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ABSTRACT 
 
Of the four elementary operations, division is the most time consuming and expensive operation in modern 
day processors. This paper uses the tricks based on Ancient Indian Vedic Mathematics System to achieve a 
generalized algorithm for BCD division in a much time efficient and optimised manner than the 
conventional algorithms in literature. It has also been observed that the algorithm in concern exhibits 
remarkable results when executed on traditional mid range processors with numbers having size up to 15 
digits (50 bits). The present form of the algorithm can divide numbers having 38 digits (127 bits) which can 
be further enhanced by simple modifications. 
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1. INTRODUCTION 
 
The Ancient Indian Vedic Mathematics comprises of sixteen Sutras and thirteen corollaries [1] 
[2]. The four elementary operations of a processor, the addition, subtraction, multiplication and 
the division have been extensively dealt with in the sixteen sutras of Vedic Mathematics. The 
work in this paper involves the Nikhilam and the Paravartya Sutra which deal with the division. 
The Nikhilam Sutra also deals with multiplication and some amount of work has been done using 
another sutra known as the Urdhva Tiryakbhyam Sutra [3] [4] [5] [6] [7] [8]. The novelty of the 
Vedivision lies in the fact that the procedure incorporates addition and negation operations, both 
of which are much faster than the traditional successive subtraction methods. The Nikhilam Sutra 
can be stated as follows: 
 
1.1. The Nikhilam Sutra 
 

1. This Sutra breaks up the dividend into two parts, one part resembling the Quotient and 
the other part resembling the Remainder. The number of digits in the Remainder part 
equals the number of digits in the divisor. For example, if the dividend and divisor are 
2002002 and 89998 respectively, then 2002002 is broken up into two parts, 20 (part 1) 
and 02002 (part 2). 

2. The next step in the Sutra adjusts the divisor by complimenting it using the procedure 
“subtract all from 9 and the last from 10” in which all the digits in the divisor are 
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subtracted from 9 barring the last significant digit which is subtracted from 10.Therefore, 
the divisor 89998 after adjustment becomes 10002. 

3. Next, the first digit of the quotient part (part 1 of the dividend) is divided by the first digit 
of the actual divisor. This is the only step where division is unavoidable, but in this case 
also the maximum division is that of a single digit number by a single digit number. In 
our work a look-up table has been created which stores all the single digit division results 
in the form of quotient and remainder, and accessed on demand. The first digit of the 
quotient part ‘2’is divided by ‘8’ (the first digit of the actual divisor) and the remainder 
‘2’ is noted down. 

4. In this step, the remainder from the previous step is first written as the most significant 
digit of the quotient part and then it is multiplied by the adjusted divisor and placed 
below the dividend after shifting it one place right. This multiplication can be achieved 
by either the Nikhilam Sutra or the Urdhva Tiryakbhyam Sutra.  

89998 ) 2002002 
10002 ) 20 | 02002 : Divisor adjustment 
     2 | 0004 
   22 | ………. 

5. In the above example, we observe that after the single digit multiplication, the digits in 
the quotient part (part 1) of the dividend have been added. Now the adjusted divisor is 
again multiplied by the new digit (marked by bold and underlined in example of step-4) 
to obtain another number and place it again by shifting it to the right by one position as 
shown below in Example-1: 

89998 ) 2002002 
10002 ) 20 | 02002 : Divisor adjustment 
   2   | 0004 : Result after Step 4 
        | 20004 : Result after Step 5 

22 | 22046 
Example 1. 

Here it can be seen that since the result after step 5 has entered fully into the remainder 
part (part 2); hence the algorithm is concluded by adding all the intermediate results. 
Therefore, after dividing 2002002 by 89998, we get the quotient as 22 and the remainder 
as 22046. 
 

Observations. 
 

It can be concluded that no subtraction procedure is performed in the entire division 
process. In the third step of the sutra, a single digit division has been done but that can be 
performed using a look-up table. The division process has been performed with multiplication 
process in subsequent steps and addition. Multiplication is a relatively faster and cheaper 
operation than division. Also the largest multiplication that may be required is multiplying 9 by 9. 
 
Drawback of the Nikhilam Sutra 
 

The sutra provides best results when division requires large divisors. In cases where the 
divisor is a small number, this sutra provides ambiguous results. This drawback is accomplished 
by another sutra known as the Paravartya Sutra. 
 
1.1. The Paravartya Sutra 

 
The Paravartya Sutra is suitable for divisions including large as well as small divisors. The sutra 
is actually known as “Paravartya Yojayet” which means “Transpose and Apply”. The Paravartya 
Sutra can be easily explained using the famous Remainder Theorem [9] as follows: 
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1. If E = Dividend, D = Divisor, Q = Quotient and R = Remainder and if the divisor is taken 

to be (x-p), then a relationship can be stated as follows: 
E = D.Q + R, or  E = Q.(x-p) + R. 

 
2. Now, if ‘x’ is substituted by ‘p’ then the identity becomes E = R, thus the expression E 

automatically becomes the remainder as ‘p’ is achieved by equating x-p to zero. Hence, 
actually the sign of ‘p’ is reversed [1]. 
 

3. In Paravartya Sutra the digits of the divisor are first negated, i.e. if the divisor is 112, the 
new adjusted divisor becomes -1 -1 -2. Then the first digit is excluded and the remaining 
digits become the new divisor -1 -2. 
 

4. Next the dividend part is broken up into two parts as in the Nikhilam Sutra and the 
operation is processed as shown in the Example-2.  

 1 1 2 ) 1 2 3 4 
   -1 -2 ) 1 2  |  3 4     Broken up using Nikhilam Sutra. 
     -1  | -2 
          | -1 -2 
   1 1  |  0  2 
 

Example 2. 
On close observation it can be seen that the first digit of the divisor, which was excluded 

initially, actually divides the first digit of the dividend as in the case of the Nikhilam Sutra, and 
the remainder obtained from that single digit division is used to multiply the adjusted divisor in 
the Paravartya Sutra and then proceeded with the Nikhilam Sutra to provide the quotient as 11 
and the remainder as 2. 

 
2. VEDIVISION, THE VEDIC DIVISION ALGORITHM 

 
The proposed division algorithm in this paper is a combination of the earlier discussed two sutras, 
the Nikhilam Sutra and the Paravartya Sutra, with slight modification so as to obtain a 
generalized algorithm for all the possible divisors. Presently, numerous division algorithms are 
used depending upon system or application requirements such as the Restore Type Division 
Algorithm, SRT Division Algorithm, and the Non Restore Type Division Algorithm [10-12], the 
latter being the fastest and economic. It has been statistically proven further in our work that the 
proposed algorithm performs better with respect to the Non Restore Type Division Algorithm in 
terms of speed and memory requirement. 
 
The proposed algorithm performs the calculations on the number of digits in the divisor and the 
dividend rather than on the number of bits representing them. In Non Restore Type Division 
Algorithm, the time estimate of the division is proportional to the number of bits. But in the Vedic 
Division Algorithm, the time requirement is based mainly on the number of normalizations 
(illustrated further) of the intermediate remainders. Hence, the algorithm exhibits remarkable 
results on divisions involving big numbers. The novelty of the algorithm lies in the fact that since 
the computation is done on digits rather than on the bits, very large numbers, having size up to 38 
digits (127 bits), can be divided in the present form and if modified, it can divide even larger 
numbers. 
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2.1. Step – By – Step Algorithm description using an example 
 

1. In the first step the divisor is adjusted using a combined logic of both the Nikhilam Sutra 
and the Paravartya Sutra. All the digits that are less than or equal to 5 are negated. For all 
those digits which have values more than 5, 10’s compliment of the digit is taken and 1 is 
added to the next higher digit. If the divisor is 47483647, then a close observation reveals 
that all the consecutive digits are alternately less than and greater than 5. The divisor 
adjustment starts from the Least Significant Digit. As 7 > 5, hence 10’s compliment of 7 
is taken and 1 is added to the next higher digit ‘4’,replacing 7 by 3 and 4 by 5. Now this 5 
is adjusted by -5. Hence the adjustment of the divisor is shown below. 

4     7     4    8     3     6     4    7  becomes 
-5    3    -5    2    -4    4    -5    3  (Adjusted divisor) 
 

2. Let us take an example in which the dividend is 99999 and the divisor is 456. Therefore, 
the divisor 456 after adjustment becomes -5 4 4. It may also be observed that the first 
digit of an adjusted divisor will always be a negative digit. 
 

3. Next, the first digit of the dividend is divided by the magnitude of the first digit of the 
adjusted divisor to obtain the quotient. In the example, the first digit of the dividend 
(99999) is 9 which is divided by magnitude of the first digit of the adjusted divisor (-5 4 
4) which is 5 to obtain the quotient 1. This is the only step where division is unavoidable 
but it has been accomplished with the aid of two look – up tables as shown in Table 1 and 
Table 2. The use of these tables saves the division time otherwise required for obtaining 
the quotient and the remainder. 
 

Table 1.  Look – up Table for Quotient 
 

Q : Quotient Table 
 0 1 2 3 4 5 6 7 8 9 

1 0 1 2 3 4 5 6 7 8 9 
2 0 0 1 1 2 2 3 3 4 4 
3 0 0 0 1 1 1 2 2 2 3 
4 0 0 0 0 1 1 1 1 2 2 
5 0 0 0 0 0 1 1 1 1 1 

 
Table 2.  Look – up Table for Remainder 

 
R : Remainder Table 
 0 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 1 0 1 0 1 0 1 
3 0 1 2 0 1 2 0 1 2 0 
4 0 1 2 3 0 1 2 3 0 1 
5 0 1 2 3 4 0 1 2 3 4 

 
The second row and the first column in Table 1 and Table 2 are shown in bold 

and represent the array indices. The row indices have been started from 1. Column 1 
represents the denominator values and Row 2 represents the numerator values. Suppose 
we want to divide ‘a’ by ‘b’. The quotient is obtained from the cell Q[b,a] of Table 1 
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where the maximum value of b can be 5 and not equal to 0. The remainder is obtained 
from Table 2 in the same manner, that is, the value of cell R[b,a]. 

 
The new quotient is then multiplied by all the digits of the adjusted divisor and placed 
below the dividend at the exact positions and then added to get the new remainder as 
shown below:  

-5 4 4 )   9   9   9   9   9 ( 1 0 0 0 0 
 )  -5   4   4           .  
     4  13  13  9   9 
 

4. This step normalizes the remainder. Normalization means replacing a multiple digit value 
by a single digit value at each position. The procedure is started from the Least 
Significant Number of the remainder and followed to the Most Significant Number. The 
Least Significant Digit of the multiple digit number is kept at the position and the rest is 
added to the next Higher Significant Digit.  
 
There are primarily three reasons for Normalization. They are as follows: 
 

 If there is more than 1 digit in a single position: Suppose at the two adjacent 
places, there are 2 and 23. Then the normalization procedure is as follows: 

2 23 
     =       (2 + 2)   3 
     = 4   3 
  Thus, 2 23 after normalization becomes 4 3. 

 If there is a negative digit at any position: The we normalize as follows: 
2  -3 

=        (2 – 1)          (10 – 3) 
     = 1  7 
  Thus, 2 -3 becomes 1 7 after normalization. 

 If there are negative numbers at any position: In cases where there are negative 
numbers (multiple digit number), then normalization is done as follows: 

36  -17 
     =       (36 – 1)          (10 – 17) 
     = 35  -7 

 
Thus the normalized result is 35 -7 which further needs normalization by the first 

two procedures for obtaining the final result. 
 

If the most significant digit is negative, then normalization is not performed and the digit 
is kept as it is. 
 
The above mentioned procedure of normalization is also performed for normalization of 
the Quotient finally. The number of normalizations required for a single step determines 
the time estimation of the division procedure which has been elaborated further in the 
Performance Analysis part of this paper. 
 

5. The next step checks for a ‘0’ at the Most Significant Digit of the normalized remainder. 
If it is not ‘0’, as in this case, then the normalized remainder is again divided by the 
adjusted divisor and the new quotient is added to the previous quotient. Else if it is ‘0’, 
then the previous procedures are repeated till completion. The whole procedure is shown 
in the output snippet in Figure 1 below: 
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Figure 1. 
 
It can be seen that the remainder normalization forms the main time consuming part of 

the algorithm. Also there is no standard procedure for predicting the number of normalizations. 
Hence, the time estimate does not depend on the size of the number. Even in divisions having 
higher number of normalizations, Vedic Division Algorithm performs better with respect to the 
conventional algorithms. 

 
Statistically it has been found that in division intensive environments, like cryptographic 

algorithms etc, the overall performance of the Vedic Division Algorithm is much faster when 
compared to the conventional Non Restore Type Division Algorithm. 

 
2.2. The Algorithm 

 
Initialization Part 
 

1. The dividend and the divisor are held in two arrays – Array ’a’ and Array ‘b’ having 
index ‘m’ and ‘n’ respectively. Array ‘b’ finally stores the remainder. A temporary array 
‘temp’ has been used to hold the quotient having index‘t’. Another array ‘c’ is used to 
hold the copy of the divisor. All the data has been stored in Little Endean Formats and 
initialized to 0.The length of Array ‘b’ is ‘n’ and Array ‘a’ is ‘m+1’, Array ’c’ is ‘m’ and 
‘temp’ is ‘n’ respectively. 

2. The divisor is adjusted so that no digit in the divisor is more than 5. 
3. ‘m’ is updated if adjusting the divisor causes increase in length of the divisor. 
4. Inverse each digit of the divisor (including the most significant digit). Steps 3 and 4 have 

been clubbed in Section 2.1. 
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Division Part 
 

5. A new variable ‘j’ is taken for holding the value of the possible number of iterations and 
its limits are set from 1 to ‘n-m+1’. 

6. Compare the most significant digits of divisor and dividend. 
7. If MSD (Most Significant Digit) of divisor >MSD of dividend, club the most significant 

pair of digits of dividend. Update (decrement) n and t. 
8. If clubbing results in decrease of the number of digits of dividend below that of divisor, 

break from the ‘For Loop using ‘j’’ and go to step 13. 
9. Quo= MSD of dividend/ MSD of divisor. Calculate the remainder (dividend). 
10. If MSD of dividend not divisible by that of divisor, then break from the “for loop”. A 

fresh iteration is being started. Go to step 13. 
11. Decrement n and t, go to step 8. 
12. The remainder is then normalized. Increment ‘n’ and‘t’ if normalization increments the 

number of digits in remainder. 
13. If (n<m) or if (j>n-m+1) in the previous iteration, no further iterations are possible and 

2nd condition means we have already tried to divide once more but failed, go to step 16. 
14. Else division is possible, go to step 7. 
15. Check the remainder. If the remainder is negative, the quotient is decremented once. Else 

if it is positive, it is the ‘normalized version of divisor’ and cannot be divided again. So 
check if original form of divisor (stored in array ‘c’) can divide again. This division can 
result into incrementing the quotient by 1. 

16. The quotient is stored in array ‘temp’ with the leading and trailing 0’sand remainder in 
array ‘b’. Quotient can further be normalized. 

 
2.3. The Flowchart 

 
The flowchart of the Vedic Division Algorithm is shown in Figure 2. 
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Figure 2 
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2.4. Division examples illustrating the Best Case and the Worst Case 
 

Best Case 
 

Let the dividend be 80217727 and the divisor be 20202. The output snippet of the 
division is shown in Figure 3. It can be observed that remainder is normalized only in the last 
step. Hence, this type of division can be termed as a Best Case. 

 

 

Figure 3 
 
Worst Case 
 

The example shown in Figure 1, Section 2.1, can be said to be a Worst Case as in almost 
all the steps, remainder normalization has been required. 

 
3. PERFORMANCE ANALYSIS OF THE VEDIC DIVISION ALGORITHM 

 
For performance analysis, the Vedic Division Algorithm was executed on a 32 bit Operating 
System having Intel Pentium Dual CPU E2180 @2.00 GHz and 0.99 GB DDR2 RAM. At each 
execution, the algorithm was iterated 100,000 times with the same dividend and the divisor and 
the average time was noted, as the time taken for a single execution was so minuscule that it 
could not be detected. We think that it is the most rational method for time estimation. The 
comparison was made with respect to the Non Restore Type Division Algorithm, which was also 
iterated for an equal number of times for the same set of dividends and divisors, and the average 
execution time for this algorithm was also noted. The comparison was also made with respect to 
the Restore Type Division Algorithm, but since the performance of Non Restore Type Division 
Algorithm is much better than the Restore Type Division Algorithm, we tabulated the result with 
the Non Restore Type Division Algorithm. Each set of dividends and divisors ware executed by 
both the algorithms for seven times and the minimum value of time required of the seven 
executions were taken for analysis. This was done due to factors influencing the time analysis of 
the execution such as operating system time scheduling. The analysis details were noted down as 
shown in Table 3. 
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Table 3.  Execution Time Analysis of Vedivision and Non Restore Division Algorithm 

 

Dividend Digits Divisor Digits 
Vedic 

Division 
Non Restore 

Division 
Time in µs Time in µs 

91 2 16 2 0.150 0.800 
255 3 127 3 0.150 1.710 
948 3 182 3 0.310 2.340 

1,982 4 27 2 0.310 2.810 
3,728 4 94 2 0.160 3.270 
7,682 4 48 2 0.460 3.890 
9,382 4 49 2 0.320 3.900 

47,386 5 28 2 0.620 5.610 
131,071 6 7,295 4 0.460 5.780 
461,938 6 682 3 0.930 7.020 
493,827 6 14 2 0.790 7.170 
739,481 6 95 2 0.470 8.110 

1,048,576 7 2,249 4 0.460 8.260 
3,729,618 7 30,901 5 0.320 9.200 

10,388,608 8 240 3 0.630 10.780 
29,384,791 8 11 2 0.370 12.160 
55,555,555 8 41 2 0.780 12.960 
80,217,727 8 20,202 5 0.310 13.570 

482,937,164 9 456 3 1.250 15.740 
736,582,914 9 1,782 4 1.240 17.150 
1073741824 10 262125 6 1.860 16.860 
3147483648 10 7485629 7 0.780 17.790 
4294967295 10 2147483647 10 0.610 17.770 

19372864582 11 4286 4 0.930 26.350 
965274638525 12 8258 4 1.240 31.050 

9561346784625 13 764318 6 2.780 39.910 
45615935785265 14 646464 6 3.120 40.080 
56455825519553 14 61945 5 3.900 41.640 

693582471951753 15 84265 5 2.490 48.760 
731984265735195 15 289357 6 2.490 49.290 

 
The dividends and the divisors were taken in a random manner and the results were 

tabulated. It can be seen that in the last row in Table 3, the dividend is a 15 digit number or in 
terms of bits, it is a 50 bit number. In this range the Non Restore Type Division Algorithm starts 
giving ambiguous results but the Vedic Division Algorithm performs satisfactorily. Also the Vedic 
Division Algorithm can compute numbers having 38 digits, 127 bit numbers, accurately in the 
present form, if modified it can divide even larger numbers. The tabulated data in Columns 5 and 
6 in Table 3 have been analyzed further in Figure 4. 
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Figure 4 
 

It can be well observed in Figure 4 that with increase in value in the dividend, the 
performance time in case of Non Restore Type Division Algorithm increases drastically 
compared to the Vedic Division Algorithm. This is because the Non Restore Type Division 
Algorithm computes on the number of bits, hence with increasing number of bits, the execution 
time increases. It can also be seen that there are a few glitches while computing with the large 
sized numbers in the Vedic Division Algorithm, but those are due to the random selection of 
dividends and the divisors, otherwise it can be stated that the computation time required by the 
Vedic Division Algorithm is almost constant irrespective of the size of the dividend. The only 
factor affecting the speed of execution is the number of normalizations required in a particular 
division.  

 
Further in Table 4, a comparison of the performance time with the value of the quotient 

has been made. Normally, more the value of the quotient more is the number of divisions 
required. Hence, it can be assumed that with increasing size of quotient, the performance time 
should increase. But, in case of Vedic Division Algorithm, we observe that the time estimation is 
not a function of the size of the quotient or number of divisions as it solely depends on the 
number of normalizations required. 
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Table 4.  Quotient Size Vs Time Analysis 
 

Value of Quotient Digits in Quotient Time taken by Vedivision (µs) 

2 1 0.610 
5 1 0.150 
5 1 0.310 

17 2 0.460 
39 2 0.160 
73 2 0.310 
120 3 0.320 
160 3 0.460 
191 3 0.320 
420 3 0.780 
466 3 0.460 
677 3 0.930 

1692 4 0.620 
3970 4 0.310 
4096 4 1.860 
7784 4 0.470 

35273 5 0.790 
43285 5 0.630 
413346 6 1.240 

1059072 7 1.250 
1355013 7 0.780 
2671344 7 0.370 
4520033 7 0.930 

12509644 8 2.780 
70562221 8 3.120 

116889638 9 1.240 
911386318 9 3.900 
2529692614 10 2.490 
8230967447 10 2.490 

 
 

The results in Table 4 have been graphically represented in Figure 5. There it can be 
observed that with increasing value of the quotient, the performance time may be lower or may be 
higher. For example, from Table 4, it can be observed that for a quotient value of 70562221 the 
performance time is 3.120 µs whereas for 116889638, it is 1.240 µs. Thus the time is less in case 
of a bigger quotient. 
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Figure 5 
 
4. CONCLUSIONS 

 
Vedivision, or the “Vedic Division Algorithm”, has exhibited remarkable results with respect to 
conventional division algorithms in terms of fast BCD division, thereby once again proving the 
famous proverb that ‘Old is Gold’. Also it has been observed that the execution time does not 
depend on the size of the dividend or the divisor, but on the number of remainder normalizations 
required. Further VLSI implementation of the algorithm remains to be tested. 
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