
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

DOI : 10.5121/ijcsit.2012.4208 95

DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL

IMAGE COMPRESSION

K. Revathy
1
 & M. Jayamohan

2

Department of Computer Science, University of Kerala, Thiruvananthapuram,

Kerala, India
1
revathysrp@gmail.com
2
jmohanm@gmail.com

ABSTRACT

Fractal image compression is attractive except for its high encoding time requirements. The image is

encoded as a set of contractive affine transformations. The image is partitioned into non-overlapping

range blocks, and a best matching domain block larger than the range block is identified. There are many

attempts on improving the encoding time by reducing the size of search pool for range-domain matching.

But these methods are attempting to prepare a static domain pool that remains unchanged throughout the

encoding process. This paper proposes dynamic preparation of separate domain pool for each range

block. This will result in significant reduction in the encoding time. The domain pool for a particular

range block can be decided based upon a parametric value. Here we use classification based on local

fractal dimension.

KEYWORDS

Fractal image compression, dynamic domain pool, RMS, fractal dimension

1. INTRODUCTION

The basic assumption of fractal compression is that some regions of the image resemble some

other regions within the same image which can be regarded as possessing fractal nature.

Fractals are geometric objects/shapes that possess self-similarity nature at different scales. The

term fractal was introduced into the geometric world by Benoit B. Mandelbrot [1]. According

to Mandelbrot, a set of mathematical equations when subjected to iterative transformations can

yield a complex image and we can create many such natural-looking fractal images through

such iterations.

It was Michael Barnsley [2] who introduced the idea of applying fractals in image compression

technique by incorporating the theory of Iterated Function Systems (IFS) of J. Hutchinson [3].

According to Barnsley, an image can be represented as a set of mathematical equations and this

idea of taking an image and express it as an IFS forms the basis of fractal image compression.

But Barnsley’s IFS based compression was impractical due to its computational complexity.

Advancement is made in this route by Arnaud Jacquin [4], by using Partitioned Iterated

Function Systems (PIFS). Unlike Barnsley’s approach of finding IFS for the entire image,

Jacquin proposed to partition the image into non-overlapping blocks called range blocks and

find an appropriate IFS (called as PIFS) for each range. Since then, Jacquin’s approach is

followed by the researchers in fractal image compression.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

96

In PIFS compression technique, the image is partitioned into non-overlapping blocks called

range. Another set of blocks larger than and similar to the range block, called domain, is also

selected from the same image based on a similarity criterion. This required each range block to

be compared with all possible domain blocks within the image. Such an exhaustive search adds

immense operations which results in high time requirement to the encoding process. Fractal

compression lacks a wide acceptance due to this high encoding time. A variety of criteria from

different aspects have been proposed by researchers in fractal image compression to achieve a

significant reduction in the computation time. All of them aimed to decrease the encoding time

by reducing the size of the domain pool to be searched, but a standard approach is not yet

defined.

Each selected domain is mapped to a range block using a set of affine transformation such as

rotation, translation and resizing as well as the transformations in pixel intensity. The

transformations are contractive, and, on applying a limited number of iterations the resultant

image gets attracted to a fixed set. The domain information and the transformation coefficients

corresponding to each range block are stored in the compressed file. In the reconstruction phase

the transformations are applied on an initial image, mostly a background image, yielding parts

of the original image. The initial image can be any image, and be of any size, irrespective of the

original one. This resolution independence is a unique feature of fractal image compression

which no other compression technique can offer. The decoding process is simple and fast

compared to the encoding process.

It is still a question whether all natural images possess fractal nature or self-similarity, that the

fractal compression technique depends on. But it is proved that by approximating this

resemblance property fractal technique achieve high compression ratios. High compression

ratios normally cause more data loss resulting in lesser image quality. However, fractal

compression gives a satisfactory balance between this compression ratio and image quality

compared to other image compression techniques. This makes the researchers to foresee this

compression technique as a best solution in many image compression application issues.

Another benefit of fractal compression is its ability to reconstruct the compressed image to any

size without the loss of details.

2. DOMAIN CLASSIFICATION

Fractal compression is an asymmetric process in terms of algorithmic operations and executing

time. Fractal encoding and decoding are different, one cannot be described as the reverse of the

other. Encoding time is very high compared to the decoding time. Before we start encoding, we

have to find a domain block from the same image which best matches the range block. In order

to improve the quality of compression, the domain blocks are allowed to be overlapping. But,

although there can be a significant gain in the quality of reconstructed image, this results in

huge domain pools for each range block. For example, consider an image of size 1024x1024.

Let the image be partitioned into 8x8 range blocks. There will be 2
14

 =16384 range blocks. Let

the size of domain blocks be 16x16. (Most of the researchers use domains with a scale size

double that of range block). Then for an extensive search, each range block shall be compared

with 1009x1009 = 10, 18, 081 domain blocks. Thus the total number of comparisons will

cumulate to around 2
34

. The time complexity can be estimated as Ω (2
n
).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

97

Table 1. Time requirements for range-domain matching

Image

size (n)

Number of

range blocks

Number of

domains

Number of

comparisons

64 64 2401 153664

128 256 12769 3268864

256 1024 58081 59474944

512 4096 247009 1011748864

1024 16384 1018081 > 35000000000

Investigations have been done on classifying domains in order to reduce the search pool for best

matching range-domain pair. The no-search algorithm by Furao [5] and the improvements

suggested by Wang [6] are the methods which use minimum encoding time, but compromise

more on image quality. Dauda et.al. [7] have attempted to reduce the domain pool based on

DCT coefficients. Conci & Acquino classifies the domain pool based on the local fractal

dimension of image blocks [8].

All these methods gain in reducing the pool size in one or other way, but the domains remain

static, selected before the comparison starts. We propose methods for selecting the domain pool

dynamically, based on the properties of the range block.

3. DYNAMIC DECISION METHOD

In conventional methods, the domain classification decisions are made as the first phase in

encoding. Though this will help to reduce the search pool, the dynamic features of each range

block selected cannot be taken into account. We propose to postpone the classification process

making it part of the comparison module. Domain pool for each range block will be selected

dynamically, considering the local features of range block.

The issue of deciding on which features of range block shall be considered for domain selection

needs further investigations. We propose to use the local fractal dimension of image partitions

to check for similarity.

3.1 Local fractal dimension

Barnsley presents fractal dimension (FD) as a quantity that can measure the similarity of two

fractals . Fractal dimension estimates how densely a fractal occupies the metric space in which it

lies.

Let A be the matrix representing the image. Let the space R
2
 be covered by closed square boxes

of side length 1/2
n
. Let N (A) denote the number of boxes which intersect A. Then the box

counting theorem states that, the fractal dimension D of A can be obtained as

D =

Different methods are available for estimating the fractal dimension of grayscale images. For

color images, fractal dimension can be estimated either by converting it to grayscale or by

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

98

averaging the fractal dimensions of each color place computed separately. Since natural images

are not purely self-similar, if we calculate the fractal dimension of each range block separately it

will be different from that of the entire image. However this value can be used to compare the

complexities two image regions.

Conci A. in [8] has attempted to classify domains based on their local fractal dimension. The

paper suggests separating the domains into two groups based on their fractal dimension. The FD

of range block will be estimated and the search for a matching pair will be limited to the pool

corresponding to the range FD. In our method, we use the differential-box counting method

proposed by Sarkar and Choudhari [9] to calculate fractal dimension.

In our method, first the fractal dimension of the range blocks are calculated and listed in a linear

array. Then the FD values of the overlapping domain blocks are calculated and listed in a

balanced binary search tree. The policy is to search for a match in only those domains having

fractal dimension close to that of the range. This can be done by fixing a ‘fractal distance’ value

in advance. Here, the fractal distance is fixed as

Df = (Fm – Fl)/3,

where Fm is the maximum FD value in the set, and Fl is the least FD in the set.

This will allow us to limit the pool size to 1/3 of the entire set, in an average.

Using differential box-counting we get the FD values of images mostly in between 2.0 and 3.0.

Now, if the FD of range block is dr, we can confine our search to domains with FD in

dr - Df ≤ dd ≤ dr + Df , where dd is the FD of domain block.

The domain pool is decided at run time, corresponding to the FD of the candidate range block.

Since we use a height balanced binary tree, the searching and traversal can be performed in

O(logn) time. The time required to construct the tree is O (n). Thus the total overhead expense

incurred in this is O (n) + O (logn).

3.2 Height balanced trees

The balance factor of a node in a binary tree is measured as the difference between the number

of levels of its left subtree and the number of levels in its right subtree (or vice versa). A tree is

said to be height balanced if the balance factor bf of every node in it satisfies the relation

-1 ≤ bf ≤ 1

Height balanced binary trees have the advantage of having a stable time complexity for

operations like traversal, insertion, deletion and search.

On insertion and deletion, the tree needs to be rotated to maintain the balance factor in the

interval. However, the search operation is exactly similar to that in a binary search tree. The

time complexity for a search in a height balanced binary search tree is estimated to O (n) in

average case and worst case. There are variations on balanced trees such as red-black trees and

splay trees, but AVL trees give the best stable time complexity in operations [10, 11].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

99

4. EXPERIMENTAL RESULTS

A program which implements exhaustive search method and domain classification by fractal

dimension suggested by Conci and the No-search method suggested by Furao has been tested

for comparison with the proposed method. The no-search method results in minimum encoding

time but with loss of image fidelity. Among the other methods this dynamic classification

scheme consumes minimum encoding time without compromising quality. The results are given

in Table 2 and Table 3. The reconstructed images of Lena and Highcourt are given. The original

images were taken at different sizes, 512x512 and 256x256 pixels. The PSNR values obtained

from the three methods for selected images are given in Table 4.

The programs are written in Scilab 5.2.0 and tested on a computer with Intel Core2 duo

2.53GHz processor with 2MB cache memory.

Table 2. Encoding time for images with 512x512 pixels

Image Encoding time in seconds

 Exhaustive

search

No search Conci’s New method

Lena 19.35 0.50 3.01 1.99

Cameraman 19.27 0.49 2.97 2.74

Highcourt 16.33 0.49 2.67 2.21

Sachu 19.76 0.52 3.54 2.30

Flowers 19.09 0.49 3.07 2.16

X-mas 18.67 0.49 2.55 2.01

Boyandgirl 15.34 0.50 2.86 2.13

Street 15.33 0.51 2.96 2.13

Statue 17.21 0.51 2.57 1.85

Lord 18.33 0.50 2.33 1.77

Medical 15.54 0.49 2.90 1.99

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

100

Table 3. Encoding time for images with 256x256 pixels

Image Encoding time for

 Exhaustive

search

No search Conci’s New method

Lena 6.77 0.23 1.07 0.65

Cameraman 5.86 0.23 0.87 0.64

Highcourt 7.32 0.23 0.79 0.72

Sachu 5.05 0.23 1.21 0.61

Flowers 5.78 0.23 0.99 0.49

X-mas 5.99 0.23 1.05 0.75

Boyandgirl 6.09 0.23 1.03 0.73

Street 6.12 0.23 0.91 0.69

Statue 5.99 0.23 0.79 0.72

Lord 5.75 0.23 0.81 0.68

Medical 5.52 0.23 0.85 0.75

Table 4. PSNR values for tested methods

Image PSNR

 Exhaustive

search

No search Conci’s New method

Lena 30.4675 25.8445 29.3450 30.9067

Cameraman 29.2497 25.3292 29.4356 28.7133

Highcourt 31.6988 24.5345 28.7078 29.3098

Sachu 30.4338 24.5508 28.4353 28.1233

Flowers 29.0450 23.9807 26.5467 27.0827

X-mas 32.4532 26.2034 31.5651 33.2961

Boyandgirl 32.7609 26.4998 29.7743 31.0340

Street 31.9008 25.9090 30.4532 32.5757

Statue 30.8974 28.3178 31.4545 33.4625

Lord 31.7778 25.6988 29.9819 31.7037

Medical 32.3421 27.5732 29.6511 33.4334

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

101

Figure 1. (a) X-mas original (b) X-mas reconstructed (c) Lena original (d) Lena reconstructed

(e) Highcourt original (f) highcourt reconstructed

e
f

a b

c d

International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012

102

5. CONCLUSION

Image compression algorithms are still in search of better alternatives though there are well

accepted standards. Fractal image compression technique, in spite of its unique features in

resolution independence and decoding speed, is yet to find its place in the industry. We have

attempted to use a dynamic decision approach on selecting the domain blocks to be compared

with each range block. Experiments show that the method gains significant advantage in

encoding time with good quality and compression ratio. The local features of image blocks can

be used to classify domains dynamically. Further investigations are to be done on finding better

similarity measures and on using better data structures.

REFERENCES

[1] Mandelbrot, B.B. (1982) The fractal geometry of nature, W. H. Freeman, New York.

[2] Barnsley, M.F. (1993) Fractals Everywhere, Academic Press, New York.

[3] Hutchinson, John. E. (1981) “Fractals and self similarity”, Indiana Univ. Math. J., Vol. 30, No. 5,

pp. 713–747.

[4] Jacquin, A.E. (1992) “Image Coding Based on a Fractal Theory of Iterated Contractive Image

Transformations”, IEEE trans. on Image Processing, Vol. 2, pp. 18-30.

[5] Furao S. & Hasegawa O. (2004) “A fast no search fractal image coding method”, Signal Processing

and Image Communication, Vol.19, No.5, pp. 393–404.

[6] Wang, X. & Wang, S. (2008) “An improved no-search fractal image coding method basedon a

modified grey-level transform”, Computers & Graphics, Vol. 32, pp. 445-450.

[7] Doudal, S. et.al. (2011) “A reduced domain pool based on DCT for a fast fractal image encoding”,

Electronic Letters on Computer Vision and Image Analysis, Vol.10, No.1, pp.11-23.

[8] Conci, A. & Aquino, F. R. (2005) “Fractal coding based on image local fractal dimension”,

Computational and Applied Mathematics, Vol. 24, pp. 83-98.

[9] Sarkar, N. & Choudhuri, B.B. (1994) “An efficient differential box counting approach to compute

fractal dimension of image”, IEEE trans. on Syst. Man & Cybernetics, Vol. 24, pp.115, 120.

[10] Tremblay, J. & Sorenson, P.G. (1991) An introduction to data structures with applications,

Mcgraw-Hill Education, NewDelhi.

[11] Knuth, D. E. (1997) The Art of Computer Programming, Addison-Wesley, NewYork.

[12] Fisher, Y. (1995) Fractal Image Compression-Theory and Application, Springer-Verlag.

[13] Welstead, S.T. (1999) Fractal and Wavelet Image Compression Techniques, SPIE Press.

