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ABSTRACT

Given the central role that software development plays in the delivery and application of information
technology, managers have been focusing on process improvement in the software development area. This
improvement has increased the demand for software measures, or metrics to manage the process. This
metrics provide a quantitative basis for the development and validation of models during the software
development process. In this paper a fuzzy rule-based system will be developed to classify java applications
using object oriented metrics. The system will contain the following features:

Automated method to extract the OO metrics from the source code,
Default/base set of rules that can be easily configured via XML file so companies, developers, team

leaders, etc, can modify the set of rules according to their needs,
Implementation of a framework so new metrics, fuzzy sets and fuzzy rules can be added or removed

depending on the needs of the end user,
General classification of the software application and fine-grained classification of the java classes

based on OO metrics, and
Two interfaces are provided for the system: GUI and command.
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1. INTRODUCTION

With the development of Object-Oriented (OO) paradigm since the early 1990s the development
and use of metrics has been growing. Several studies and research papers were dedicated to the
study of OO metrics and research of tools using these metrics. In 1994 Chidamber [1] developed
and implemented a set of six metrics for OO design:  response for a class (RFC), weighted
methods per class (WMC), coupling between objects (CBO), lack of cohesion (LCOM), number
of children (NOC), and depth of inheritance tree (DIT). These metrics are described in section 2
of this paper.

Despite the number of investigations in several areas and the development of some tools to gather
metrics, OO metrics haven’t been widely adopted by the software development community. This
seems to be due to the following factors:
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• As pointed by Ampatzoglou and Chatzigeorgiou [4], Sarkar et al [8] some metrics are
collected manually, or there is manual intervention during their collection or
preprocessing.

• Chidamber and. Kemerer[1], Rosenberg [2], Ampatzoglou, Chatzigeorgiou [4], Sarkaret
al [8] showed that the metrics seem to be independent from each other and
managers/leaders/architects have to analyze metrics separately.

• In their research Pizzia, Pedrycz [7], K. Elish and M. Elish [6] showed there are usually
complex methodologies that need to be applied after the metrics are extracted in order to
obtain the analysis, results and prediction of the system.

• Thwin and Quah [3], Quah [5], K. Elish and M. Elish [6], and  Pizzia and Pedrycz [7]
demonstrated that the metrics computed with other factors help predict the reliability and
quality of the system, but the metrics haven’t been used to produce the classification of
the system.

• Additionally as presented by Virtual Machinery [9] in their application the JHawk, the
results of the metrics give a complexity analysis and statistical information, but do not
produce any classification or suggestion how to reduce the value of the metrics.

Due to these factors and because of Object Oriented metrics present concepts like loosely or
tightly coupled, high or lack of cohesion, etc. that provide unsharp boundaries and allow gradual
transition closer to human interpretation we propose to develop a system to classify java
applications based on OO metrics. The system will contain the following features:

• Automated method to extract the OO metrics from the source code
• Default/base set of rules that can be easily configured via XML file so companies,

developers, team leaders, etc, can modify the set of rules according to their needs.
• Implementation of a framework so new metrics, fuzzy sets and fuzzy rules can be added

or removed depending on the needs of the end user.
• General classification of the software application and fine-grained classification of the

java classes based on OO metrics.
• Two interfaces are provided for the system: GUI and command.

The paper is organized as follows: Section 2 shows the definition of the traditional and object
oriented metrics utilized. Section 3 shows the software application design including use cases,
sequence and class diagrams. Section 4 shows the design of the fuzzy system including block
diagram and the definition of membership functions and fuzzy rules. Section 5 shows the data of
the applications being evaluated. Section 6 shows the experiments and results of the fuzzy system
compared to those of a manual analysis. Finally section 7 concludes and presents future work for
this paper.

1.1 Background

Many traditional and object oriented metrics extract information of the application regarding
traditional principles and object oriented principles like complexity, inheritance, coupling,
cohesion, polymorphism, etc. The following is the description of the metrics that will be used in
this paper:

Lines of Code – LOC: This is a traditional metrics and counts all lines within the class including
blank lines, command lines and comment lines. Size of a class is used to evaluate the ease of
understanding of code during development and maintenance [2]. The rationale of this class is that



International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 3, June 2013

3

high number of lines of code increases complexity of the code, making it difficult to understand,
maintain and test.

Weighted Methods per Class – WMC:  This is object oriented metric was developed by
Chidamber [1], and counts the number of methods implemented within a class or the sum of the
complexities of the methods [1]. The rationale of this metric is that classes with many methods
are likely to be more application specific, limiting the possibility of reuse [2].

Response for a Class – RFC: This object oriented metric counts the set of methods that can be
invoked in response to a message to an object of the class or by some method in the class [1]. The
rationale of this metric is that the larger the number of methods that can be invoked from a class
through messages, the greater the complexity of the class. Therefore testing and debugging
becomes complicated since it requires a greater level of understanding from the tester [2].

Lack of Cohesion – LCOM2: It counts the percentage of methods that do not access a specific
attribute averaged over all attributes in the class [1]. For this metric a low cohesion increases
complexity, thereby increasing the likelihood of errors during the development process. Equation
(1) shows the LCOM2 metric. LCOM2 = 1 − ∑(mA)m ∗ 1 (1)
where mA is the number of methods that access a variable, m is the number of methods in a class
and A is number of variables (attributes) in a class.

Coupling Between Object Classes – CBO: This metric counts the number of other classes to
which a class is coupled [1]. Excessive coupling is detrimental to modular design and prevents
reuse. Therefore the tighter the coupling the more sensitivity are the changes in other parts of the
application [2].

Depth of Inheritance Tree – DIT: This metric measures the maximum inheritance path from the
class to the root class [1]. The deeper a class within the hierarchy the greater the number methods
it is likely to inherit making the code more complex to predict its behavior. Deeper trees
constitute greater design complexity, since more methods and classes are involved [2].

Number of Children - NOC: This metric count the number of immediate subclasses subordinate
to a class in the hierarchy. NOC and DIT are closely related because NOC measures the breadth
of a class hierarchy, where maximum DIT measures the depth [1].  A high value of this metric
increases the likelihood of improper abstraction and the probability of misusing sub classing [2].

Method Hiding Factor – MHF: This metric measures how variables and methods are
encapsulated in a class in relation to all the classes in the application. The invisibility of a method
is the percentage of the total classes from which this method is not visible. The ideal value is
between 8% and 24%. A low value indicates insufficiently abstracted implementation and a high
value indicates very little functionality. The larger the proportion of methods unprotected the
higher the probability of errors [13]. Equation (2) shows the MHF metric.

MHF = ∑ M (C )∑ M (C ) (2)
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where TC is the total number of classes, Mh is the number of methods hidden and Md is the
number of methods defined in a class.

Attribute Hiding Factor – AHF: this metric measure how variables are encapsulated in a class
in relation to all the classes in the application. The invisibility of an attribute is the percentage of
the total classes from which this method is not visible. Encapsulation indicates that the attributes
should have no visibility to other classes therefore the ideal value for this metric is 100% [10].
Equation (3) shows the AHF metric.

AHF = ∑ A (C )∑ A (C ) (3)
where Ah is the number of attributes hidden and Ad is the number of attributes defined in a class.

Method Inheritance Factor – MIF: this metric measure the inherited methods in a class in
relation to all the classes in the application. For this metric a very high value indicates
superfluous inheritance, wide member scopes. Low value indicates lack of inheritance and heavy
use of Overrides. The ideal value for this metric should be between 20%-80% [13]. Equation (4)
shows the MIF metric.

MIF = ∑ M (C )∑ M (C ) (4)
where Mi is the number of methods inherited and Ma is the number of methods defined in a class.

Attribute Inheritance Factor – AIF: This metric measure the number of attributes inherited in a
class in relation to all the classes in the application. The ideal value for this metrics is between
0% and 48%. A very high value indicates superfluous inheritance and wide member scopes. A
low value indicates lack of inheritance and heavy use of Overrides [10]. Equation (5) shows the
AIF metric.

AIF = ∑ A (C )∑ A (C ) (5)
where Ai is the number of attributes inherited and Aa is the number of attributes defined in a class.

Coupling Factor – COF: It measures the actual coupling among classes in relation to the
maximum number of possible couplings. The ideal value for COF is between 0% and 12%.  A
very high value should be avoided because tightly coupled relations increase complexity, reduce
encapsulation, reduce potential reuse, and limit understandability and maintainability [10].
Equation (6) shows the COF metric.

COF = ∑ [∑ is_client(C , C )]TC − TC (6)
where is_client(Ci,Cj)is 1 if Cj is a client of Ci, otherwise is 0.
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Polymorphism Factor – POF: This metric measures the degree of method overriding in the class
inheritance tree. Polymorphism should be used to a reasonable extent to keep the code clear, but
excessively polymorphic code is too complex to understand. Equation (7) shows the POF metric.

POF = ∑ M (C )∑ [M (C ) ∗ DC(C)] (7)
where Mo is the number of methods overridden and Mn is the number of new methods defined in
a class.

2. APPLICATION DESIGN

Use case Diagram: For the application, five main use case diagrams were designed: Run
Diagnose, Load Configuration, Extract Metrics, Fuzzy Diagnose, and Generate Report. These use
cases are shown in figure 1 below.

Figure 1. Use Case Diagram

Run Diagnose is the main use case diagram and orchestrates the execution of all the other use
cases. Load Configuration loads the configuration of the fuzzy system; this configuration
supports fuzzy sets, fuzzy rules and definition of OO Metrics. In addition, this use case loads the
information of the classes, class variables methods, variables methods, etc., and it is utilized
during the calculation of the OO metrics. Fuzzy Diagnose use case basically processes all the
fuzzy rules. It computes two outcomes: fine-grained report for each of the classes within the
application and a comprehensive report for the entire application. Finally Generate Report use
case generates a classification report including a decomposition tree in two formats: XML and
screen.
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The following subsections explain each of the subsystems within the application:

Fuzzy Rules Engine: This subsystem shown in figure 2 is responsible for the execution of the
fuzzy rules defined in the system. The most important classes of this subsystem are RulesEngine
and FuzzyRuleBasedEngine. RulesEngine is the main class of the template pattern and contains
all the steps of the fuzzy rules-based inference Engine: matching degree, inference, combination
and defuzzification [11]. FuzzyRuleBasedEngine implements each of the steps defined in Rules
Engine.

Figure 2. Class Diagram – The Fuzzy Rules Engine Subsystem

Object Oriented Metrics Engine: This subsystem orchestrates the extraction of each of the metrics
as shown in figure 3. The main classes are: The Metric interface utilized to define the signature of
the methods that needs to be implemented by each of the concrete OO metric classes, and
ConcreteMetricsEngine that executes each of the classes that implements the Metric Interface.

class fuzzyrules

RulesEngine

+ combination() : void
+ defuzzification() : void
+ execute(Metric, Rule) : void
+ fuzzyMatching() : void
+ inference() : void

FuzzyRule

- then:  String

+ execute() : Set
+ getThenCondition() : void

FuzzySet

+ getId() : void
+ getLabel() : void
+ getValue() : void

FuzzyRulesDetailReport

FuzzyRuleBasedEngine

+ combination() : void
+ defuzzification() : void
+ fuzzyMatching() : void
+ inference() : void

«interface»
DefuzzificationMethod

+ execute(Set) : Output

MeanOfMax

+ execute(Set) : Output

FuzzySetAscendent

+ getId() : void
+ getLabel() : void
+ getValue() : void

FuzzySetDescendent

+ getId() : void
+ getLabel() : void
+ getValue() : void

FuzzySetTriangle

+ getId() : void
+ getLabel() : void
+ getValue() : void

FuzzySetTrapezoide

+ getId() : void
+ getLabel() : void
+ getValue() : void

FuzzyEngineReport

ClippingMethod

+ execute() : void

Composite

+ addCompositeCondition() : void
+ calculateAntecedent() : void
+ removeCompositeCondition() : void

InferenceMethod

+ execute() : void

OrComposite

+ addCompositeCondition() : void
+ calculateAntecedent() : void
+ removeCompositeCondition() : void

AndComposite

+ addCompositeCondition() : void
+ calculateAntecedent() : void
+ removeCompositeCondition() : void

ConsitionComposite

+ addCompositeCondition() : void
+ calculateAntecedent() : void
+ removeCompositeCondition() : void

leaf
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Figure 3. Class Diagram – OO Metrics Subsystem

3. FUZZY SYSTEM DESIGN

3.1 Design of the diagnosis system

The objective of the system is to classify the reliability and potential design flaws of java
applications based on OO Metrics. Figure 4 shows the block diagram of the overall system.

Figure 4. Block Diagram of the fuzzy system
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The input of the system is the OO metrics extracted from java application. The Fuzzifier
calculates the matching degree of the metrics that matches the condition of the fuzzy rules. The
Inference Engine calculates the rule’s conclusion based on its matching degree by using the
clipping method, and combines the conclusion inferred by all fuzzy rules in a final conclusion.
Finally, the Defuzzifier process coverts the fuzzy conclusion into a crisp value by using the mean
of max method. There are two types of results given by the system: A fine-grained classification
for each of the classes and a general classification for the java application being evaluated [11].
For this reason two sets of rules are defined: one set of rules to classify single classes and another
one to evaluate the application. Moreover a decomposition tree is generated for all the classes
reported during the fined-grain classification. This tree will help the developer to analyze and
address classes with similar values. Unfortunately due to performance constraints only systems
that report less than 200 classes will generate this similarity tree.

3.2 Input variables

The input variables of the system are the following Object Oriented metrics:
LOC = Lines of code; WMC = Weighted Methods per Class
RFC = Response for a Class; LCOM2 = Lack of Cohesion
CBO= Coupling Between Object Classes; NOC= Number of Children; DIT = Depth of
Inheritance Tree; MHF= Method Hiding Factor; AHF= Attribute Hiding Factor; MIF= Method
Inheritance Factor; AIF= Attribute Inheritance Factor; COF= Coupling Factor;
POF= Polymorphism Factor

3.3 Output variables

The output variable of the system is defined as:
OODC= Software classification.

3.4 Definitions

The definition of the values used in the fuzzy sets and fuzzy rules are: C- Critical, H – High, M –
Medium, N – Normal, L – Low, VL – Very Low

3.5 Membership function definition

The membership functions have been designed based on empirical results presented by
Chidamber [1], Rosenberg [2] and Briand [13]. The design of the membership functions has
followed the conditions proposed by Yen and Langary [11] where “each function overlaps only
with the closest neighboring membership function and for any possible input data, its membership
values in all relevant fuzzy sets should sum to 1 or nearly so”. The following is the definition for
each of the metrics:

WMC: For this metric three membership functions were designed: normal (x: 10, 20), medium (x:
10, 20, 30) and high (x: 20, 30). The normal value was chosen based on two observations:
Rosenberg’s experiment [2] showed a histogram with values between 0 and 20 for most of the
classes; on the other hand Chidamber [1] reported most of the cases with values between 0 and
10. As a result the values for the normal membership function are chosen with values between 0
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and 20. The medium and high membership functions are derived based on Yen and Langary [11]
using an overlap of 10. The membership functions are shown in the figure 5.

Figure 5. WMC membership functions

RFC: For this metric three membership functions were created: normal (x: 30, 40), medium (x:
30, 40, 50) and high (x: 40, 50). The empirical data from Rosenberg [2] showed that the majority
of classes only invoke between 0 and 40 methods; on the other hand Chidamber [1] reported a
median value between 6 and 29. Based on this information the normal membership function is
defined with values between 0 and 40; and medium and high fuzzy sets are derived based on Yen
and Langary [14]. The membership functions are shown in figure 6.

Figure 6. RFC membership functions

LCOM2: For this metric three membership functions were created: normal (x: 60, 70), medium
(x: 60, 70, 80) and high (x: 70, 80). Rosenberg [2] did not present statistical data for this metric
however she said that “smaller LCOM to its maximum value the better”. On the other hand
Briand [13] obtained a median value 64% and min value 18%. The normal value is derived based
on this median and the other two membership functions are derived based on Yen and Langary
[11]. The membership functions are shown in figure 7.

Figure 7. LCOM2 membership functions

CBO: For this metric three membership functions were defined: normal (x: 5, 10), medium (x: 5,
10, 15), high (x: 10, 15). Rosenberg [2] reported than more than one-third of the classes reported
values between 0 and 10 and fewer classes between 11 and 13. On the other hand Chidamber [1]
obtained a median value between 0 and 9. Based on this information the normal membership
function is defined with values between 0 and 10; the other fuzzy sets are derived based on Yen
and Langary [11] using overlapping of 5. The membership functions are shown in figure 8.
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Figure 8. CBO membership functions

DIT: For this metric three membership functions were defined:  normal (x: 3, 6), medium (x: 3, 6,
9) and high (x: 6, 9). Rosenberg [2] reported 60% classes with a DIT less than or equal to 1, 20%
between 2 and 3; and only 5% greater than 5. Chidamber [1] on the other hand reported a
maximum DIT of 10, and a median value between 1 and 3. Based on this information the normal
membership function is chosen between 0 and 6 and the other membership functions are derived
based on Yen and Langary [11]. The membership functions are shown in figure 9.

Figure 9. DIT membership functions

NOC: For this metric three membership functions were created:  normal (x: 10, 20), medium (x:
10, 20, 30) and high (20, 30). For this metric Rosenberg [2] reported that most of the classes had
between 0 and 10 children, and fewer classes between 10 and 20 children. On the other hand
Chidamber [1] reported that most of the classes did not have children, and that the maximum
value obtained in this metric was between 42 and 50. Giving an overlap of 10 the normal
membership function is chosen with values between 0 and 20; and the other fuzzy sets are derived
based on Yen and Langary [11]. The membership functions are shown in figure 10.

Figure 10. NOC membership functions
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class with a normal value to be between 0 and 1000 lines of code. The other membership
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functions are derived with an overlap of 250 based on Yen and Langary [11]. The membership
functions are shown in figure 11.

Figure 11. LOC membership functions

MHF: For this metric five membership functions were created:  very low (x: 5, 10), low (x: 5, 10,
15), normal (x: 10, 15, 20, 25), medium (20, 25, 30) and high (x: 25, 30). The normal
membership function was defined based on the statistical distribution reported by Brito et al [10].
In this case most of the cases and contained values between 8-25%. Therefore a normal fuzzy set
is defined using trapezoidal form with values 10,15,20,25. The other membership functions are
derived based on Yen and Langary [11] using an overlap of 5. The membership functions are
shown in figure 12.

Figure 12. MHF membership functions

AHF: For this metric three membership functions were defined:  normal (x: 80, 90), medium (70,
80, 90) and high (70, 80). Due to the encapsulation paradigm Brito et al [10] concluded that a
good value for this metric should be 100%. However taking into account static variables shared
across different classes then the normal membership function is defined with values between 80
and 100. The other membership functions are defined based on Yen and Langary [11] using an
overlap of 10.  The membership functions are shown in figure 13 below.

Figure 13. AHF membership functions

0
0.5

1
1.5

0

10
00

20
00

NOR
MAL

MED
IUM

HIGH

0

0.5

1

1.5

0 10 20 30

VERY
LOW

LOW

NORM
AL

0

0.5

1

1.5

0 80 100

NORM
AL

MEDIU
M

HIGH



International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 3, June 2013

12

MIF: For this metric five membership functions were defined: very low (x: 15, 20), low (15, 20,
25), normal (x: 20, 25, 75, 80), medium (x: 75, 80, 85) and high (80, 85). Brito et al [10] reported
an average of 85% among 5 applications and suggested a metric value between 20% and 80%.
Therefore the normal membership function is defined in a trapezoidal form with values 20, 25, 75
and 80. The other fuzzy sets are derived based on Yen and Langary [11] using an overlap of 5.
The membership functions are shown in figure 14 below.

Figure 14.  MIF membership functions

AIF: For this metric three membership functions were defined:  normal (x: 40, 50), medium (x:
40, 50, 55, 65) and high (x: 55, 65). Brito et al [10] reported a statistical distribution with most
classes between 50 and 65%, maximum value 80% and minimum value of 40%. They also
suggested a metric value between 0 and 48%. For this reason a normal membership function is
defined using a trapezoidal form with values 40, 50, 55, 65 and the other membership functions
are derived based on Yen and Langary [11] with an overlap of 10.  The membership functions are
shown in figure 15.

Figure 15.  AIF membership functions
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10, 20, 30) and high (x: 20, 30). Brito et al [10]. The reported statistical distributions with most
values are between 5% and 15%, the maximum value is 30% and the minimum value is 3%. They
also suggested an ideal value of less than 12%. Therefore a normal membership function is
defined with values between 0 and 20 and the other membership functions are derived based on
Yen and Langary [11] using an overlap of 10.  The membership functions are shown in figure 16.
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Figure 16. COF membership functions

POF: For this metric three membership functions were created:  normal (x: 0, 10), medium (x: 0,
10, 20) and high (x: 10, 20). Brito et al [10] reported two tendencies for this metric: one of them
states that POF should be greater than 10% due to polymorphism increases the flexibility of the
application, and the other one states than POF should be less than 10% because complexity
increases testability, maintainability and decreases understandability. In my opinion having very
low polymorphism defeats an important principle of object oriented programming, therefore a
normal membership function is chosen with values between 10 and 100. The other membership
functions are derived based on Yen and Langary [11] using and overlap of 10.  The membership
functions are shown in figure 17.

Figure 17. POF membership functions

OODC: The output membership function has been defined with three membership functions:
critical (x: 80, 90, 100), high (x: 70, 80, 90) and medium (x: 60, 70, 80). If the matching degree
does not fall within these fuzzy sets then it is considered normal and not reported. The
membership functions are shown in figure 18.

Figure 18. OODC – Output membership functions
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cohesion, coupling and hierarchical tree of single classes. The metrics to classify the entire
application are: NOC, DIT, MHF, AHF, MIF, AIF, COF and POF; and they gather information
about encapsulation, inheritance, coupling and hierarchical tree structure of the entire application.
Both groups of metrics are complementary and their results provide detail and general
information about the application. It is worth to mention that despite of DIT and NOC do not
gather information at application level, their maximum value is used during the classification of
the application due to these metrics have a direct impact in the hierarchical structure of the
application.

The metrics are also divided in groups based on their objectives. Metrics that share the same
objective are grouped together and metrics that do not share same objective are left alone. Table 1
shows the results of this clustering.

Table 1. Metrics classification

Group # Metrics Objective
1 LOC, WMC, RFC Complexity
2 DIT, NOC Hierarchical tree.
3 LCOM2 Cohesion
4 CBO, CFO Coupling
5 MIF, AIF Inheritance
6 MHF, AHF Encapsulation
7 POF Polymorphism

These groups are used during the definition of the fuzzy rules. A single condition is defined by
one cluster and the entire fuzzy rule is defined with several conditions. The evaluation of the
metrics within the cluster is performed by using the OR command, and the evaluation of the
clusters within the fuzzy rule is performed by using the AND command. For example rule R1
defined as:

R1  IF (LOC IS HIGH OR WMC IS HIGH OR RFC IS HIGH) AND (DIT IS HIGH AND
NOC IS HIGH)… THEN

is evaluated within the fuzzy context using equation (8):
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The next two sections explain the definition of the fuzzy rules for single java classes and for the
entire application.

Fuzzy Rules for Classification of Single Java Classes: These rules use the membership
functions LOC, WMC, RFC, LCOM2, CBO, DIT, and NOC; and classify the class as critical,
high or medium. Table 2 explains the conditions for each of the classifications.
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Table 2. Conditions for class classification

Fuzzy
Consequent

Fuzzy Conditions

Critical At least three of the clusters being evaluated have high value;

High At least two of the clusters being evaluated have high value;

Medium At least one of the clusters being evaluated have high value;

As shown in the table a rule with critical consequent evaluates if at least three of the clusters
within the fuzzy rule have a high value. A class under this classification has a very poor object
oriented design and does not follow at least three OO metrics. This class can impact other classes
within the application and a considerable amount of work is expected to address all the metrics.
For this reason a critical classification should trigger immediate attention of the software
developer and technical leader for review and modification.

A rule with high classification evaluates if at least two of the clusters within the fuzzy rule have a
high value. A class under this classification does not conform to at least two of the metrics,
therefore testing and maintaining the class can become a challenge. A class under this
classification will most probably move to critical instead of moving to medium or normal stage,
as a result this classification should trigger the attention of the developer, architect and technical
leader for review.

Finally a rule with medium consequent evaluates if at least one of the clusters has a high value. A
class under this classification should be reviewed and verified to make sure that there are no
potential design issues. Java classes under this classification will most probably move to high or
critical instead of moving back to normal. This classification should trigger the attention of the
developer for verification.  The rules derived are shown in table 3.

Table 3. Fuzzy rules for class classification
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Fuzzy Rules for Application Classification: Similar to the fuzzy rules at the class level, the
rules of the application have critical, high or medium classification. These rules use the
membership functions: NOC, DIT, MHF, AHF, MIF, AIF, COF and POF. Table 4 shows the
conditions for each of the classifications mentioned.

Table 4. Conditions for application classification

Fuzzy
Consequent

Fuzzy Conditions

Critical At least three clusters have a high value;

High At least two clusters have a high value;

Medium At least one cluster has a high value.

As shown in the table a rule with critical fuzzy set consequent evaluates if at least three clusters in
the fuzzy rule have high value. Most probably the application has a very poor object oriented
design and a considerable amount is needed to redesign the application. This classification should
trigger immediate attention of the designer, architect, leader or project manager.

A rule with high fuzzy set consequent evaluates that at least two of the clusters in the fuzzy rule
have high value. If the result of the application falls under this classification then a review must
be performed and high values addressed. Medium values on the other hand should be reviewed
for potential redesign and modification. Usually an application under this classification will most
probably move to critical stage instead of medium or normal. This classification should trigger
the attention of the designer, architect, project leader or project manager for review of the design
and correction of the metrics.

Finally a rule with medium fuzzy set consequent evaluates if at least one of the clusters within the
fuzzy rule has high value. An application under this classification should be reviewed for
evaluation and verification. Without revision the application most probably will move to high or
critical instead of moving back to normal. This classification should trigger the attention of the
designer, leader or project manager for review. The rules derived are shown in table 5:

Table 5. Fuzzy rules for application classification
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4. DATA ANALYSIS AND DATA PREPARATION

Three applications were diagnose during the experiments: two of them were provided by CGI,
one of the largest IT companies in Canada, and the other one is the java application developed for
this project. The experiments were executed using most of the java classes; however JUnit test
classes and Exception classes were excluded from the experiments. Because of its nature these
classes do not follow object oriented design principles, therefore can affect the results of the
metrics. Table 6 shows detail information of the applications.

Table 6. Java applications used during the experiment

Application #
Packages

#
Classes

Lines of Code

OODiagnose 6 90 6088
BIE Portal 43 842 77395
ETLF 4 45 2497

Manual analysis of the application was performed using histograms of the metrics, class diagrams
and java code. For this analysis concepts like rigidity, fragility, immobility and viscosity were
used to classify the application. Rigidity states that a simple change causes a cascade change in
the dependent modules. Fragility is defined as the tendency of a program to break in many places
when a single change is made. Immobility is the unsuccessful software reuse of the same design.
And viscosity is when usability and employability of the existing methods is very poor making
viscosity of the design very high [14]. These results were compared to those of the fuzzy
application for validation.

5. EXPEREIMENTS AND RESULTS

5.1 OO Diagnose application

Results of the Fuzzy System

During the diagnosis of the application the fuzzy system classified the application as normal.
Only MHF and NOC metrics were categorized as medium and the other metrics as normal. Table
7 shows the details of the metrics reported under this classification. These results showed a high
polymorphism, low coupling, good encapsulation, normal inheritance class and normal
inheritance tree reinforcing good object oriented principles.

Table 7. Classification of the Diagnose Application

Metric Classification Value
AHF Normal 96.80842
AIF Normal 35.80247
COF Normal 3.655041
DIT Normal 2
MHF Medium 24.18428
MIF Normal 69.55381
NOC Medium 15
POF Normal 90.625
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Regarding the diagnosis of the classes, the system reported 21 classes out of 90 classes being
evaluated: 3 of the classes with high and 18 medium classification. Figure 19 shows the Classes
vs. Classification per Metric. LCOM2 had the highest number of classes reported with 20 out of
21 classes with high and medium classification. On the other hand, DIT, LOC and NOC reported
normal classification for all the classes. As a result, the classes did not have a high complexity,
the inheritance was kept under control, and the coupling was low. The only concern was the high
of classes reported with multiple responsibilities.

Figure 19. Classes Reported vs Classification per Metric

The system also generated a decomposition tree for the classes reported. As shown in figure 20,
twenty one levels were generated, and the classes were grouped depending on the similarity of the
metrics. Two sample groups were verified:

1. Similarity group 2.76190476190476 reported JavaClassInfo and FuzzyRulesEngine
within the same group. They had normal CBO, DIT, LOC, RFC and WMC. One of the
classes reported medium and the other one high LCOM2.

2. Similarity group 1.78061224489796 reported DecompositionTreeAlgorithm and RFC
within the same group. They had high LCOM2, and normal DIT, LOC, RFC and WMC.
Once class had medium and the other normal CBO.

Figure 20. Similarity Groups- OO Design Application
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Results of the Manual Analysis

During the manual analysis the rigidity, fragility, immobility and viscosity of the application
showed low values based on the results of the metrics shown in figure 21. The inheritance of the
attributes (AIF) with 40% seems to be high because all the attributes should be encapsulated.

Figure 21. Metrics Results used during classification of the application.

The application seems to have “top heavy” architecture because DIT and NOC have lower values
keeping the inheritance under control. Application seems to be very flexible because POF and
MIF have high values. Due to these values it is suggested that the application has high inheritance
and high polymorphism. Revision of the source code demonstrated that this is due to the usage of
bridge and strategy pattern [15].

Figure 22. Histogram – CBO metric

Regarding the classification of the java classes the following observations draw the attention
during the verification: In general the classes seem to be well written however coupling (CBO)
seems to have a couple of outlier classes that need to be reviewed. This is shown in figure 22.

Comparison and Discussion

The results of the manual analysis and the fuzzy system are comparable. In general both results
reported a relatively good object oriented design. Regarding the fine-grained details both results
reported high lack of cohesion. There seems to be a problem with LCOM2 metric because false-
positives are being reported. During manual verification of the source code java bean objects are
being reported with medium and high values despite of the fact that they do have single
responsibility, low coupling and high encapsulation. Java Beans are reusable objects utilized in
java to represent objects and follow conventions about method naming, construction and
behavior; therefore these classes should be valid objects with normal cohesion [12].
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The only difference between the diagnosis procedures is that low values in deep of inheritance
tree (DIT) and number of children (NOC) were detected during the manual analysis of the
histograms. The fuzzy rules seem to be overseeing low values for these metrics; however this
appears to be a subjective assessment. As pointed by Rosenberg [2] higher values indicate higher
complexity which affects the maintainability and testability of the classes and therefore the
application [2]. The metrics provide a trade-off and their values should be assigned depending on
human experts, company policies, etc.

5. CONCLUSION AND FUTURE WORK

In this paper we developed a software system to diagnose the reliability of java applications using
object oriented metrics and a fuzzy rule-based system. The fuzzy membership functions and
fuzzy rules have been defined using statistical data from previous studies that have defined and
analyzed the different object oriented metrics. Three applications for different business purposes
and sizes have been analyzed, and results of the fuzzy system have been compared to those of a
manual analysis. The following can be inferred from the experiment:

• The fuzzy system has an appropriate default set of fuzzy sets and fuzzy rules to classify
object oriented java applications.

• The decomposition tree is a very useful analysis tool for developers who need to address
issues with classes with similar metric values.

• The results help the developers, designers and team leaders to enforce the use of object
oriented principles in the design and development of java applications.

• Unfortunately the fuzzy system does not prevent metrics to report false-positives
therefore manual analysis is needed in cases were abnormal results are suspected.

• Overall the current fuzzy sets and fuzzy rules provide accurate results however the
system does not report low values in NOC and DIT at the application level, therefore
modifications of these rules and fuzzy sets are expected if these values need to be
considered by the final user.

• The fuzzy rules did not entirely utilize medium and normal membership functions, but
these fuzzy sets are provided so the user can modify the current fuzzy rules if a more
accurate result is needed.

• The fuzzy system provides objective results because they contain information from
statistical sources and several human experts in contrast to manual analysis that is bias
and can vary depending on the knowledge and experience of the expert.

The following suggestions are provided for future work:

• Integration of the fuzzy system with the popular java compiler ant, to obtain instant
results at compilation time.

• Include a neural network prediction system to forecast the reliability of the applications
using statistical and historical information of the fuzzy reports.

• Integrate the fuzzy system with a continuous monitoring system (Hudson dashboard, etc)
so historic and current reports are available to developers, project leaders, architects,
managers and clients in order to increase productivity, reliability, usability, testability of
the application.
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