
International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

DOI : 10.5121/ijcsit.2013.5405 67

VEDIVISION – A FAST BCD DIVISION ALGORITHM

FACILITATED BY VEDIC MATHEMATICS

Diganta Sengupta1 Mahamuda Sultana2 and Atal Chaudhuri3

1Department of Applied Electronics and Instrumentation Engineering, Future Institute of
Engineering and Management, Kolkata, India

sg.diganta@gmail.com
2Department of Computer Science and Engineering, Swami Vivekananda Institute of

Science and Technology, Kolkata, India
sg.mahamuda3@gmail.com

3Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
atalc23@gmail.com

ABSTRACT

Of the four elementary operations, division is the most time consuming and expensive operation in modern
day processors. This paper uses the tricks based on Ancient Indian Vedic Mathematics System to achieve a
generalized algorithm for BCD division in a much time efficient and optimised manner than the
conventional algorithms in literature. It has also been observed that the algorithm in concern exhibits
remarkable results when executed on traditional mid range processors with numbers having size up to 15
digits (50 bits). The present form of the algorithm can divide numbers having 38 digits (127 bits) which can
be further enhanced by simple modifications.

KEYWORDS
Division Algorithm, Fast BCD Division, Vedic Division Algorithm.

1. INTRODUCTION

The Ancient Indian Vedic Mathematics comprises of sixteen Sutras and thirteen corollaries [1]
[2]. The four elementary operations of a processor, the addition, subtraction, multiplication and
the division have been extensively dealt with in the sixteen sutras of Vedic Mathematics. The
work in this paper involves the Nikhilam and the Paravartya Sutra which deal with the division.
The Nikhilam Sutra also deals with multiplication and some amount of work has been done using
another sutra known as the Urdhva Tiryakbhyam Sutra [3] [4] [5] [6] [7] [8]. The novelty of the
Vedivision lies in the fact that the procedure incorporates addition and negation operations, both
of which are much faster than the traditional successive subtraction methods. The Nikhilam Sutra
can be stated as follows:

1.1. The Nikhilam Sutra

1. This Sutra breaks up the dividend into two parts, one part resembling the Quotient and
the other part resembling the Remainder. The number of digits in the Remainder part
equals the number of digits in the divisor. For example, if the dividend and divisor are
2002002 and 89998 respectively, then 2002002 is broken up into two parts, 20 (part 1)
and 02002 (part 2).

2. The next step in the Sutra adjusts the divisor by complimenting it using the procedure
“subtract all from 9 and the last from 10” in which all the digits in the divisor are

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

68

subtracted from 9 barring the last significant digit which is subtracted from 10.Therefore,
the divisor 89998 after adjustment becomes 10002.

3. Next, the first digit of the quotient part (part 1 of the dividend) is divided by the first digit
of the actual divisor. This is the only step where division is unavoidable, but in this case
also the maximum division is that of a single digit number by a single digit number. In
our work a look-up table has been created which stores all the single digit division results
in the form of quotient and remainder, and accessed on demand. The first digit of the
quotient part ‘2’is divided by ‘8’ (the first digit of the actual divisor) and the remainder
‘2’ is noted down.

4. In this step, the remainder from the previous step is first written as the most significant
digit of the quotient part and then it is multiplied by the adjusted divisor and placed
below the dividend after shifting it one place right. This multiplication can be achieved
by either the Nikhilam Sutra or the Urdhva Tiryakbhyam Sutra.

89998) 2002002
10002) 20 | 02002 : Divisor adjustment
 2 | 0004
 22 | ……….

5. In the above example, we observe that after the single digit multiplication, the digits in
the quotient part (part 1) of the dividend have been added. Now the adjusted divisor is
again multiplied by the new digit (marked by bold and underlined in example of step-4)
to obtain another number and place it again by shifting it to the right by one position as
shown below in Example-1:

89998) 2002002
10002) 20 | 02002 : Divisor adjustment
 2 | 0004 : Result after Step 4
 | 20004 : Result after Step 5

22 | 22046
Example 1.

Here it can be seen that since the result after step 5 has entered fully into the remainder
part (part 2); hence the algorithm is concluded by adding all the intermediate results.
Therefore, after dividing 2002002 by 89998, we get the quotient as 22 and the remainder
as 22046.

Observations.

It can be concluded that no subtraction procedure is performed in the entire division
process. In the third step of the sutra, a single digit division has been done but that can be
performed using a look-up table. The division process has been performed with multiplication
process in subsequent steps and addition. Multiplication is a relatively faster and cheaper
operation than division. Also the largest multiplication that may be required is multiplying 9 by 9.

Drawback of the Nikhilam Sutra

The sutra provides best results when division requires large divisors. In cases where the
divisor is a small number, this sutra provides ambiguous results. This drawback is accomplished
by another sutra known as the Paravartya Sutra.

1.1. The Paravartya Sutra

The Paravartya Sutra is suitable for divisions including large as well as small divisors. The sutra
is actually known as “Paravartya Yojayet” which means “Transpose and Apply”. The Paravartya
Sutra can be easily explained using the famous Remainder Theorem [9] as follows:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

69

1. If E = Dividend, D = Divisor, Q = Quotient and R = Remainder and if the divisor is taken

to be (x-p), then a relationship can be stated as follows:
E = D.Q + R, or E = Q.(x-p) + R.

2. Now, if ‘x’ is substituted by ‘p’ then the identity becomes E = R, thus the expression E

automatically becomes the remainder as ‘p’ is achieved by equating x-p to zero. Hence,
actually the sign of ‘p’ is reversed [1].

3. In Paravartya Sutra the digits of the divisor are first negated, i.e. if the divisor is 112, the
new adjusted divisor becomes -1 -1 -2. Then the first digit is excluded and the remaining
digits become the new divisor -1 -2.

4. Next the dividend part is broken up into two parts as in the Nikhilam Sutra and the
operation is processed as shown in the Example-2.

 1 1 2) 1 2 3 4
 -1 -2) 1 2 | 3 4 Broken up using Nikhilam Sutra.
 -1 | -2
 | -1 -2
 1 1 | 0 2

Example 2.
On close observation it can be seen that the first digit of the divisor, which was excluded

initially, actually divides the first digit of the dividend as in the case of the Nikhilam Sutra, and
the remainder obtained from that single digit division is used to multiply the adjusted divisor in
the Paravartya Sutra and then proceeded with the Nikhilam Sutra to provide the quotient as 11
and the remainder as 2.

2. VEDIVISION, THE VEDIC DIVISION ALGORITHM

The proposed division algorithm in this paper is a combination of the earlier discussed two sutras,
the Nikhilam Sutra and the Paravartya Sutra, with slight modification so as to obtain a
generalized algorithm for all the possible divisors. Presently, numerous division algorithms are
used depending upon system or application requirements such as the Restore Type Division
Algorithm, SRT Division Algorithm, and the Non Restore Type Division Algorithm [10-12], the
latter being the fastest and economic. It has been statistically proven further in our work that the
proposed algorithm performs better with respect to the Non Restore Type Division Algorithm in
terms of speed and memory requirement.

The proposed algorithm performs the calculations on the number of digits in the divisor and the
dividend rather than on the number of bits representing them. In Non Restore Type Division
Algorithm, the time estimate of the division is proportional to the number of bits. But in the Vedic
Division Algorithm, the time requirement is based mainly on the number of normalizations
(illustrated further) of the intermediate remainders. Hence, the algorithm exhibits remarkable
results on divisions involving big numbers. The novelty of the algorithm lies in the fact that since
the computation is done on digits rather than on the bits, very large numbers, having size up to 38
digits (127 bits), can be divided in the present form and if modified, it can divide even larger
numbers.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

70

2.1. Step – By – Step Algorithm description using an example

1. In the first step the divisor is adjusted using a combined logic of both the Nikhilam Sutra
and the Paravartya Sutra. All the digits that are less than or equal to 5 are negated. For all
those digits which have values more than 5, 10’s compliment of the digit is taken and 1 is
added to the next higher digit. If the divisor is 47483647, then a close observation reveals
that all the consecutive digits are alternately less than and greater than 5. The divisor
adjustment starts from the Least Significant Digit. As 7 > 5, hence 10’s compliment of 7
is taken and 1 is added to the next higher digit ‘4’,replacing 7 by 3 and 4 by 5. Now this 5
is adjusted by -5. Hence the adjustment of the divisor is shown below.

4 7 4 8 3 6 4 7 becomes
-5 3 -5 2 -4 4 -5 3 (Adjusted divisor)

2. Let us take an example in which the dividend is 99999 and the divisor is 456. Therefore,
the divisor 456 after adjustment becomes -5 4 4. It may also be observed that the first
digit of an adjusted divisor will always be a negative digit.

3. Next, the first digit of the dividend is divided by the magnitude of the first digit of the
adjusted divisor to obtain the quotient. In the example, the first digit of the dividend
(99999) is 9 which is divided by magnitude of the first digit of the adjusted divisor (-5 4
4) which is 5 to obtain the quotient 1. This is the only step where division is unavoidable
but it has been accomplished with the aid of two look – up tables as shown in Table 1 and
Table 2. The use of these tables saves the division time otherwise required for obtaining
the quotient and the remainder.

Table 1. Look – up Table for Quotient

Q : Quotient Table
 0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8 9
2 0 0 1 1 2 2 3 3 4 4
3 0 0 0 1 1 1 2 2 2 3
4 0 0 0 0 1 1 1 1 2 2
5 0 0 0 0 0 1 1 1 1 1

Table 2. Look – up Table for Remainder

R : Remainder Table
 0 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 1 0 1 0 1 0 1
3 0 1 2 0 1 2 0 1 2 0
4 0 1 2 3 0 1 2 3 0 1
5 0 1 2 3 4 0 1 2 3 4

The second row and the first column in Table 1 and Table 2 are shown in bold

and represent the array indices. The row indices have been started from 1. Column 1
represents the denominator values and Row 2 represents the numerator values. Suppose
we want to divide ‘a’ by ‘b’. The quotient is obtained from the cell Q[b,a] of Table 1

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

71

where the maximum value of b can be 5 and not equal to 0. The remainder is obtained
from Table 2 in the same manner, that is, the value of cell R[b,a].

The new quotient is then multiplied by all the digits of the adjusted divisor and placed
below the dividend at the exact positions and then added to get the new remainder as
shown below:

-5 4 4) 9 9 9 9 9 (1 0 0 0 0
) -5 4 4 .
 4 13 13 9 9

4. This step normalizes the remainder. Normalization means replacing a multiple digit value
by a single digit value at each position. The procedure is started from the Least
Significant Number of the remainder and followed to the Most Significant Number. The
Least Significant Digit of the multiple digit number is kept at the position and the rest is
added to the next Higher Significant Digit.

There are primarily three reasons for Normalization. They are as follows:

 If there is more than 1 digit in a single position: Suppose at the two adjacent
places, there are 2 and 23. Then the normalization procedure is as follows:

2 23
 = (2 + 2) 3
 = 4 3
 Thus, 2 23 after normalization becomes 4 3.

 If there is a negative digit at any position: The we normalize as follows:
2 -3

= (2 – 1) (10 – 3)
 = 1 7
 Thus, 2 -3 becomes 1 7 after normalization.

 If there are negative numbers at any position: In cases where there are negative
numbers (multiple digit number), then normalization is done as follows:

36 -17
 = (36 – 1) (10 – 17)
 = 35 -7

Thus the normalized result is 35 -7 which further needs normalization by the first

two procedures for obtaining the final result.

If the most significant digit is negative, then normalization is not performed and the digit
is kept as it is.

The above mentioned procedure of normalization is also performed for normalization of
the Quotient finally. The number of normalizations required for a single step determines
the time estimation of the division procedure which has been elaborated further in the
Performance Analysis part of this paper.

5. The next step checks for a ‘0’ at the Most Significant Digit of the normalized remainder.
If it is not ‘0’, as in this case, then the normalized remainder is again divided by the
adjusted divisor and the new quotient is added to the previous quotient. Else if it is ‘0’,
then the previous procedures are repeated till completion. The whole procedure is shown
in the output snippet in Figure 1 below:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

72

Figure 1.

It can be seen that the remainder normalization forms the main time consuming part of

the algorithm. Also there is no standard procedure for predicting the number of normalizations.
Hence, the time estimate does not depend on the size of the number. Even in divisions having
higher number of normalizations, Vedic Division Algorithm performs better with respect to the
conventional algorithms.

Statistically it has been found that in division intensive environments, like cryptographic

algorithms etc, the overall performance of the Vedic Division Algorithm is much faster when
compared to the conventional Non Restore Type Division Algorithm.

2.2. The Algorithm

Initialization Part

1. The dividend and the divisor are held in two arrays – Array ’a’ and Array ‘b’ having
index ‘m’ and ‘n’ respectively. Array ‘b’ finally stores the remainder. A temporary array
‘temp’ has been used to hold the quotient having index‘t’. Another array ‘c’ is used to
hold the copy of the divisor. All the data has been stored in Little Endean Formats and
initialized to 0.The length of Array ‘b’ is ‘n’ and Array ‘a’ is ‘m+1’, Array ’c’ is ‘m’ and
‘temp’ is ‘n’ respectively.

2. The divisor is adjusted so that no digit in the divisor is more than 5.
3. ‘m’ is updated if adjusting the divisor causes increase in length of the divisor.
4. Inverse each digit of the divisor (including the most significant digit). Steps 3 and 4 have

been clubbed in Section 2.1.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

73

Division Part

5. A new variable ‘j’ is taken for holding the value of the possible number of iterations and
its limits are set from 1 to ‘n-m+1’.

6. Compare the most significant digits of divisor and dividend.
7. If MSD (Most Significant Digit) of divisor >MSD of dividend, club the most significant

pair of digits of dividend. Update (decrement) n and t.
8. If clubbing results in decrease of the number of digits of dividend below that of divisor,

break from the ‘For Loop using ‘j’’ and go to step 13.
9. Quo= MSD of dividend/ MSD of divisor. Calculate the remainder (dividend).
10. If MSD of dividend not divisible by that of divisor, then break from the “for loop”. A

fresh iteration is being started. Go to step 13.
11. Decrement n and t, go to step 8.
12. The remainder is then normalized. Increment ‘n’ and‘t’ if normalization increments the

number of digits in remainder.
13. If (n<m) or if (j>n-m+1) in the previous iteration, no further iterations are possible and

2nd condition means we have already tried to divide once more but failed, go to step 16.
14. Else division is possible, go to step 7.
15. Check the remainder. If the remainder is negative, the quotient is decremented once. Else

if it is positive, it is the ‘normalized version of divisor’ and cannot be divided again. So
check if original form of divisor (stored in array ‘c’) can divide again. This division can
result into incrementing the quotient by 1.

16. The quotient is stored in array ‘temp’ with the leading and trailing 0’sand remainder in
array ‘b’. Quotient can further be normalized.

2.3. The Flowchart

The flowchart of the Vedic Division Algorithm is shown in Figure 2.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

74

Figure 2

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

75

2.4. Division examples illustrating the Best Case and the Worst Case

Best Case

Let the dividend be 80217727 and the divisor be 20202. The output snippet of the
division is shown in Figure 3. It can be observed that remainder is normalized only in the last
step. Hence, this type of division can be termed as a Best Case.

Figure 3

Worst Case

The example shown in Figure 1, Section 2.1, can be said to be a Worst Case as in almost
all the steps, remainder normalization has been required.

3. PERFORMANCE ANALYSIS OF THE VEDIC DIVISION ALGORITHM

For performance analysis, the Vedic Division Algorithm was executed on a 32 bit Operating
System having Intel Pentium Dual CPU E2180 @2.00 GHz and 0.99 GB DDR2 RAM. At each
execution, the algorithm was iterated 100,000 times with the same dividend and the divisor and
the average time was noted, as the time taken for a single execution was so minuscule that it
could not be detected. We think that it is the most rational method for time estimation. The
comparison was made with respect to the Non Restore Type Division Algorithm, which was also
iterated for an equal number of times for the same set of dividends and divisors, and the average
execution time for this algorithm was also noted. The comparison was also made with respect to
the Restore Type Division Algorithm, but since the performance of Non Restore Type Division
Algorithm is much better than the Restore Type Division Algorithm, we tabulated the result with
the Non Restore Type Division Algorithm. Each set of dividends and divisors ware executed by
both the algorithms for seven times and the minimum value of time required of the seven
executions were taken for analysis. This was done due to factors influencing the time analysis of
the execution such as operating system time scheduling. The analysis details were noted down as
shown in Table 3.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

76

Table 3. Execution Time Analysis of Vedivision and Non Restore Division Algorithm

Dividend Digits Divisor Digits
Vedic

Division
Non Restore

Division
Time in µs Time in µs

91 2 16 2 0.150 0.800
255 3 127 3 0.150 1.710
948 3 182 3 0.310 2.340

1,982 4 27 2 0.310 2.810
3,728 4 94 2 0.160 3.270
7,682 4 48 2 0.460 3.890
9,382 4 49 2 0.320 3.900

47,386 5 28 2 0.620 5.610
131,071 6 7,295 4 0.460 5.780
461,938 6 682 3 0.930 7.020
493,827 6 14 2 0.790 7.170
739,481 6 95 2 0.470 8.110

1,048,576 7 2,249 4 0.460 8.260
3,729,618 7 30,901 5 0.320 9.200

10,388,608 8 240 3 0.630 10.780
29,384,791 8 11 2 0.370 12.160
55,555,555 8 41 2 0.780 12.960
80,217,727 8 20,202 5 0.310 13.570

482,937,164 9 456 3 1.250 15.740
736,582,914 9 1,782 4 1.240 17.150
1073741824 10 262125 6 1.860 16.860
3147483648 10 7485629 7 0.780 17.790
4294967295 10 2147483647 10 0.610 17.770

19372864582 11 4286 4 0.930 26.350
965274638525 12 8258 4 1.240 31.050

9561346784625 13 764318 6 2.780 39.910
45615935785265 14 646464 6 3.120 40.080
56455825519553 14 61945 5 3.900 41.640

693582471951753 15 84265 5 2.490 48.760
731984265735195 15 289357 6 2.490 49.290

The dividends and the divisors were taken in a random manner and the results were

tabulated. It can be seen that in the last row in Table 3, the dividend is a 15 digit number or in
terms of bits, it is a 50 bit number. In this range the Non Restore Type Division Algorithm starts
giving ambiguous results but the Vedic Division Algorithm performs satisfactorily. Also the Vedic
Division Algorithm can compute numbers having 38 digits, 127 bit numbers, accurately in the
present form, if modified it can divide even larger numbers. The tabulated data in Columns 5 and
6 in Table 3 have been analyzed further in Figure 4.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

77

Figure 4

It can be well observed in Figure 4 that with increase in value in the dividend, the
performance time in case of Non Restore Type Division Algorithm increases drastically
compared to the Vedic Division Algorithm. This is because the Non Restore Type Division
Algorithm computes on the number of bits, hence with increasing number of bits, the execution
time increases. It can also be seen that there are a few glitches while computing with the large
sized numbers in the Vedic Division Algorithm, but those are due to the random selection of
dividends and the divisors, otherwise it can be stated that the computation time required by the
Vedic Division Algorithm is almost constant irrespective of the size of the dividend. The only
factor affecting the speed of execution is the number of normalizations required in a particular
division.

Further in Table 4, a comparison of the performance time with the value of the quotient

has been made. Normally, more the value of the quotient more is the number of divisions
required. Hence, it can be assumed that with increasing size of quotient, the performance time
should increase. But, in case of Vedic Division Algorithm, we observe that the time estimation is
not a function of the size of the quotient or number of divisions as it solely depends on the
number of normalizations required.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

78

Table 4. Quotient Size Vs Time Analysis

Value of Quotient Digits in Quotient Time taken by Vedivision (µs)

2 1 0.610
5 1 0.150
5 1 0.310

17 2 0.460
39 2 0.160
73 2 0.310
120 3 0.320
160 3 0.460
191 3 0.320
420 3 0.780
466 3 0.460
677 3 0.930

1692 4 0.620
3970 4 0.310
4096 4 1.860
7784 4 0.470

35273 5 0.790
43285 5 0.630
413346 6 1.240

1059072 7 1.250
1355013 7 0.780
2671344 7 0.370
4520033 7 0.930

12509644 8 2.780
70562221 8 3.120

116889638 9 1.240
911386318 9 3.900
2529692614 10 2.490
8230967447 10 2.490

The results in Table 4 have been graphically represented in Figure 5. There it can be
observed that with increasing value of the quotient, the performance time may be lower or may be
higher. For example, from Table 4, it can be observed that for a quotient value of 70562221 the
performance time is 3.120 µs whereas for 116889638, it is 1.240 µs. Thus the time is less in case
of a bigger quotient.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

79

Figure 5

4. CONCLUSIONS

Vedivision, or the “Vedic Division Algorithm”, has exhibited remarkable results with respect to
conventional division algorithms in terms of fast BCD division, thereby once again proving the
famous proverb that ‘Old is Gold’. Also it has been observed that the execution time does not
depend on the size of the dividend or the divisor, but on the number of remainder normalizations
required. Further VLSI implementation of the algorithm remains to be tested.

ACKNOWLEDGEMENTS

We would like to thank the Department of Computer Science and Engineering, Jadavpur
University, for providing us with all the facilities demanded by the research work. We would also
like to extend our sincere thanks to Ms. Anisha Majumder and Mr. Sourav Sikdar for their
valuable assistance.

REFERENCES

[1] Jagadguru Swami Sri Bharath, KrsnaTirathji, Vedic Mathematics or Sixteen Simple Sutras From The

Vedas, Motilal Banarsidas , Varanasi(India),1986.
[2] Swami Bharati Krishna Tirtha’s Vedic mathematics [Online]. Available:

http://en.wikipedia.org/wiki/Vedic mathematics.
[3] HimanshuThapliyal, R.V Kamala and M.B Srinivas "RSA Encryption/Decryption in Wireless

Networks Using an Efficient High Speed Multiplier", Proceedings of IEEE International Conference
On Personal Wireless Communications (ICPWC-2005) , New Delhi, pp-417-420, Jan 2005.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 5, No 4, August 2013

80

[4] HimanshuThapliyal and M.B Srinivas, "High Speed Efficient Hierarchical Overlay Multiplier
Architecture Based on Ancient Indian Vedic Mathematics", Proceedings of International Conference
on Signal Processing, ICSP 2004, Turkey, Dec 2004.

[5] HimanshuThapliyal and M.B Srinivas, A High Speed and Efficient Method of Elliptic
CurveEncryption Using Ancient Indian Vedic Mathematics.

[6] ManoranjanPradhan, Rutuparna Panda and Sushanta Kumar Sahu, “Speed Comparison of 16x16
Vedic Multipliers”, International Journal of Computer Applications (0975 – 8887), Volume 21– No.6,
May 2011

[7] Harpreet S. Dhillon and A.Mitra , “A Digital Multiplier Architecture using UrdhvaTiryakbhyam Sutra
of Vedic Mathematics “,Department of Electronics and Communication Engineering,Indian Institute
of Technology, Guwahati 781 039, India.

[8] Purushottam D. ChidgupkarMangesh T. Karad, The Implementation of Vedic Algorithms in
DigitalSignal Processing, Global J. of Engg. Educ., Vol.8, No.2 © 2004 UICEE, Published in
Australia.

[9] Shuangching Chen and ShugangWei,“A High-Speed Realization of Chinese Remainder Theorem”,
Proceedings of the 2007 WSEAS Int. Conference on Circuits, Systems, Signal and
Telecommunications, Gold Coast, Australia, January 17-19, 2007

[10] Stuart F. Oberman, and Michael J. Flynn, “Division Algorithms and Implementations”, IEEE
Transactions on Computers, vol. 46, no. 8, August 1997.

[11] J. O’Leary, M. Leeser, J. Hickey and M. Aagaard, “Non-Restoring Integer Square Root: A Case
Study in Design by Principled Optimization”, LNCS.

[12] Website: csclab.murraystate.edu/bob.pilgrim/405/Computing%20Machinery%20Ch06.pdf.

Authors

Diganta Sengupta

He is affiliated with Future Institute of Engineering and Management, Kolkata, India,
in the capacity of Assistant Professor in the department of Applied Electronics and
Instrumentation Engineering. He has obtained his Master’s degree from Jadavpur
University. His areas of research interest include Vedic Mathematics, Reversible
Logic, and Cryptography.

Mahamuda Sultana

She is presently affiliated with Swami Vivekananda Institute of Science and
Technology, Kolkata, India, in the capacity of Assistant Professor in the department of
Computer Science and Engineering. She has obtained her Master’s degree from
Jadavpur University and her research interests include Vedic Mathematics, Reversible
Logic, and Cryptography.

Atal Chaudhuri

Prof. (Dr.) Atal Chaudhuri received his Master of Electronics and Telecommunication
Degree with Computer Science specialization in the year 1982 and Doctorate of
Philosophy in Engineering from Jadavpur University in 1989. He has worked in the
capacity of R&D Engineer and Project Engineer in various research projects in India
and abroad. Dr. Atal Chaudhuri is now a Professor in the Department of Computer
Science & Engineering of Jadavpur University. He has more than 100 publications at
both National and International level. He has served as an expert for All India Council
of Technical Education, NAAC, University Grant Commission, India and NBA team
for accreditation of various institutions for last 12 years. He is the life member of both
Computer Society of India and Institute of Engineers, also the Vice chairman of
Computer Division of Institute of Engineers. He is Senior Member of IEEE.

