summarization process. 
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