
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 6, December 2012

DOI : 10.5121/ijcsit.2012.4613 169

DENOISING OF MEDICAL ULTRASOUND IMAGES
USING SPATIAL FILTERING AND MULTISCALE

TRANSFORMS

V N Prudhvi Raj1 and Dr T Venkateswarlu2

1Associate Professor, VR Siddhartha Engineering College, Vijayawada, 520007, India
nagaprudhvi@yahoo.com

2Professor, University College of Engineering, SV University, Tirupati, India

ABSTRACT

Medical imaging became the integral part in health care where all the critical diagnosis such as blocks in
the veins, plaques in the carotid arteries, minute fractures in the bones, blood flow in the brain etc are
carried out without opening the patient’s body. There are various imaging modalities for different
applications to observe the anatomical and physiological conditions of the patient. These modalities will
introduce noise and artifacts during medical image acquisition. If the noise and artifacts are not minimised
diagnosis will become difficult. One of the non-invasive modality widely used is ultrasound Imaging where
no question of radiation but suffers from speckle noise produced by the small particles in the tissues who’s
size is less than the wavelength of the ultrasound. The presence of the speckle noise will cause the low
contrast images because of this the low contrast lesions and tumours can’t be detected in the diagnostic
phase. So there is a strong need in developing the despeckling techniques to improve the quality of
ultrasound images. Here in this paper we are presenting the denoising techniques for speckle reduction in
ultrasound imaging. First we presented the various spatial filters and their suitability for reducing the
speckle. Then we developed the denoising methods using multiscale transforms such as Discrete Wavelet
Transform (DWT), Undecimated Discrete Wavelet Transform (UDWT), dual tree complex wavelet
transform (DTCDWT) and Double density dual tree complex wavelet transform (DDDTCDWT). The
performance of the filters was evaluated using various metrics based on pixel based, correlation based,
edge based and Human visual system (HVS) based and we found that denoising using double density dual
tree complex discrete wavelet transform is outperformed with best edge preserving feature.
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1. INTRODUCTION

Developments in Medical imaging (X-ray’s, Computed tomography, Magnetic Resonance
Imaging, Ultrasound, PET and SPECT etc.) in the last few decades became helpful in diagnosis
by observing the anatomical structures without opening the human body and treatment of
complicated diseases such as carotid artery stenosis where a plaque is going to build up in the
arteries causing the brain stroke through blocking of blood flow from heart to brain, brain tumor
localisation and size of the tumor, early detection of arthritis etc.

These medical images are different from natural photographic images where the images are
acquired by capturing the reflected light from the object. Here in medical imaging images are
acquired for clinical procedures reflect complex physical and physiological phenomena of many
different types. While forming the images every modality introduce certain amount of noise and
artifacts which will complicate the diagnostic process by blurring the details and hiding the
tumors etc. So the need for denoising is very important before submitting the medical images for
diagnostic phase. In this paper we are concentrating on presence of noise in ultrasound medical
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images and its denoising procedures developed using spatial filtering and multiscale transforms
such as discrete wavelet transform [21], Undecimated wavelet transform [25], Dual tree complex
wavelet transforms [29] and Double density dual tree complex wavelet transforms [32].

The noise may be additive or multiplicative depending on the modality used for medical image
acquisition. The noise due to electronic components in the acquisition hardware will be modeled
with Gaussian noise which is independent of data, the data dependent noise such as quantum
noise in X-ray imaging is modeled with poisson distribution, the speckle noise in ultrasound
imaging is modeled with Rayleigh distribution and the noise in MRI is modeled with Rician
distribution. Here in this paper we are attempting to denoise the images corrupted with speckle
noise.

In ultrasound imaging the speckle noise reduces the contrast resolution of the acquired image.
Because of this the detection of low contrast lesions and tumors will become difficult in
diagnostic phase. The destructive interference of sound waves scattered from various sites will
produce the speckle pattern in the images [1]. Scattering is a process where sound waves are
forced to deviate from its path by one or more localised non-uniformities in the tissue through
which they pass. These non-uniformities are called as scatterers or scattering centers. In a tissue
the scattering centers arises due to inhomogeneity or small structures whose size is less than the
wavelength of the ultrasound [1]. Tissue parenchyma is an example where there is a change in
acoustic impedance over a microscopic level within the tissue. The scattering or speckling is
caused by the tissue particles which are smaller than the wavelength of the ultrasound such as
blood cells and particles that are having different acoustic impedance which are close to one
another. The speckle pattern in the image is visible as light and dark spots.

The mathematical modeling of degradation and restoration process is given as
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Where ( ),g x y is the noisy and blurred observation, H is the blurring kernel and ( ),f x y is the

signal we are recovering. In the case of denoising problem the blurring kernel will be dropped and
the degradation model will be given as
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In the case of multiplicative noise the model is given as

( ) ( ) ( ), , ,g x y f x y x y= ⋅
(3)

Since the evolution of digital imaging many techniques were developed to remove the noise from
the noisy images. Earlier the techniques were based on point processing i.e modifying the pixel
intensity using some linear transformation which is not adaptive to the noise content in the image
and all the pixels were processed by the same filtering rule. Due to this the filter cannot
differentiate the smooth areas and edges in the image and will smooth the entire image. Because
of this the edges are going to be blurred or will lose contrast so the resulting image is not an
optimal solution for performing diagnostic examinations [5].

Later the neighborhood processing became popular by considering the neighboring pixel
intensities while modifying the pixels intensity. In this paper we are trying to adopt the principles
of these filters for the removal of speckle from the ultrasound medical images. Another major
direction which we are using in this paper is multiscale transforms. These transforms decompose
the noisy images into various scales and subbands and each scale and subband coefficients are
processed to remove the noise from these subbands and finally the approximated image of the
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original image is reconstructed from the processed subbands. The major advantages of these
transforms are energy compaction and localisation of singularities such as points, lines and edges
etc.

2. DENOISING USING SPATIAL FILTERING

Many denoising techniques in the literature were used linear filtering based on point processing
or weighted averaging of neighborhood gray levels. They will remove the noise at the expense of
smoothing the edges, which are very crucial features in diagnosing the diseases from the images.
Researchers Lee, Kuan, Frost etc. were proposed various denoising algorithms while considering
the local statistics of the neighborhood in the filtering process. The working principle in these
algorithms is computing the weighted average using sub image (neighborhood) statistics to
estimate statistical measures over pixel windows varying from 3x3 up to 15x15 [6-10].

2.1 First order statistics filtering

The filters in this category will use the first order statistics such as mean and variance of the sub
image while deciding the center pixels graylevel. The algorithms in this class will follow the
following filtering equation [5]

( ), , ,x y x y x yf g k g g= + − (4)

Where ,x yf is the estimated noise free pixel, ,x yg is the noisy pixel value centered in the moving

window, g is the local mean value of the sub image m n× surrounding and centering the

pixel ,x yg , ,x yk is the weighting factor choosing the value such that [ ]0,1k ∈ and ,x y are the

coordinates of the pixel. The filtering process is controlled by the weighting factor ,x yk and is

derived in the literature by various researches as given below
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The values 2
n and 2 represents the variance of noise in the whole image and variance in the

local window respectively. The noise variance is calculated as average of all variances calculated
over all the windows in the whole image.
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If the value of weighting factor is 1 (at the areas of edges) the center pixel value in the filter is
unchanged to preserve the edges and when the value is zero the center pixel value in the filter is
replaced with the average gray level of the neighborhood. The adaptive weiner filter uses the
weighting factor in eq. (5, iii) to preserve the edges.

2.2 Local Statistics filtering with higher moments

The edge preserving nature of the filter is improved by considering the higher moment’s
(skewness and kurtosis) along with the mean and variance in the calculation of weighting factor
as follows. In this filtering procedure the weighting factor ,x yk in eq. (4) is replaced with window

variance 2
w which is called as generalized moment weighting factor [6].
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The constants in the above equation are calculated using the relation
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This represents the smoothness of the image. The constants 1 2 3, ,c c c are calculated by placing
2 3 4, ,   in place of 2 in the above equation which is calculated from the sub image of

size m n× . The above equations will be applied following the condition

3 2 4
3 2 4c c c  ≤ ≤ (9)

In the neighborhoods where the above equation is not satisfied the window variance is calculated
as
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2.3 Homogeneous mask area filtering

The filter operates in a [5 × 5] pixel neighborhood window by finding the most homogeneous
neighborhood area around each pixel using a [3 × 3] subset window as shown in the figure. The center
pixel of the [5 × 5] neighborhood is substituted with the average gray level of the 3 × 3 mask with the
smallest speckle index C, which is given by

2
s

s

C
g

= (11)

Where sg and 2
s represent the mean and variance of the [3 x 3] window. The window which is

having smallest C is the most homogeneous semi window which indicates it is not having any edge
features [7, 8].

Figure 1: Homogeneous mask area filtering

2.4 Non Linear Spatial Filtering

The basic idea in non linear filtering is performing non linear operations on the neighborhood
graylevels for selecting the graylevel of the center pixel of the neighborhood. The most popular
non linear spatial filters in the literature are median filtering, maximum filtering and minimum
filtering which relies on the basic principle of sorting the graylevels in the neighborhood and
selecting the median, maximum and minimum value of the sorted graylevels as the graylevel of
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the center pixel in the neighborhood. In addition to the removal of noise from the images these
filters introduce the ringing artifacts in the denoised images. Here we are discussing few more
non linear spatial filters which will preserve the edges and minimise the ringing artifacts along
with the removal of noise from the images.

2.5 Linear scaling filters

Here we will discuss two types of filters in this class. In the first type filter the graylevels in the
neighborhood which are closer to the center pixel are selected and the mean value of this
graylevels are computed. Then the center pixel in the neighborhood is replaced with this mean
value. In the second type scaling filter the minimum and maximum graylevels in the
neighborhood is selected and the average of these two values are computed. Then the center pixel
in the neighborhood is replaced with the computed average value.

max min
, 2x y

g g
f

+= (12)

2.6 Geometric filtering

The geometric filtering is very much helpful in removing the speckle noise from the ultrasound
images. One of the characteristic of the speckle is it appears in the image as narrow valleys (dark
edges) and narrow walls (bright edges). Through the application of filter iteratively on the speckle
corrupted images it will gradually fills up the dark edges i.e narrow valleys and tear down the
bright edges i.e narrow walls. This filtering process will preserve the weak edges in the images.
The filter operates on the image by selecting the 3 3× neighborhood with its eight neighbors. The
working principle of the filter is adjusting the center pixel intensity based on the neighborhood
pixel intensities. The center pixel value is incremented or decremented based on the direction and
following rules to become more representative of its surroundings [6, 7, 8].

Pixel values are assigned as shown in the above figure after selecting the direction. In this case
we have selected the north-south direction first and performed the center pixel adjustments
following the rules below

Figure 2: Geometric filtering

After performing the adgustment in the present direction perform the above step in west-east,
Northeast to west-south and West-north to southeast directions. By applying the filter repeatedly
we can reduce the speckle in the image.

2.7 Maximum homogeneity over pixel neighborhood filtering

The filter operates on the assumption that the observed area is homogeneous. It consider the
7 7× neighborhood around each pixel and estimate the homogeneity using the equation
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As no additional parameters and thresholds are required for this filtering process the filter is
suitable for automatic implementation [8,9].

3. DENOISING USING MULTISCAL TRANSFORMS

In this section we want to use the multiscale transforms for the image denoising because they are
very much useful to isolate the discontinuites present in the image and to handle the nonstationary
signals or time varying signals. The spatial domain filtering discussed above is succeeded to some
extent by introducing the adaptivity in the filtering scheme through first order and higher order
statistics at the cost of computational cost and leaving few artifacts such as ringings and
smoothing the edges. In some filters the computational cost is too high so that they are not
optimal for real time filtering. To overcome these limitations lot of research was taken place in
the last two decades.

The multiscale transforms such as gaussian and laplacian pyramids,steerable pyramids and
wavelets are performing well in many image processing tasks by decomposing the images into
multiple scales and using the benefit of sparsity and energy compaction of the above transforms
that is representing the most of the information in very few coefficients. In this paper we are
denoising the images using wavelet transform, undecimated wavelet transform, dual tree complex
wavelet transform and double density dual tree complex wavelet transform and compared the
denoising performance with various quality metrics along with observing the effect of denoising
on texture of the medical images which is a very important factor while choosing the denoising
algorithm.

3.1 Discrete Wavelet Transform

The Discrete wavelet transform of a signal x(n) is computed by passing the signal through a series
of filter banks. First the samples are passed through a low pass filter with impulse response 0 ( )h n
resulting in a convolution of the two [21]:
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Figure 3: 1D Analysis filters

The signal is then decomposed by high-pass filter 1( )h n . The outputs of the lowpass filter are

approximation coefficients and highpass filter are detail coefficients. The lowpass and highpass
filters are related to each other and they form quadrature mirror filter pair. The filter outputs are
then subsampled by 2.
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2D DWT of the images can be implemented by applying 1D DWT along the rows of an image first
and then applying 1D DWT on the columns of an image. When a wavelet transform is applied to an
image the image is decomposed into four subbands as shown in the following figure 4. The LL
band contains the approximation coefficients, LH band contains horizontal details, HL band
contains vertical details and HH band will contain the diagonal details [21].

Figure 4: Wavelet filtering of an Image

The Discrete wavelet transform is suffering from four shortcomings Oscillations, Shift Variance,
Aliasing, and Lack of Directionality. To overcome these shortcomings a lot of research is on-
going in present days. The Undecimated wavelet transform (UDWT) is the one of the solution by
introducing the redundancy in the transform through the removal of decimation stage. The
UDWT is shift invariant but it will increase the number of coefficients so the computational
complexity is high.

3.2 Dual tree complex wavelet Transform

The performance of the UDWT is good but the redundancy introduced is very high. So the
computational cost of denoising algorithm is high. To minimise this new class of wavelet
transforms named wavelet frames were designed. The dual tree complex wavelet transform
belongs to this category. The dual-tree complex DWT of a signal ( )x n is computed using two
critically-sampled DWTs in parallel on the same data as shown in the following figure. If the
same filters used in the upper tree and lower tree nothing is gained. So the filters in this structure
were designed in a specific way that the subbands of upper DWT is interpreted as real part of
complex wavelet transform and the lower tree as imaginary part. The transform is expansive by a
factor 2 and shift invariant [29, 30].

Figure 5: Dual tree wavelet (1D) filtering
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The dual tree complex wavelet transform is implemented by designing the filter banks in such a
way that the filters in the second tree are the Hilbert transform of the first tree filters. That is in
dual tree complex wavelet transform the filter sets in the first tree and second tree are forming a
Hilbert transform pair. Let the filters 0 1( ), ( )h n h n represents the CQF (conjugate quadrature filter)

pair. That is

0 0

1 for 0
( ) ( 2 ) ( )

0 for 0n

k
h n h n k k

k


= 
+ = =  ≠ 

∑ (16)

and (1 )
1 0( ) ( 1) ( 1)nh n h n−= − − . Equivalently interms of the Z-Transform we have
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We used the notation ( )zH z for the z-Transform of ( )h n then the frequency response of the filter

is ( ) ( )z jH H e  = . The filters ( )1( ) andog n g n represent another CQF pair. Then the dilation

and wavelet equations give the scaling and wavelet functions
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The scaling function ( )g t and wavelet function ( )g t are defined similarly with

filters ( ) ( )0 1 andg n g n . For dual tree complex wavelet transforms the filters in the first tree and

the filters in the second tree will form a Hilbert transform pair. ( )g t is the Hilbert transform of
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Various filter design methods for dual tree complex wavelet transform were introduced by nick
Kingsbury and Ivan Selesnick in their literature. The filter design is well presented in [29]. The
filters must satisfy the desired properties such as approximate half sample property, Perfect
Reconstruction (Orthogonal or Biorthogonal), Finite support (FIR filters), and Vanishing
moments/good stop band and Linear phase. The following figure presents the wavelets in DWT
and dual tree complex DWT [30].

Figure 6: a) wavlet filters b) dual tree complex wavelet filters

The first two wavelets in DWT are oriented in the horizontal and vertical directions and the third
wavelet cannot identify the 45o+ line and 45o− so it mixes two diagonal orientations, which causes
the checkerboard artifact. The 2D DWT is poor at isolating the two diagonal orientations i.e it can’t
distinguish 45o+ line and 45o− . The complex 2-D dual-tree DWT have wavelets in six distinct
directions as shown in the above figure. There are two wavelets in each direction. In every
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direction, one wavelet is interpreted as real part of the complex-valued 2D wavelet, and the other
wavelet is interpreted as imaginary part of the complex-valued 2D wavelet.

The complex 1D wavelet is shown in the following figure.

\

Figure 7: Complex 1D wavelet

The 2D dual tree DWT is realised by performing 1D dual tree transform along the rows of an
image first and then applying 1D DTDWT on the columns of an image.

3.3 Double Density Wavelet Transform

Another transform belongs to the wavelet frames is Double density Wavelet transform. The
transform is constructed using two distinct wavelets and a single scaling function. Within the
same scale the closer spacing between adjacent wavelets can be achieved by increasing the
wavelet functions. Like the dual-tree DWT, the oversampled DWT presented here is redundant by
a factor of 2, independent of the number of levels. In comparison, the redundancy of the
undecimated DWT grows with the number of levels.

The structure of the double density wavelet transform is shown in the following figure. It consists
of one low pass filter and two distinct high pass filters represented with 0 1( ), ( )h n h n− − and

2 ( )h n− respectively. After passing through the system the signal to be analysed is processed by

the low pass filter and downsampled by 2 to produce the approximation coefficients which will
contain the average information of the signals. Simultaneously the signal is processed by the two
distinct high pass filters and downsampled by 2 to produce the two detail coefficients. In the
synthesis section the three signals are upsampled and processed by the synthesis filters which are
inverse to the analysis filter to reconstruct the original signal ( )y n . The two wavelet filters in the
analysis section are designed to be offset from one another by one half- the integer translates of
one wavelet fall midway between the integer translates of the other wavelet [32]

( ) ( )2 1 0.5t t = − (20)

Figure 8: Double density DWT analysis and synthesis filterbank

The 2D double density DWT can be implemented by applying the 1D double density DWT to the
image first along the rows and then applying along the columns. The 2D double density DWT
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Analysis filter bank is shown in the following figure. The analysis filter bank after processing the
image will produce 9 subbands one of which is the 2D low pass subband and the remaining are
wavelet subbands. The filters can be symmetric or asymmetric. The following tables present the
filter coefficients used in this paper. The first set of filters is asymmetric whereas the second set
of filters is nearly symmetric.

Figure 9: 2D Double density DWT analysis filterbank

Table 1: Double density DWT  Filter coefficients

The drawback of the double density discrete wavelet transform is chekerbaord effect i.e it can not

discriminate the 045+ and 045− as shown in the following figure. We have plotted the eight
wavelets as grayscale images. The first two wavelets are verically oriented, the third and the sixth
wavelets are horizontally oriented and the remaining four wavelets have no dominant orientation
so the transform can’t identify the edge features in the images effectively [32].

Figure 10: Double density DWT wavelet filters checkerboard artifact
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One of the solution to resolve this problem is combining the characteristics of dual tree transform
and double density transform.

Figure 11: double density dual tree wavelet transform

The double-density complex wavelet transform is implemented by following the design rules of
dual tree complex wavelet transforms.

1. The main design consideration is one wavelet pair is designed to be approximate Hilbert
transforms of the other pair of wavelets

2. The second design consideration is the integer translates of one wavelet pair must fall midway
between the integer translates of the other pair. This constraint can be achieved if one pair of the
four wavelets is designed to be offset from the other pair of wavelets.

The design is based on two distinct scaling functions and four distinct wavelets

( ) ( ), ,,  ,    1, 2h i g it t i  =

Where the two wavelets ( ),h i t are offset from one another by one half as is ( ), :g i t

( ) ( ) ( ) ( ),1 ,2 ,1 ,20.5 ,     0.5h h g gt t t t   ≈ − ≈ − (21)

and where the two wavelets ( ) ( ),1 ,1 andg ht t  form an approximate Hilbert transform pair as

do ( ) ( ),2 ,2 and :g ht t 

( ) ( ){ } ( ) ( ){ },1 ,1 ,2 ,2,g h g ht H t t H t   ≈ ≈ (22)

The filters in this paper are designed based on the design procedure given in [32]. The detailed
study on the filter design for double density dual tree complex wavelet transform can be found in
[29]. The first stage filters in the implementation are different from the filters of the remaining
stages in the tree. The analysis filters in the first tree will become the synthesis filters to the
second tree and vice versa. The mathematical background on complex dual tree DWT is well
presented in the papers [29, 30]. The filters designed for this work from the above design
procedure is given in the tables
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Table 2: Double Density Dual Tree First stage Wavelet filter Coefficients

The above filters are the first stage filters in the tree 1 and tree 2 of double density dual tree
discrete wavelet transform. These filters are only applied in the first stage decomposition only.
The filters for the remaining stages are given below.

Table 3: Double Density Dual Tree Wavelet filter Coefficients from second stage onwards

3.5 Denoising Procedure using Multiscale Transforms

1. Compute the forward transform of the image to be denoised and decompose the image into
subbands
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Figure 12: Denoising system using Multiscale Transform

2. Compute the threshold from the first scale HH (vertical details) band using the MAD (median
absolute deviation) using the following formula considering that most of the noise is present in
that band.

: 1, 2,...
2ˆ ( )

0.6745

j

k
median w j

mad

 = 
 = (23)

3. Apply the shrinkage step (modifying the wavelet coefficients in the subbands) using the
following shrinkage rules [22, 23, 24]

Table 4: Shrinkage Rules

4. After modifying the wavelet coefficients in the subbands take the inverse transform to
reconstruct the image to get denoised image which is an estimation of the original one.

Many shrinkage rules are associated with the wavelet processing. The threshold may be
calculated globally, level dependent or subband dependent. But here we are calculating the
threshold globally. The shrinkage rules may also be changed level to level and subband to
subband based on the local statistics of the wavelet coefficients at that particular level or subband.
In this paper we are applying the same shrinkage rule for all the subbands and all the levels.

4 Evaluation criteria for Denoising Algorithms

To evaluate the quality of the image processing algorithms there are several metrics proposed in
the literature. There are six categories of metrics which are used in image quality assessment they
are i) Pixel difference based measures ii) Correlation based measures iii) Edge based measures iv)
Spectral distance measures v) Context based measures and vi) Human visual system based
measures. Here we are comparing our denoising algorithms using a group of metrics drawn from
the above class and performance of the algorithms was observed.

4.1 Pixel difference based measures

4.1.1 Minkowski metrics

The L norm of the dissimilarity of two images can be calculated by calculating the minkowski

average of the pixel differences spatially and then chromatically as given below
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Where ( , )f x y is the reference image, ˆ ( , )f x y is the estimated image of ( , )f x y by our

denoising algorithm with the input ( , )g x y which is a noisy version of ( , )f x y .

For 1 = we obtain the absolute difference (AD), for 2 = we will obtain the mean square error

(MSE). Along with these two measures we are calculating minkowski measures for 3 = and

4 = in this paper to observe the performance of our algorithms.

4.1.2 PSNR (Peak Signal to Noise Ratio)

PSNR is the widely used pixel based measure in decibels (dB). The PSNR is computed using the
following formula

10
2 1

20log
B

PSNR
MSE

 
 
 

−= (25)

Where B represents bits per sample and MSE (Mean Squared error) is the mean square error

between a signal ( , )f x y and an approximation ˆ ( , )f x y is the squared norm of the difference
divided by the number of elements in the signal.

( ) ( )
2 2

0 0

1ˆ ˆ( , ) ( , ) , ,
M N

x y

MSE f x y f x y f x y f x y
MN = =

 = − = − ∑∑ (26)

( ) ( )
2

0 0

1 ˆ, ,
M N

x y

RMSE f x y f x y
MN = =

 = − ∑∑ (27)

MSE and RMSE measures the difference between the original and distorted sequences. PSNR
measures the fidelity i.e how close a sequence is similar to an original one.

4.1.3 Maximum Difference

Maximum difference is defined as

( ) ( )( )ˆmax , ,MD f x y f x y= − (28)

The large value of maximum difference means denoised image is poor quality.

4.1.4 Normalised Absolute Error (NAE)

The large value of normalised absolute error means that denoised image is poor quality and is
defined as

( ) ( )

( )

1 1

0 0

1 1

0 0

ˆ, ,

,

M N

x y

M N

x y

f x y f x y

NAE
f x y

− −

= =
− −

= =

−
=

∑∑
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(29)
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4.1.5 Signal to Noise Ratio (SNR)

Signal to noise ratio in an image is calculated as

SNR



= (30)

Where  is the average information in the signal and  is the standard deviation of the signal
which represents the amount of noise present in the image. There is one more measure is there
similar to the SNR it is signal to background ratio.

BG

SBR



= (31)

Subtract background from the image calculate standard deviation from it and finally compute the
above ratio.

4.2 Correlation based measures

The correlation between two images can also be quantified interms of correlation function. These
measures measure the similarity between the two images hence in this sense they are
complementary to the difference based measures.

4.2.1 Structural content

For an M N× image the structural content is defined as

( )

( )

1 1
2

0 0

1 1
21

0 0

,
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M N
k

k
x y
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− −
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− −

=

= =

=
∑∑

∑
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(32)

The large value of structural similarity means that denoised image is poor quality

4.2.2 Normalised cross correlation measure (NK)

The normalised cross correlation measure is defined as

( ) ( )

( )

1 1
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21
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(33)

4.2.3 Czekanowski distance

A metric useful to compare vectors with strictly positive components as in the case of images is
given as

( ) ( )( )
( ) ( )

1 1
1

0 0

1
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∑
∑∑

∑
(34)
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This coefficient is also called as percentage similarity measures the similarity between different
samples, communities and quadrates.

4.3 Edge Based metrics

4.3.1 Laplacian Mean Square Error (LMSE)

This measure is based on importance of edges measurement. The large value of Laplacian mean
square error means that the image is poor quality. LMSE is defined as

( )( ) ( )( )
( )( )

1 1 2

0 0

1 1 2

0 0

ˆ, ,

,

M N

x y

M N

x y

L f x y L f x y
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L f x y

− −

= =
− −

= =

 − 
=

  

∑∑

∑∑
(35)

4.4 HVS based metrics

4.4.1 Universal Image Quality Index (UQI)

It is a measure used to find the image distortion using three factors i) Luminance distortion ii)
Loss of correlation, and iii) Contrast distortion.

If two images ( ),f x y and ( )ˆ ,f x y are considered as a matrices with M column and N rows

containing pixel values ( ),f x y and ( )ˆ ,f x y respectively the universal image quality index Q

may be calculated as a product of three components

ˆ ˆ
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ˆ 22
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The first component in the above formula is correlation coefficient. It measures the degree of
linear correlation between images. The range of this component is [-1,1]. The best value 1 is
obtained when the images are linearly related. The second component in the formula measures
luminance distortion between the images. The range of this component is [0, 1]. The third
component measures the contrast distortion between the images the range for this component is
[0, 1]. The range of values for Q is [-1, 1]. The value 1 is obtained when the images are identical.
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4.4.2 Structural similarity

(SSIM) index is another method based on HVS for measuring the similarity between two images
[28].

The SSIM metric is computed on various windows of an image. The measure between two
windows x and y of common size N×N is [28]:

( ) ( )
( ) ( )

1 2

2 2 2 2
1 2

2 2
( , )

x y xy

x y x y

c c
SSIM x y

c c

  

   

+ +
=

+ + + +
(37)

Where

x is the average of x and y is the average of y , 2
x is the variance of x and 2

y is the

variance of y, xy is the covariance of x and y , 2 2
1 1 2 2( ) , ( )c k L c k L= = two variables to

stabilize the division with weak denominator, L is the dynamic range of the pixel values

(typically this is #bits per pixel2 1− ), 1 0.01k = and 2 0.03k = by default. To evaluate the image

quality this formula is applied only on luminance component. The resultant SSIM index is a
decimal value between -1 and 1, and value 1 is only reachable in the case of two identical sets of
data.

5 RESULTS

The performance of the algorithms was evaluated based on the above quality metrics obtained
from the original image and the denoised image.

5.1 Denoising using Spatial Filters

Table 5: Performance of various spatial filters

Wiener LSMV
Homogeneous

mask area
Hybrid
median

Linear
scaling(Avg)

Geometric

MSE 145.1333 575.7459 499.2489 330.9807 565.4630 744.2902

SNR 16.9359 10.6931 11.2321 13.1680 10.9319 11.0001

RMSE 12.0471 23.9947 22.3439 18.1929 23.7795 27.2817

PSNR 29.5234 23.5388 24.1579 25.9431 23.6171 22.4237

ME3 15.2842 32.2989 30.9940 26.8304 31.4119 41.5120

ME4 17.9389 39.3798 38.9692 34.7493 37.7734 54.3239

UQI 0.7670 0.5322 0.6526 0.7671 0.5576 0.7536

SSIM 0.7915 0.5703 0.6714 0.7812 0.5904 0.7566

AD -0.0606 0.3213 2.4525 1.0506 -1.6313 -11.4211

SC 1.0944 1.2405 1.2762 1.1952 1.1656 0.6640

NK 0.9375 0.8261 0.8246 0.8741 0.8540 1.1535

MD 61.0000 146.0000 217.0000 203.0000 119.0000 240.0000

LMSE 0.2703 0.9805 0.8670 0.5545 0.9139 0.8600

NAE 0.2071 0.3754 0.3399 0.2301 0.3831 0.3118
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Figure 13: [Left to Right] a) Original Image b) Noisy Image c) Wiener filtering d) LSMV
e) Homogeneous mask area f) Hybrid median g) Linear scaling f) Geometric filtering

5.2 Denoising using DWT and UDWT

Figure 14: Denoised Results a) DWT Hard b) DWT Soft c) DWT Semi soft e) UDWT Hard f) UDWT
Hard g) UDWT semisoft

Table 6: Performance evaluation of DWT and UDWT denoising

DWT UDWT

Soft Hard Semisoft Soft Hard Semisoft

MSE 273.2872 582.8712 533.4604 541.2894 539.2893 469.6580

SNR 13.7038 10.6961 11.0521 11.0123 11.0186 11.5688

RMSE 16.5314 24.1427 23.0967 23.2656 23.2226 21.6715

PSNR 26.3562 23.0666 23.4514 23.3881 23.4042 24.0046

ME3 23.9107 32.9436 32.0036 32.1925 32.0573 30.6391

ME4 30.9144 40.5572 39.7137 39.8797 39.6480 38.4851

UQI 0.4277 0.4703 0.4632 0.5602 0.5596 0.5545

SSIM 0.6554 0.6080 0.6251 0.6489 0.6477 0.6679

AD 0.1477 0.2088 0.0587 0.07450 0.1698 0.1045

SC 0.9841 0.8685 0.8793 0.8705 0.8741 0.8934

NK 0.9651 0.9840 0.9847 0.9892 0.9871 0.9858

MD 172 184 183 170 178 173

LMSE 16.6033 40.6008 36.6506 37.8488 37.4703 32.2299

NAE 0.2445 0.3661 0.3416 0.3405 0.3408 0.3082
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5.3 Denoising using DTDWT and DTCDWT

Figure 15:  Denoised Results a) DTDWT Hard b) DTDWT Soft c) DTDWT Semi soft d)DTCDWT Hard e)
DTCDWT Hard f) DTCDWT semisoft

Table 7: Performance evaluation of DTDWT and DTCWT denoising

DTDWT DTCWT

Soft Hard Semisoft Soft Hard semisoft

MSE 174.8446 474.9779636 363.2638 109.0022152 306.5883 186.44365

SNR 15.59092 11.52786132 12.59465 17.57803756 13.27528 15.324816

RMSE 13.22288 21.79398916 19.05948 10.4404126 17.50966 13.654437

PSNR 28.2959 23.95569082 25.1202 30.34807219 25.85687 28.016949

ME 19.43731 30.82720132 27.86672 15.08346778 26.3503 20.943061

ME4 25.60627 38.75429771 35.83611 20.06116653 34.50805 28.236071

UQI 0.381646 0.362883509 0.367974 0.356991987 0.358108 0.3542861

SSIM 0.70741 0.648049385 0.674609 0.715624647 0.688939 0.706177

AD 0.236018 0.080404611 0.134772 0.156454419 0.173869 0.2438415

SC 1.008159 0.890338178 0.929432 1.03918384 0.953005 1.0021953

NK 0.968465 0.986910542 0.980852 0.96401 0.976456 0.969593

MD 143.0497 174.5644035 167.4451 126.6688905 180.0035 157.7031

LMSE 9.207953 32.32589057 23.42276 3.172047068 19.23603 9.7744428

NAE 0.195119 0.313594234 0.265771 0.163934328 0.237563 0.1924616
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5.4 Denoising using Double Density and Double Density Dual tree wavelets

Figure 16: Denoised Results a) Double density Hard b) Double density Soft c) Double density Semi soft d)
Double density dual tree Real Hard e) Double density dual tree real Hard f) Double density dual tree real
semisoft g) Double density dual tree complex Hard h) Double density dual tree complex soft
i) Double density dual tree complex Semisoft

Table 8: Performance evaluation of Double density wavelets and double density dual tree wavelet
denoising

6. CONCLUSIONS AND FUTURE WORK

The development and implementation of denoising filters in spatial domain and using the
multiscale transforms are carried out in this paper. The denoising results shows that the spatial
filters are smoothing the edges and lines in the images. The wavelet transform based techniques
are minimizing the smoothing but failed to differentiate the directional edges. The performance of
the undecimated wavelet transform is good but the computational cost will increase with the
increase in number of levels.  The dual tree complex wavelet transforms and the double density
dual tree complex wavelet transforms are outperforming and removing the speckle noise
effectively compared to the spatial filtering and other multiscale transforms without increasing
the computational cost. This is due to their over completeness. The denoising procedures
developed here are considered only global threshold and same shrinkage rule over entire
subbands. The denoising efficiency can be improved by developing the threshold calculation and
shrinkage rules that are adaptive to level by level or subband by subband.



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 6, December 2012

189

7 REFERENCES

[1] J.W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am., vol. 66, no. 11, pp. 1145–1149,
1976.

[2] C.B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Sonics Ultrasonics, vol. SU-25, no. 1, pp.
1–6, 1978.

[3] Z. Tao, H. D. Tagare, and J. D. Beaty, ”Evaluation of four probability distribution models for speckle in clinical
cardiac ultrasound images.” IEEE Transactions on Medical Imaging, 25(11):1483-1491, 2006.

[4] P. C. Tay, S. T. Acton, and J. A. Hossack, “A stochastic approach to ultrasound despeckling.” In Biomedical
Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, pages 221-224, 2006.

[5] J.S. Lee, “Digital image enhancement and noise filtering by using local statistics,” IEEE Trans. Pattern Anal.
Mach. Intell., PAMI-2, no. 2, pp. 165–168, 1980.

[6] J.S. Lee, “Speckle analysis and smoothing of synthetic aperture radar images,” Comp. Graphics Image Process.,
vol. 17, pp. 24–32, 1981, doi:10.1016/S0146-664X(81)80005-6.

[7] J.S. Lee, “Refined filtering of image noise using local statistics,” Comput. Graphics Image Process, vol. 15, pp.
380–389, 1981.

[8] V.S. Frost, J.A. Stiles, K.S. Shanmungan, and J.C. Holtzman, “A model for radar images and its application for
adaptive digital filtering of multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 4, no. 2, pp. 157–
165, 1982.

[9] D.T. Kuan and A.A. Sawchuk, “Adaptive noise smoothing filter for images with signal dependent noise,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-7, no. 2, pp. 165–177, 1985.

[10] D.T. Kuan, A.A. Sawchuk, T.C. Strand, and P. Chavel, “Adaptive restoration of images with speckle,” IEEE
Trans. Acoust., vol. ASSP-35, pp. 373–383, 1987, doi:10.1109/TASSP.1987.1165131.

[11] J. Saniie, T. Wang, and N. Bilgutay, “Analysis of homomorphic processing for ultrasonic grain signal
characterization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 3, pp. 365–375, 1989,
doi:10.1109/58.19177.

[12] A. Pizurica, A. M.Wink, E. Vansteenkiste, W. Philips, and J. Roerdink, “A review of wavelet denoising in mri
and ultrasound brain imaging,” Curr. Med. Imag. Rev., vol. 2, no. 2, pp. 247–260, 2006.

[13] D.L. Donoho, “Denoising by soft thresholding,” IEEE Trans. Inform. Theory,  vol. 41,  pp. 613–627, 1995.
[14] X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via

multiscale nonlinear processing,” IEEE Trans. Med. Imaging, vol. 17, no. 4, pp. 532–540, 1998.
[15] X. Hao, S. Gao, and X. Gao, “A novel multiscale nonlinear thresholding method for ultrasonic speckle

suppressing,” IEEE Trans. Med. Imaging, vol. 18, no. 9, pp. 787–794, 1999.
[16] F.N.S Medeiros, N.D.A. Mascarenhas, R.C.P Marques, and C.M. Laprano, “Edge preserving wavelet speckle

filtering,” in 5th IEEE Southwest Symposium on Image Analysis and Interpretation, Santa Fe, NM, pp. 281–285,
April 7–9, 2002, doi:10.1109/IAI.2002.999933.

[17] C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound”, J.Acoust. Soc.
Am., vol. 94, No.3, pp.1944-1952, Oct.1993.

[18] J. T. M. Verhoeven and J. M. Thijssen, “Improvement of lesion detectability by speckle reduction filtering: A
quantitative study”, Ultrason. Imag., vol. 15, pp.181-204, 1993.

[19] Paul Butler, “Applied Radiological Imaging for Medical Students”, Ist Edition, Cambridge University Press,
2007.

[20] Rangaraj M. Rangayyan, “Biomedical Signal Analysis A Case study Approach”, IEEE Press, 2005.
[21] Stephane Mallat, “A Wavelet Tour of signal Processing”, Elsevier, 2006.
[22] D L Donoho and M. Jhonstone, “Wavelet shrinkage: Asymptopia? ”, J.Roy.Stat.Soc., SerB, Vol.57, pp. 301-369,

1995.
[23] D L Donoho, “De-Noising by Soft-Thresholding”, IEEE Transactions on Information Theory, vol.41, No.3, May

1995.
[24] David L. Donoho and Iain M. Johnston, “Adapting to unknown smoothness via wavelet shrinkage”, Journal of

the American Statistical Association, vol.90, no432, pp.1200-1224, December 1995. National Laboratory, July
27, 2001.

[25] R. Coifman and D. Donoho, "Translation invariant de-noising," in Lecture Notes in Statistics: Wavelets and
Statistics, vol. New York: Springer-Verlag, pp. 125--150, 1995.

[26] S. G. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” IEEE Trans. Inform.
Theory, vol. 38, pp. 617–643, Mar. 1992.

[27] I.Daubechies, “Ten Lectures on Wavelets”, SIAM Publishers, 1992.
[28] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error visibility to

structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
[29] Ivan W.Selesnick, Richard G.Baraniuk, Nick G. Kingsbury, “The Dual Tree Complex Wavelet Transform”, IEEE

Signal Processing Magazine, November 2005.
[30] I. W. Selesnick, “The design of Hilbert transform pairs of wavelet bases via the flat delay filter,” in Proc. IEEE

Int. Conf. Acoust., Speech, Signal Process., May 2001.



International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 6, December 2012

190

[31] N. G. Kingsbury, “The dual-tree complex wavelet transform: A new technique for shift invariance and directional
filters,” in Proc. Eighth IEEE DSP Workshop, Salt Lake City, UT, Aug. 9–12, 1998.

[32] I.W.Selesnick, “The double density dual tree DWT”, IEEE Transactions on Signal Processing, Vol 52. No.5, May
2004.

[33] I. W. Selesnick, “Sparse signal representations using the tunable Q-factor wavelet transform.” In Proc. SPIE 8138
(Wavelets and Sparsity XIV), August 2011.

[34] I. W. Selesnick, “Wavelet Transform with Tunable Q-Factor”, IEEE Trans. on Signal Processing. 59(8):3560-
3575, August 2011.

[35] I. W. Selesnick and O. G. Guleryuz, “A diagonally-oriented DCT-like 2D block transform.” In Proc. SPIE 8138
(Wavelets and Sparsity XIV), August 2011.

[36] I. Bayram and I. W. Selesnick, “A subband adaptive iterative shrinkage/thresholding algorithm.” IEEE Trans. on
Signal Processing. 58(3):1131-1143, March 2010.

[37] I. Bayram and I. W. Selesnick, “On the frame bounds of iterated filter banks.” Applied and Computational
Harmonic Analysis. 27(2):255-262, September 2009.

[38] A. N. Akansu and W. A. Serdijn and I. W. Selesnick, “Emerging applications of wavelets: A review.” Physical
Communication. 2009. doi:10.1016/j.phycom.2009.07.001.

[39] I. W. Selesnick and M. A. T. Figueiredo, “Signal restoration with overcomplete wavelet transforms: comparison
of analysis and synthesis priors.” In Proceedings of SPIE, volume 7446 (Wavelets XIII), August 2-4, 2009.

[40] I. Bayram and I. W. Selesnick, “On the dual-tree complex wavelet packet and M-band transforms.” IEEE Trans.
on Signal Processing, 56(6):2298-2310, June 2008. Software (zip file).

[41] B. Dumitrescu, I. Bayram, and I. W. Selesnick, “Optimization of symmetric self-Hilbertian filters for the dual-
tree complex wavelet transform.” IEEE Signal Processing Letters, 15:146-149, January 1, 2008.

[42] I. W. Selesnick, “Wavelets, a modern tool for signal processing.” Physics Today. 60(10):78-79, October 2007.
[43] A. F. Abdelnour and I. W. Selesnick, “Symmetric nearly shift-invariant tight frame wavelets.” IEEE Trans. on

Signal Processing, 53(1):231-239, January 2005.
[44] A. F. Abdelnour and I. W. Selesnick, “Symmetric nearly orthogonal and orthgonal nearly symmetric

wavelets.”The Arabian Journal for Science and Engineering, vol. 29, num. 2C, pp:3-16, December 2004.


